文章编号 10258-7106(2007)05-0572-09

辉钼矿亚晶粒范围内 Re 和¹⁸⁷Os 的失耦现象

(1中国地质科学院国家地质实验测试中心,北京 100037;2中国地质科学院矿产资源研究所,北京 100037)

摘 要 对于一些粗颗粒辉钼矿样品,取样量小时,不能产生准确且重现性好的结果;取样量大时,则重现性 好。这是因为 Re 和¹⁸⁷Os 在辉钼矿亚晶粒(微米级)范围内出现了失耦现象,也就是由于放射性成因¹⁸⁷Os 的迁移使 Re 和¹⁸⁷Os 在空间上不再保持连接。失耦的程度随辉钼矿年龄的增加和颗粒度的增大而更加明显。地质年龄年轻 的自然细颗粒样品的失耦现象不明显,使用 1~3 mg 样品就有可能取得准确且重现性好的结果。而地质年龄老的 粗颗粒样品,则可能需要大约 100 mg 甚至更多的样品才能得到重现性好的数据。增大取样量以及将样品研磨至粒 度< 0.1 mm,以增加样品的均匀性,可有效克服失耦现象对准确定年的影响。

关键词 地球化学;辉钼矿;Re-Os 同位素年龄;失耦现象

中图分类号:P597⁺.3 文献标识码:A

Subgrain-size decoupling of Re and ¹⁸⁷Os within molybdenite

DU AnDao¹, QU WenJun¹, WANG DengHong², LI HouMin¹, FENG ChengYou², LIU Hua¹, REN Jing¹ and ZENG FaGang¹

(1 National Research Center of Geoanalysis, Chinese Academy of Geological Science, Beijing 100037, China;
 2 Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China)

Abstract

For some coarse-grained molybdenites, the analysis of small sample aliquants may fail to yield accurate or reproducible Re-Os ages, whereas the analysis of larger aliquants from the same mineral separate does yield reproducible Re-Os ages. Such an observation can be best explained if Re and ¹⁸⁷Os are internally decoupled within molybdenite grains. The degree of decoupling between Re and ¹⁸⁷Os seems to increase as a function of both increasing grain size and increasing age of molybdenite. Geologically younger and natural fine-grained molybdenite samples seem not to show obvious Re and ¹⁸⁷Os decoupling, and reproducible ages can be determined from some samples with merely $1 \sim 3$ mg of aliquant. Geologically old and coarse-grained molybdenite samples may require as many as 100 mg or more of aliquant from a much larger mineral separate to overcome the effect of Re and ¹⁸⁷Os decoupling. Grinding sample into homogeneous powder (grain size < 0.1 mm) could reduce the effect of decoupling.

Key word: geochemistry, molybdenite, Re-Os isotopic age, decoupling

本文得到国家自然科学基金项目(No. 40572062),中国地质调查局'中国成矿体系综合研究'项目(编号 1212010733803)及"我国重要矿 产和区域成矿规律研究"项目(编号 1212010535804)的联合资助

第一作者简介 杜安道,女,1940年生,研究员,主要从事 Re-Os 年代学方面的研究工作。Email: andaodu@163.com 收稿日期 2007-01-15; 改回日期 2007-08-10。许德焕编辑。

辉钼矿 Re-Os 同位素体系定年是基于¹⁸⁷Re 通 过 β 衰变产生¹⁸⁷Os 根据下式来计算年龄 *t* 的(杜安 道等 ,1994)。

$$t = \frac{1}{\lambda_{\rm Re}} \ln \left(\left(\frac{187}{187} \text{Re} \right) + 1 \right)$$
 (1)

其中,¹⁸⁷Re的衰变常数 $\lambda_{Re} = 1.666 \times 10^{-11} a^{-1}$,其 不确定度为 1.02 %,置信水平为 95%(Smoliar et al.,1996)。

