首页 | 官方网站   微博 | 高级检索  
     

通道感应电荷对放电活动特征的影响
引用本文:于梦颖,谭涌波,师正,刘俊,王梦旖,郑天雪.通道感应电荷对放电活动特征的影响[J].应用气象学报,2019,30(1):105-116.
作者姓名:于梦颖  谭涌波  师正  刘俊  王梦旖  郑天雪
作者单位:南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室, 南京 210044
基金项目:国家重点研究发展计划(2017YFC1501504),国家自然科学基金项目(41875003),南京信息工程大学人才启动项目(2016r042)
摘    要:为探究闪电放电后电荷重置方案中异极性电荷植入法对雷暴云放电效应的影响,利用已有的三维雷暴云起放电模式,结合2011年8月12日发生在南京地区一次典型的雷暴个例,通过控制倍数改变闪电通道感应电荷量进行大量敏感性试验。模拟结果表明:闪电通道感应电荷量对空间电荷结构分布和云闪通道长度有明显影响。通道感应电荷量增加,即空间异极性电荷堆增多,加大空间电荷结构复杂程度;云闪通道在发展过程中难以穿越与自身极性相同的电荷堆,导致短通道云闪频次增加。通道感应电荷累积总量相同,不同闪电通道感应电荷量下云闪频次与通道电荷平均累积量呈负相关,即通道感应电荷平均累积量增大,云闪频次减少。而地闪频次、类型与通道感应电荷量相关性不明显。

关 键 词:通道感应电荷量    电荷结构    云闪通道长度    闪电频次
收稿时间:2018/8/2 0:00:00
修稿时间:2018/9/5 0:00:00

Effects of Channel-induced Charge on Discharge Activity Characteristics
Yu Mengying,Tan Yongbo,Shi Zheng,Liu Jun,Wang Mengyi and Zheng Tianxue.Effects of Channel-induced Charge on Discharge Activity Characteristics[J].Quarterly Journal of Applied Meteorology,2019,30(1):105-116.
Authors:Yu Mengying  Tan Yongbo  Shi Zheng  Liu Jun  Wang Mengyi and Zheng Tianxue
Affiliation:Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD)/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044
Abstract:In order to explore effects of different polarity charge implantation method on the discharge of thunderstorm clouds in the charge-replacement scheme after lightning discharge, a batch of sensitive experiments are implemented by changing the channel-induced charge to simulate a typical thunderstorm case in Nanjing, based on existing three-dimensional (3-D) thunderstorm cloud electrification and discharge patterns. Eeffects of thunderstorm cloud discharge are discussed from the perspective of space charge structure after discharge, lightning channel length, lightning frequency and type. Simulations show that the amount of induced charge by the lightning channel has a significant effect on the spatial charge structure distribution and the length of the intra-cloud flash channel. As the amount of induced charge in the channel increases, the number of lattice points where the polarity of the space charge is reversed before and after discharge increases, and the space charge structure becomes more complex, which in turn increases the intra-cloud flash with a shorter length of the lightning channel. The space charge structure is disordered, and it becomes more difficult for a wide range of identical-polar charge stacks to form during the development process. Meanwhile, it is also difficult for the lightning channel to pass through charge stack with the same polarity during the propagation process, and therefore the intra-cloud flash channel is limited to a pair of smaller heteropolar charge stacks. Eventually, the frequency of intra-cloud flashes that leads to shorter lightning channel lengths increases. The total amount of channel induced charge accumulation under different induction control multiples can be considered approximately the same within the error tolerance. The frequency of intra-cloud flashes is negatively correlated with the average cumulative amount of channel charges in different lightning channel induced charges:When the average cumulative amount of channel induced charges increases, the frequency of intra-cloud flashes will decrease. The change of the induced charge amount in the channel makes the charge distribution of the space charge region unbalanced. The frequency and type of the cloud-to-ground flash are affected by many factors, and the changing pattern is not obvious. Therefore, the channel-induced charge amount has little correlation with the frequency and type of cloud-to-ground flashes.
Keywords:channel-induced charge  charge structure  intra-cloud flash channel length  lightning frequency
本文献已被 CNKI 等数据库收录!
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号