将 Re-Os 记时计用于辉钼矿(MoS,)定年是一个 很有效的定年方法。因为辉钼矿中含有 Re 和放射 性成因的¹⁸⁷Os,含普通Os很少。辉钼矿的Re/普通 Os>10⁶,普通 Os 中的¹⁸⁷ Os 就更少,因而,可由 ¹⁸⁷Os/¹⁸⁷Re比值直接计算得到准确的矿物形成年龄。 近几年发现 Re-Os 辉钼矿年龄的重现性和准确性与 辉钼矿颗粒的大小以及取样量密切有关。细颗粒和 完全均匀的样品对于获得准确年龄是非常重要的, 这是因为 Re 和¹⁸⁷Os 在辉钼矿单个晶体中有失耦现 氦 decoupling of Re and ¹⁸⁷Os within molybdenite), 即由于放射性成因¹⁸⁷Os 的迁移使 Re 和¹⁸⁷Os 在空 间上不再保持连接。Re 和¹⁸⁷Os 的失耦现象是 Stein 等(1998;2001;2003)首先发现的。最初,发现由单 个辉钼矿晶体或少量粗颗粒辉钼矿样品不能得到好 的 Re-Os 年龄,而由细颗粒的单矿物则可获得好的 和地质上合理的年龄。Stein 等(2003)采用 La-MC-ICPMS 对大颗粒辉钼矿进行了原位微区扫描分析, 发现在 200 µm 扫描范围内所得到的¹⁸⁷Os/¹⁸⁷Re 比 值变化很大,计算所得的年龄的变化范围为135~ 2 692 Ma. Selbv 等(2004) 也发现, 对一些地质年龄 老的粗颗粒辉钼矿样品采用准确的同位素稀释热表 面电离质谱(ID-NTIMS)进行测定时 其年龄测定精 度明显与取样量以及辉钼矿的自然颗粒大小有关, 这是因为放射性成因的¹⁸⁷Os 在微米级范围内容易 流动,使得¹⁸⁷Os/¹⁸⁷Re比值发生了变化,从而导致年 龄计算的错误。只有完全均匀的晶体或晶体聚合物 才能克服 Re-¹⁸⁷Os 的失偶现象。辉钼矿 Re-Os 系统 是纳米级地球科学的重要例证。地质上所有事件可 追溯到纳米级现象(Stein et al. 2003)。 笔者在重新 审视以前的辉钼矿年龄测定数据时也发现了类似的 现象。本文对 Re-Os 年龄范围为 14~1 800 Ma 的 辉钼矿样品和定年标准物质的年龄测定精度与颗粒 大小及取样量的关系进行了探讨,以期克服失耦现 象对 Re-Os 同位素系统准确定年的影响。

1 分析方法

对野外采集的辉钼矿矿石样品进行辉钼矿单矿 物挑选。将选出的辉钼矿单矿物置于显微镜下检 查,使其纯度大于99%、晶体新鲜、无氧化、无污染, 然后,将其研磨至200目,用于Re-Os同位素分析。

Re-Os 化学分离步骤和质谱测定请参照文献 杜 安道等,1994;2001;屈文俊等,2003;2004),现简述 如下:

准确称取待分析样品及¹⁸⁵ Re 和¹⁹⁰ Os 混合稀释 剂 加入 8 ml 逆王水和 1 ml 30% H₂O₂ 于 Carius 管 中。下端在 - 50~ - 80℃ 封管。在 230℃ 烘箱中 ,加 热 24 h。采用蒸馏法分离 Os ,用丙酮萃取分离 Re。 采用美国 TJA 公司生产的 TJA X-series ICP-MS 测 定 Re 和 Os 同位素比值。

2 实验结果

2.1 细颗粒年轻辉钼矿样品

一些辉钼矿样品,年龄在 10~200 Ma 左右,粒 度小(< 0.1 mm)。如西藏马厂箐 Cu-Mo-Au 矿床 (曾普胜等,2006)、西藏冈底斯知不拉 Cu-Pb-Zn 矿 床(李光明等,2005)、青海索拉吉尔 Mo-Cu 矿床(地 质解释由丰成友另行发表)、安徽铜陵大团山 Cu-Au-Mo(Fe)矿床(Mao et al.,2006)和赣南崇义淘锡坑 钨矿床(陈郑辉等,2006)。从这些矿区的辉钼矿样 品均获得了重现性很好的 Re-Os 模式年龄(表1),说 明这些辉钼矿无明显失耦现象。特别是青海索拉吉 尔 Mo-Cu 矿床,虽然其平行样的¹⁸⁷ Re 和¹⁸⁷ Os 含量 差别较大,但其比值和模式年龄的平行性很好,这表 示 Re 和¹⁸⁷ Os 之间的失耦现象很不明显。

2.2 粗颗粒年轻辉钼矿样品

新疆伊吾县景峡钼矿床中的辉钼矿呈脉状和块 状充填在花岗岩的裂隙内或以粗晶自形颗粒呈浸染 状产于花岗岩内(图1)。辉钼矿的粒度在 $3 \sim 8 \text{ mm}$ 之间。这种天然粗颗粒年代较新的辉钼矿样品表现 出明显的失耦现象,随着取样量的增加,其模式年龄 的重现性有所改善(表 2,图 2)。当取样量增加到约 150 mg时,才得到较为平行的测定结果。将样品磨至 粒度<0.1 mm,其测定结果的重现性大为改善。单个 样品研磨前,取样量为 $20 \sim 200 \text{ mg}$,其年龄平均值为 (315 ± 15)Ma。样品研磨后,取样量为 $10 \sim 150 \text{ mg}$,

表 1	中国部分矿	"区辉钼矿	'平行样的	Re-Os 同位素数据	「粒度<0.1 mm)
-----	-------	-------	-------	-------------	------------	---

Table 1 Re-Os data of molybdnite replicates from some deposits in China grain size < 0.1 mm)

矿庄	HY 다 모	$_{m\not\in}/g$	w(¹⁸⁷ Re) (μg/g)		$\mathfrak{w}(187 \mathrm{Os})/(\mathrm{ng/g})$		t/Ma	
10 /本	作四写		测定值	不确定度	测定值	不确定度	测定值	不确定度
西藏马厂箐 Cu-Mo-Au 矿床	MCQ-20	0.01434	77.5	0.8	44.7	0.4	34.6	0.6
	MCQ-20	0.01486	78.6	0.9	45.4	0.4	34.7	0.6
西藏冈底斯知不拉 Cu-Pb-Zn 矿床	QL208-4	0.00279	687.0	7.4	193.2	1.7	16.88	0.28
	QL208-4	0.00272	660.2	6.6	185.9	1.5	16.90	0.27
青海索拉吉尔 Cu-Mo 矿床	JD5	0.01019	245.0	1.8	934.6	7.8	228.6	3.1
	JD5	0.00775	160.9	2.2	614.6	4.9	228.9	3.9
安徽铜陵大团山 Cu-Au-Mo-(Fe)矿床	dtsZK38152	0.01066	616.9	5.4	1427.11	1.2	138.7	2.0
	dtsZK38152	0.00113	628.9	5.3	1476.4	11.1	140.8	2.0
赣南崇义淘锡坑钨矿床	TXK1-3	0.405	0.004705	0.000038	0.01221	0.00014	155.5	2.2
	TXK1-3	0.400	0.004756	0.000042	0.01218	0.00018	153.5	2.7

注 :Re, Os 含量的不确定度包括样品和稀释剂的称量误差、稀释剂的标定误差、质谱测量的分馏校正误差、待分析样品同位素比值测量误差, 置信水平 95 % 模式年龄的不确定度还包括衰变常数的不确定度(1.02 %),置信水平 95 % 模式年龄 / 按(1)式计算。测试仪器:TJA ICP-MS 电感耦合等离子体质谱仪 ;测试单位:中国地质科学院国家地质实验测试中心。

图 1 新疆伊吾县景峡钼矿床的辉钼矿标本 (用于选取辉钼矿单矿物)

Fig. 1 Photograph of molybdenite ore sample from Jingxia Mo deposit in Yiwu County , Xinjiang

其年龄平均值为 307.9±0.9 Ma(表 2)。由图 2 清 楚可见,在取样量为 15~200 mg 条件下,研磨后样 品的年龄数据的变化远小于研磨前样品的数据。 2.3 粗颗粒古老辉钼矿样品

河南熊耳山寨洼钼矿床的赋矿围岩为太古代太 华群片麻岩。辉钼矿与石英一起呈脉状、网脉状产 于片麻岩中,典型矿物组合为辉钼矿+石英,其他矿 物少见。辉钼矿颗粒粗大(图3),自然颗粒度为1~ 3 mm,存在着明显失耦现象。其 Re-Os 同位素数据 列于表 3(地质解释由李厚民另行发表)。对表 3 所 列的 8 个辉钼矿样品,在自然颗粒度情况下直接进 行了 Re-Os 同位素分析,对其中的 Zhaiwa-1、2、4 号 样品还作了平行样品分析。将样品研磨至粒度<0.1 mm 后又进行了分析。分析结果表明,对自然颗粒度为1~3 mm 的样品直接进行分析,所有平行样的重现性都很差,相对误差为2%~7%。将其中的 Zhaiwa-5样品研磨到粒度<0.1 mm,分析后获得了 重现性非常好的结果,平均值的相对标准偏差仅为 0.7% 模式年龄的平均值为1808±12 Ma。

2.4 对两种 **Re-Os** 定年标准物质 **HLP** 和失耦现象的 研究

辉钼矿 HLR (GBW04435)采自陕西黄龙铺碳酸 岩脉型钼(铅)矿床,辉钼矿 JDCJDC(GBW04436)

Fig. 2 Plot showing sample weight used for analyses relative to age of Jingxia Mo deposit in Yiwu County, Xinjiang

Table 2	2 Re-Os isoto	pic data of mo	lybdenite from J	ingxia Mo dep	osit in Yiwu Co	unty , Xinjiang	5
		re (¹⁸⁷ Re	e)/(μg/g)	u(¹⁸⁷ Os)/(ng/g)	t/Ma	
	<i>m</i> 样/g	测定值	不确定度	测定值	不确定度	测定值	不确定度
自然颗粒粒度 3~8 mm							
	0.02064	38.79	0.34	196.1	1.5	302.7	2.2
	0.02030	22.24	0.17	123.1	0.9	331.3	2.3
	0.05540	30.03	0.28	171.9	1.4	342.7	2.6
	0.05243	29.72	0.29	149.6	1.2	301.5	2.4
	0.10135	35.72	0.30	178.6	1.6	299.3	2.2
	0.10109	29.60	0.27	155.5	1.2	314.6	2.3
	0.14936	32.70	0.31	171.9	1.3	314.8	2.3
	0.19972	31.34	0.38	165.5	1.4	316.1	2.7
平均值						(315 ±	15) Ma
研磨后粒度<0.1 mm							
	0.01016	32.05	0.25	164.5	1.2	307.4	2.4
	0.02460	32.32	0.29	167.1	1.4	309.4	2.8
	0.05031	31.71	0.26	163.4	1.4	308.5	2.7
	0.07497	31.67	0.33	162.7	1.4	307.7	3.5
	0.10010	31.91	0.27	164.0	1.3	307.6	2.7
	0.15000	32.20	0.31	165.2	1.3	307.1	3.0
平均值						(307.9	± 0.9) Ma

表 2 新疆伊吾县景峡钼矿床中辉钼矿的 Re-Os 同位素数据

注 除了模式年龄的不确定度不包括衰变常数的不确定度(1.02 %)外,其他均与表1的注明相同。

采自陕西金堆城斑岩钼矿床,加工至粒度为200目。 经国内外多家实验室进行测试后已被批准为国家一级标准物质(Du et al. 2004)。其定值数据列于表4。

为了研究辉钼矿 JDC 的失耦现象,测定了不同 取样量(0.025~0.3g)时的 Re-Os 同位素模式年龄 (表5 图 4)。

由表 5 可见 取样量从 0.025 g 至 0.3 g 的所有 模式年龄测定值均在表 4 所给出的不确定度范围 内。但从图4来看,随着取样量增加,模式年龄的测 定精度明显改善。取样量为 300 mg 时,精度最好, 且其测定值最接近表 4 中的推荐值。因此,在使用 辉钼矿 JDC 作为标样时,JDC 的取样量最好在 100 mg 以上。

采用 Selby 等(2004)给出的辉钼矿 HLP 的 Re-Os 同位素数据 绘制了取样量与年龄测定值的关系 图(图 5)。

Fig. 4 Plots showing sample weights used for analysis against age of JDQ GBW04436)

Table 3 Re-Os isotopic data of molybdenite from Zhaiwa Mo deposit in Henan										
	ᄷᇢᇢ	mu la	u (¹⁸⁷ Re	e)/(μg/g)	u(¹⁸⁷ Os	;)/(ng/g)	t/	'Ma		
	杆品号	<i>加</i> 样/8	测定值	不确定度	测定值	不确定度	测定值	不确定度		
自然颗粒粒度1~3 mm										
	Zhaiw-1	0.01022	1.390	0.012	40.47	0.31	1722	16		
	Zhaiw-1	0.04997	1.255	0.012	37.76	0.29	1780	17		
	Zhaiw-2	0.00995	1.622	0.013	48.50	0.40	1768	16		
	Zhaiw-2	0.05012	1.593	0.015	48.53	0.37	1802	17		
	Zhaiw-3	0.00691	1.440	0.017	41.05	0.32	1688	18		
	Zhaiw-4	0.01035	1.921	0.015	54.94	0.57	1693	17		
	Zhaiw-4	0.05016	1.833	0.018	53.64	0.41	1731	16		
	Zhaiw-5	0.05064	3.037	0.027	86.20	0.65	1680	15		
	Zhaiw-6	0.05003	1.272	0.010	38.51	0.29	1790	16		
	Zhaiw-8	0.05022	0.798	0.007	24.11	0.18	1787	17		
	Zhaiw-9	0.05160	0.418	0.004	12.53	0.11	1771	17		
平均值							(1747 ±	45)Ma		
研磨后粒度<0.1 mm										
	Zhaiw-5	0.01999	2.628	0.022	79.87	0.63	1797	17		
		0.05054	2.686	0.025	82.19	0.64	1809	17		
		0.08012	2.676	0.022	81.85	0.62	1809	16		
		0.09973	2.643	0.029	81.88	0.71	1831	15		
		0.15012	2.686	0.023	81.67	0.65	1798	16		
		0.20018	2.691	0.035	82.16	0.68	1805	17		
平均值							(1808 ±	12) Ma		

表 3 河南寨洼钼矿床中辉钼矿的 Re-Os 同位素数据

注 除了模式年龄的不确定度不包括衰变常数的不确定度(1.02 %)外,其他均与表1的注明相同。

表 4 辉钼矿 HLP(GBW04435)和 JDC(GBW04436)的标准值及不确定度 Table 4 Certified values for molybdenite HLP(GBW04435) and JDC(GBW04436)

伯马	α (Re) (μ g/g)		u (¹⁸⁷ Os	s)(ng/g)	t/Ma		
当用して	标准值	不确定度	标准值	不确定度	标准值	不确定度	
HLR(GBW04435)	283.8	6.2	659	14	221.4	5.6	
JDC(GBW04436)	17.39	0.32	25.46	0.60	139.6	3.8	

表 5 辉钼矿 JDC(GBW04436)不同取样量时的 Re-Os 同位素数据 Table 5 Re-Os isotopic data of different and it

able	5	Re-Os	isotopic	data of	different	sample	aliquants	for	molybdnite	JDC(GBW04436)
------	---	-------	----------	---------	-----------	--------	-----------	-----	------------	------	----------	---

皮旦		w (¹⁸⁷ Re	e)(μg/g)	u (¹⁸⁷ Os)∕(ng/g)	t/	'Ma
庐亏	<i>m</i> 样 / g	测定值	不确定度	测定值	不确定度	测定值	不确定度
1	0.02504	10.93	0.11	25.11	0.22	137.7	1.3
2	0.02560	10.90	0.10	25.16	0.21	138.4	1.0
3	0.02518	10.94	0.09	25.30	0.23	138.6	1.0
4	0.05005	10.93	0.09	25.16	0.19	138.0	0.7
5	0.05019	10.94	0.10	25.33	0.19	138.9	0.9
6	0.05006	10.93	0.11	25.30	0.20	138.8	1.1
7	0.10040	10.88	0.10	25.25	0.20	139.2	1.1
8	0.10003	10.83	0.09	25.22	0.21	139.6	0.9
9	0.10015	10.88	0.09	25.18	0.20	138.8	0.8
10	0.20009	10.87	0.08	25.25	0.19	139.3	0.7
11	0.20005	10.91	0.09	25.29	0.19	139.0	0.8
12	0.20011	10.87	0.09	25.28	0.22	139.5	0.9
13	0.30095	10.88	0.11	25.27	0.19	139.2	1.1
14	0.29995	10.90	0.09	25.31	0.20	139.2	0.8
15	0.30002	10.90	0.09	25.35	0.21	139.5	0.9

注 除了模式年龄的不确定度不包括衰变常数的不确定度(1.02 %)外 其他均与表1的注明相同。

Fig. 5 Plots showing sample weights used for analysis againstage of HLP (GBW04435)

由图 5 可见 辉钼矿 HLP 与 JDC 有着类似的情况。虽然取样量为 1 mg 以上的所有模式年龄测定 值均在表 4 所给出的不确定度范围内,但取样量为 10 mg 以上的年龄测定值的精度明显好于取样量为 1~5 mg 的。因此,在使用 HLP 作为标样时,HLP 的取样量最好在 10 mg 以上。

HLP和 JDC 是较年轻的细颗粒(粒度 < 0.1 mm)辉钼矿,在以上取样量范围内所得到的 Re-Os 年龄测定值均在表 4 所列不确定度范围以内,但仍 表现出其准确度和精度随样品量增加而变好的趋 势。也就是说,辉钼矿 HLP和 JDC 也存在着一定的 Re 和¹⁸⁷Os失耦现象,尽管其失耦的程度远小于年龄 相对较老的新疆伊吾县景峡钼矿床和河南熊耳山寨 洼钼矿床的粗颗粒辉钼矿样品。据此来看,无论地 质年龄老的或年轻的辉钼矿,都存在着 Re 和¹⁸⁷Os 失耦现象,只不过较老的粗颗粒辉钼矿表现出更严 重的 Re 和¹⁸⁷Os失耦现象。

3 讨论和结论

3.1 本实验取样量的一些统计数据

现将本实验所涉及的辉钼矿样品的矿物特点、 Re含量、年龄、颗粒大小以及获得准确年龄所需的 样品量列入表 6。

由表 6 可见,样品颗粒大小及取样量对 Re-Os 数据重现性的影响很大。如果辉钼矿内的 Re 和 ¹⁸⁷Os耦合很好,就不会观测到取样量与所测得年龄 之间的变化。然而,实际上已观测到,当粗颗粒辉钼 矿的取样量少时,Re-Os 数据的重现性不好,而取样 量大时,则重现性好。从 HLP 和 JDC 的情况看来, Re 含量低的 JDC 似乎比 Re 含量高的 HLP 失耦现 象更重。Selby 等(2004)也有类似的看法,他们认 为 这可能是因为对于 Re 含量低的样品而言,一定 量¹⁸⁷Os 的迁移所占的相对份额较大所致。

3.2 Re、Os、Mo和W的地球化学行为

了解 Re, Os, Mo 和 W 的地球化学行为有助于理 解辉钼矿内 Re-Os 同位素系统所存在的一些问题。 Stein 等(2001;2003)认为, Re 可以替代辉钼矿中的 Mo。 Re 含量可以是($n \times 10^2$)×10⁻⁶,甚至可以是 $n \times 10^{-2}$ 。在俄罗斯远东 Kudriavy 火山还发现了纯 Re (ReS₂),该稀有矿物最初被误认为是辉钼矿。在自然 界 除了 MoS₂ 和 ReS₂ 有相同的晶体结构外,还发现 在 Stillwater 杂岩体内存在着 Re 的硫化物 纯 Re₂S₃)。

在自然界,W 与 Mo 的矿物形成的行为显著不同。Mo 最一般的情况是形成硫化物(MoS₂),偶尔也出现钼铅矿(PbMoO₄),而 W 则形成钨酸盐,如白钨矿(CaWO₄)和钨锰铁矿(黑钨矿(Fe,Mn)WO₄), 很少见 W 的硫化物(WS₂)。曾在铂族元素矿床内发现了 OsS₂。S 与 Os 结合,在结构上属立方晶系,而 Mo 或 Re 与 S 结合,在结构上属六方晶系。

欲知 Re, Os 与 Mo 之间能否共生,首先要考虑 的是它们的电荷和离子半径是否相同。 Re^{7+} 的离子 半径为 0.53Å, Re^{4+} 的离子半径为 0.63Å, 与 Mo⁴⁺ 的离子半径(0.65Å)接近。 Os^{4+} 的离子半径为 0.63Å。从电荷与离子半径的相似性来看, Os 似乎 也能与 Mo 共生, 但矿液是还原性的(如能把 Mo⁶⁺ 和 Mo⁷⁺还原到 Mo⁴⁺),就最有可能把 Os⁴⁺还原到 正 3 价或 0 价。这不仅产生了一个过大的阳离子 (正电荷少,离子半径大)而不能适合辉钼矿的阳离 子空间位置,同时还引起了电荷的不平衡。这可能 是辉钼矿中基本不存在普通 Os(初始 Os)的首要原 因。在辉钼矿结晶过程中, Os 与辉钼矿非常不相 容,这就创造了一个独一无二的¹⁸⁷Re-¹⁸⁷Os 记时计。

正 4 价的¹⁸⁷Re经 β 衰变产生了正 5 价¹⁸⁷Os ,从 原子核内发出的电子(β)有可能发射到¹⁸⁷Os 外围电 子层而把正 5 价的¹⁸⁷Os 还原为结构上有些与辉钼 矿相容的正 4 价¹⁸⁷Os。

虽然正 4 价¹⁸⁷Os 的离子半径为 0.63Å,接近 Mo^{+4} 的离子半径(0.65Å),但 OsS₂ 在结构上属立方晶系,而 MoS_2 和 ReS₂属六方晶系。因此,正4价

表 6 辉钼矿样品的 Re 含量、年龄、颗粒大小和获得准确年龄所需样品量的统计数据

Table 6 Re content, Re-Os age grain size and sample aliquants of molybdenite for reproducible age used in this studay

样品编号	矿物特点	τα(Re)(μg/g) (大约)	t/Ma (大约)	颗粒大小 /mm	获得准确年龄 所需样品量
MCQ-20	西藏马厂箐 Cu-Mo-Au 矿床辉钼 矿样品由盘磨机碾碎、重液分离 而得	124	35	< 0.1	14 mg
QL208-4	西藏冈底斯知不拉 Cu-Pb-Zn 矿床 辉钼矿呈细脉浸染状,自然粒度 1mm 左右,全岩粉碎,重液分离	1082	17	< 0.1	3 mg
JD5	青海索拉吉尔 Cu-Mo 矿床辉钼矿 呈团块浸染状 ,全岩粉碎 ,重液 分离	398	229	< 0.1	7 mg
dtsZK38152	安徽铜陵大团山 Cu-Au-Mo(Fe) 矿床 细脉浸染状 ,手选磨细	1002	141	< 0.1	$1\!\sim\!10~{ m mg}$
Jinxia-1	新疆伊吾县景峡钼矿床浸染状-块 状辉钼矿矿石,手选	47.7	300	自然颗粒 3~8 研磨后 < 0.1	150 mg
zhaiwa	河南熊耳山寨洼钼矿床浸染状,石 英脉中,手选	3.18	1800	自然颗粒 1~3 研磨后 < 0.1	50 mg 未获准确年龄 20 mg
HLP-5	陕西洛南黄龙铺 Mo-Pb-U 矿床产 于碳酸岩脉中 ,全岩粉碎 ,重液 分离	284	221	< 0.1	1~10 mg; 10 mg以上年龄 更准确
JDC	陕西华县金堆城斑岩钼矿床全岩 粉碎 ,重液分离	17.4	139.6	<0.1	25 mg 以上 ;100 mg 以 上年龄更准确
TXK1-3	赣南崇义淘锡坑钨矿床用小刀把 辉钼矿铲下磨细	0.008	155	< 0.1	0.4~1 g

下式:

¹⁸⁷Os在辉钼矿中的稳定性就不如正 4 价¹⁸⁷Re。这可 能是¹⁸⁷Os 在辉钼矿中比¹⁸⁷Re 更容易迁移的原因。

斑岩 Cu-Mo 矿床的 Re 含量一般为($n \times 10^2 \sim n \times 10^3$)×10⁻⁶,而一些斑岩钼矿床的 Re 含量仅为 n × 10⁻⁶。这是因为 Cu-Mo 矿床中 Re 与 Mo 共生,但 Mo 含量有限,所有的 Re 分配在有限的辉钼矿中,故 其 Re 含量高。而斑岩钼矿床含 Mo 很多,故辉钼矿中含 Re 相对就低。本文表 6 所列数据也基本符合上述分析。Cu-Mo 矿床的 Re 含量高于纯 Mo 矿床。W 矿床中辉钼矿的 Re 含量最低,这可能是因为 Re 和 Mo 与共生的黑钨矿的矿物形成行为有显著不同所致。辉钼矿的 Re 含量提供了矿床成因的一个线 索。与地幔、交代作用以及镁铁质-超镁铁质岩石熔 融有关的辉钼矿,含有过高量的 Re;而中间地壳岩石及贫有机物的沉积岩中的辉钼矿,其 Re 含量低。 Re 含量提供了矿床成因的一个证据,但不是必须的证据(Stein et al. 2001 2003)。

3.3 关于¹⁸⁷Os 在辉钼矿中的迁移速度

失耦现象主要是由¹⁸⁷Os 在辉钼矿中的迁移引 起的(Selby et al. 2004)。定义¹⁸⁷Os 扩散系数 D 为 $D = X^2 / t$

(2)

式 2)中 ,X 是扩散距离 ,单位为 m。t 是扩散所 经过的时间 ,单位为 s。由于激光扫描发现在 50 μ m 范围内就出现了失耦现象 ,故以此作为扩散的距离。 对几种已通过 NTIMS 测定年龄的大颗粒辉钼矿中 ¹⁸⁷Os 的扩散进行了估计。由于矿床所经历的过程 是复杂的 ,计算结果可认为是表面扩散系数 D ,其值 为 2.8×10⁻²⁶~2.1×10⁻²¹ m/s。这类似于 Os 在 Fe 的硫化物中和 Re 在辉钼矿中温度< 500℃时的 扩散系数。

3.4 为何自然小颗粒样品无明显失耦现象?

辉钼矿中的 Re 和¹⁸⁷Os 不会进入相邻的硅酸盐 相 因为那里没有亲铁和亲铜元素的位置。硅酸盐 是¹⁸⁷Os 迁移的天然屏障。¹⁸⁷Os 迁移到辉钼矿的边 缘被迫停下 ,因而 ,自然小颗粒辉钼矿样品的失耦现 象不明显。还需说明的是 ,辉钼矿中的 ¹⁸⁷Os 可以进 入相邻的黄铜矿 ,辉钼矿的 Re-Os 年龄未发生可觉 察的变化 ,而相邻的黄铜矿年龄变得太老了。所以 , 通过与辉钼矿相接触的硫化物所测定的 Re-Os 年龄 可能是不正确的。如果采用等时线方法,初始¹⁸⁷Os/ ¹⁸⁸Os 比值将错误地变高,从而导致严重的地质解释 错误(Selby et al. 2004)。

3.5 如何减少失耦现象对准确测定年龄的影响

(1)样品的采集和制备很重要。Stein 等(2001) 和 Selby 等(2004) 认为,从暴露的辉钼矿颗粒或从矿 石中手选的颗粒碎片,得到的 Re-Os 数据不准确并 且重现性不好。类似的情况亦见于表 2 和表 3 ,由 Zhaiwa-1、2、4 手选大颗粒碎片和景峡钼矿床的辉钼 矿 得到的是不准确和不重现的数据。因此 ,由大颗 粒部分或颗粒碎片不能得到准确的地质年龄或有意 义的辉钼矿年龄信息。细颗粒和完全均匀的样品对 于获得准确年龄是非常重要的。Stein 等(2001)用 一个有钻石尖的低速微型钻从粗颗粒辉钼矿上多处 随机选点钻出粉末。这一矿物分离手段产生了准确 且重现性好的年龄。这对与石英或其他硅酸盐矿物 生长在一起的细粒灰色的簇状辉钼矿特别有效。钻 下来的辉钼矿和石英的混合物稀释了 Re ,即所测样 品不是纯辉钼矿,但并不影响年龄。因为实验证明, 与辉钼矿相比,硅酸盐所含 Re 和¹⁸⁷Os 的量可忽略 不计。

(2)将辉钼矿颗粒研磨到 0.1 mm 以下并增加 取样量能有效地消除失耦现象对准确定年的影响。 取较多样品,充分研磨,增加均匀性,使样品任何一 部分的¹⁸⁷Os 和¹⁸⁷Re 含量都相同 这也使样品任何部 分的¹⁸⁷Os / ¹⁸⁷Re 比值都一样,从而由¹⁸⁷Os / ¹⁸⁷Re 所计算的年龄也一样。实际上,样品的均匀性不可 能是绝对的 总是相对的 根据样品的均匀化程度适 当增大取样量 ,可得到稳定重现的年龄结果。特别 是对年龄较老和 Re 含量较低的样品,其取样量最好 在100 mg 以上。而一些铜钼矿床内的辉钼矿,其 Re 含量可达(n×10²)×10⁻⁶,其取样量为数毫克即 可。与钨矿伴生的辉钼矿的 Re 含量经常为 10^{-9} 数 量级 ,为了在准确测定年龄时获得具足够强度的 Re $\mathbf{1}^{187} \mathrm{Os}$ 质谱信号 样品的取样量必需达到 $0.4\!\sim\!1\mathrm{g}$, 这样才能得到准确的 Re-Os 年龄。当对未知辉钼矿 样品的 Re 含量及其失耦现象无把握时,最好能准备 1g左右的样品。

(3)等时线方法具有更大的可靠性,这是因为在 一个大的空间范围内取了多个样品。如果存在着严 重的失耦现象,就不可能得到一条相关性很好的等 时线。如果能形成一条很好的等时线,则表明失耦 现象不明显,就能更准确地反映该矿的形成时代。

References

- Chen Z H , Wang D H , Qu W J , Chen Y C , Wang P A , Xu J X , Zhang J J and Xu M L. 2006. Geological characteristies and mineralization age of the Taoxikeng tungsten deposit in Chongyi County , southern Jiangxi Province , China J J. Geological Bulletin of China , 25(4):496~501 (in Chinese with English abstract).
- Du A D , He H L , Yin N W , Zou X Q , Sun Y L , Sun D Z , Chen S Z and Qu W J. 1994. A study on the rhenium-osmium geochronometry of molybdenites [J] Acta Geologica Sinica , 68(4): 339~347 (in Chinese with English abstract).
- Du A D , Zhao D M , Wang S X , Sun D Z and Liu D Y. 2001. Precise Re-Os dating for molybdenite by ID-NTIMS with tube sample preparatior[J]. Rock and Mineral Analysis , 20(4):247~252 (in Chinese with English abstract).
- Du A D , Wu S Q , Sun D Z , Wang S X , Qu W J , Markey R , Stein H , Morgan J W and Malinovskiy D. 2004. Preparation and certification of Re-Os dating reference materials : Molybdenite HLP and JDC[J]. Geostandard and Geoanalytical Research , 28(1):41 ~ 52.
- Li G M , Rui Z Y , Wang G M , Lin F C , Liu B , She H Q , Feng C Y and Qu W J. 2005. Molybdenite Re-Os dating of Jiama and Zhibula polymetallic copper deposits in Gangdese metallogenic belt of Tibet and its significance J]. Mineral Deposits , 24(5):481~489 (in Chinese with English abstract).
- Mao J W , Wang Y T , Lehmann B , Yu J J , Du A D , Mei Y X , Li Y F , Zhang W S , Stein H J and Zhou T F. 2006. Molybdenite Re-Os and albite ⁴⁰Ar/³⁹Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications [J]. Ore Geology Reviews , 29:307~324.
- Qu W J and Du A D. 2003. Highly precise Re-Os dating of molybdenite by ICP-MS with carius tube sample digestion [J]. Rock and Mineral Analysis, 22(4): 254 \sim 262 (in Chinese with English abstract).
- Selby D and Creaser R A. 2004. Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite : Testing spatial restrictions for reliable Re-Os age determinations , and implications for the decoupling of Re and Os within molybdenite[J]. Geochimica et Cosmochimica Acta , 68(19): 3897~3908.
- Smoliar M I , Walker R J and Morgan J W. 1996. Re-Os ages of group IIA , IIIA , IVA and VIB iron meteorites J]. Science , 271 :1099 ~1102.
- Stein H J , Morgan J W , Markey R J and Hannah J L. 1998. An introduction to Re-Os : What 's in it for the mineral industry [J]?SEG Newslett , 32(1) 8~15.
- Stein H J , Markey R J , Morgan J W , Hannah J L and Scherst'en A. 2001. The remarkable Re-Os chronometer in molybdenite : How and why it works J J. Terra Nova , 13(6):479~486.
- Stein H J , Scherst'en A , Hannah J L and Markey R J. 2003. Subgrain-scale decoupling of Re and $^{\rm 187}{\rm Os}$ and assessment of laser ablation

ICP-MS spot dating in molybdenit€ J]. Geochimica et Cosmochimica Acta , 67(19): 3673~3686.

Zeng P S , Hou Z Q , Gao Y F and Du A D. 2006. The Himalayan Cu-Mo-Au mineralization in the Eastern Indo-Asian collision zone : Constraints from Re-Os dating of molybdenite[J]. Geological Review , 52(1):73~84 (in Chinese with English abstract).

附中文参考文献

- 陈郑辉,王登红,屈文俊,陈毓川,王平安,许建祥,张家菁,许敏林. 2006. 赣南崇义地区淘锡坑钨矿的地质特征与成矿时代[J]. 地 质通报,25(4):496~501.
- 杜安道,何红蓼,殷宁万,邹晓秋,孙亚利,孙德忠,陈少珍,屈文俊. 1994. 辉钼矿的铼-锇同位素地质年龄测定方法研究J]. 地质学报,68(4):339~347.

杜安道,赵敦敏,王淑贤,孙德忠,刘敦一. 2001. Carius 管溶样和 负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄 [J]. 岩矿测试 20(4) 247~252.

- 李光明,芮宗瑶,王高明,林方成,刘波,佘宏全,丰成友,屈文俊. 2005. 西藏冈底斯成矿带甲马和知不拉铜多金属矿床的 Re-Os 同位素年龄及其意义[]]. 矿床地质,24(5):481~489.
- 屈文俊 杜安道. 2003. 高温密闭溶样电感耦合等离子体质谱准确测 定辉钼矿铼.银地质年龄[J]. 岩矿测试 2003,22(4)254~257.
- 屈文俊 杜安道. 2004. 电感耦合等离子体质谱测定辉钼矿中 Re Os 含量时的质量分馏效应的校正[J]. 质谱学报 25(增刊):181~ 182.
- 曾普胜,侯增谦,高永峰,杜安道. 2006. 印度-亚洲碰撞带东段喜马 拉雅期铜-钼-金矿床 Re-Os 年龄及成矿作用[J]. 地质论评,52 (1).73~84.