Fourier decomposition of multi-scale sand wave fields on the Taiwan Banks
-
摘要: 海底沙波在全球广泛分布、成因复杂,但往往多种尺度的沙波叠加在一起形成复杂的沙波地貌体系,导致难以进行量化研究。针对该问题,本文提出一种实用的傅里叶分析方法,设计了巴特沃斯滤波器,将水深数据变换到频率域,进而将复杂沙波地貌分解成不同频率的单一类型沙波。并以台湾浅滩复杂的沙波地貌体系为例进行了分析研究,分解量化出3种空间尺度的沙波:巨型沙波(波长>100 m,波高>5 m)、中型沙波(波长5~100 m,波高0.4~5 m)和沙波纹(波长<5 m,波高<0.4 m)。本文提出的海底沙波地貌量化分析方法,有助于研究不同尺度海底沙波的成因与机理,对沙波区海洋工程的安全评估也具有实用价值。Abstract: Sand waves are widely distributed in the world and have complex genesis. And multi-scale complex sand waves often overlap to form a complex sand wave geomorphology system, which makes it difficult to conduct quantitative research. To solve this problem, a practical Fourier analysis method is proposed in this paper, and Butterworth filter is designed to transform water depth data into frequency domain, and then decompose complex sand wave geomorphology into a series of single types of sand waves in different frequencies. Taking the complex sand wave geomorphology system of Taiwan Banks as an example, three spatial scales of sand waves are quantitatively decomposed, which are: giant sand waves (over 100 m in length, over 5 m in height), medium sand waves (wavelength of 5–100 m, wave height of 0.4–5 m) and sand ripples (wavelength less than 5 m, wave height less than 0.4 m). The quantitative analysis method of sand waves proposed in this paper is helpful to study the genesis and mechanism of sand waves in different scales, and is also of practical value to the safety assessment of marine engineering in sand wave fields.
-
图 5 傅里叶变换各个频率累加效果图
图中展示了复合沙波地貌的3种主要组成:巨型沙波、中型沙波 和沙波纹,图6是3种沙波分离的结果
Fig. 5 Cumulative constituents of the Fourier analysis
The figure showing three groups of constituents that each represent a bedform type: giant sand waves, small sand waves, and megaripples, Fig. 6 is the separation results of sand waves
表 1 3种尺度沙波主要几何参量的统计结果
Tab. 1 Statistical results of the main characteristics of the separated three scales of sand waves
沙波类型 波长/m 波高/m 走向/(°) 巨型沙波 最大值 366.89 8.03 82.80 最小值 192.47 5.13 73.80 平均值 280.68 6.76 77.30 中型沙波 最大值 91.08 3.93 106.20 最小值 42.96 1.27 81.10 平均值 65.59 2.97 77.30 沙波纹 最大值 5.16 0.91 — 最小值 1.25 0.06 — 平均值 3.93 0.23 — -
[1] Allen J R L. Simple models for the shape and symmetry of tidal sand waves: (1) statically stable equilibrium forms[J]. Marine Geology, 1982, 48(1/2): 31−49. [2] 杜晓琴, 李炎, 高抒. 台湾浅滩大型沙波、潮流结构和推移质输运特征[J]. 海洋学报, 2008, 30(5): 124−136. doi: 10.3321/j.issn:0253-4193.2008.05.017Du Xiaoqin, Li Yan, Gao Shu. Characteristics of the large-scale sandwaves, tidal flow structure and bedload transport over the Taiwan Bank in southern China[J]. Haiyang Xuebao, 2008, 30(5): 124−136. doi: 10.3321/j.issn:0253-4193.2008.05.017 [3] 庄振业, 林振宏, 周江, 等. 陆架沙丘(波)形成发育的环境条件[J]. 海洋地质动态, 2004, 20(4): 5−10. doi: 10.3969/j.issn.1009-2722.2004.04.002Zhuang Zhenye, Lin Zhenhong, Zhou Jiang, et al. Environmental conditions for the formation and development of sand dunes (waves) in the continental shelf[J]. Marine Geology Letters, 2004, 20(4): 5−10. doi: 10.3969/j.issn.1009-2722.2004.04.002 [4] 程和琴, 胡红兵, 蒋智勇, 等. 琼州海峡东口底形平衡域谱分析[J]. 海洋工程, 2003, 21(4): 97−103. doi: 10.3969/j.issn.1005-9865.2003.04.016Cheng Heqin, Hu Hongbing, Jiang Zhiyong, et al. Equilibrium range spectra analysis of nearshore bedforms in the East Qiongzhou Strait[J]. The Ocean Engineering, 2003, 21(4): 97−103. doi: 10.3969/j.issn.1005-9865.2003.04.016 [5] Dorst L L, Roos P C, Hulscher S J M H. Spatial differences in sand wave dynamics between the Amsterdam and the Rotterdam region in the southern North Sea[J]. Continental Shelf Research, 2011, 31(10): 1096−1105. doi: 10.1016/j.csr.2011.03.015 [6] Zhou Qikun, Hu Guanghai, Sun Yongfu, et al. Numerical research on evolvement of submarine sand waves in the northern South China Sea[J]. Frontiers of Earth Science, 2017, 11(1): 35−45. doi: 10.1007/s11707-016-0571-6 [7] Guillén J, Acosta J, Chiocci F L, et al. Atlas of Bedforms in the Western Mediterranean[M]. Cham: Springer International Publishing, 2017. [8] 韩孝辉, 陈卫, 陈文. 海底输油气管线对海洋环境影响性分析[J]. 海洋开发与管理, 2018, 35(1): 83−87. doi: 10.3969/j.issn.1005-9857.2018.01.015Han Xiaohui, Chen Wei, Chen Wen. Analysis on influence of subsea oil-gas pipeline on marine environment[J]. Ocean Development and Management, 2018, 35(1): 83−87. doi: 10.3969/j.issn.1005-9857.2018.01.015 [9] Ye Yincan. Marine Geo-Hazards in China[M]. Amsterdam: Elsevier, 2017. [10] Lindenbergh R C. Parameter estimation and deformation analysis of sand waves and mega ripples[C]//Proceedings of the 2nd International Conference on Marine Sandwave and River Dune Dynamics. Enschede, The Netherlands: University of Twente, 2004. [11] van Dijk T A G P, Kleinhans M G. Processes controlling the dynamics of compound sand waves in the North Sea, Netherlands[J]. Journal of Geophysical Research: Earth Surface, 2005, 110(F4): F04S10. [12] Falqués A, Ribas F, Idier D, et al. Formation mechanisms for self-organized kilometer-scale shoreline sand waves[J]. Journal of Geophysical Research: Earth Surface, 2017, 122(5): 1121−1138. doi: 10.1002/2016JF003964 [13] Damen J M, van Dijk T A G P, Hulscher S J M H. Spatially varying environmental properties controlling observed sand wave morphology[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(2): 262−280. doi: 10.1002/jgrf.v123.2 [14] 夏东兴, 吴桑云, 刘振夏, 等. 海南东方岸外海底沙波活动性研究[J]. 黄渤海海洋, 2001, 19(1): 17−24. doi: 10.3969/j.issn.1671-6647.2001.01.003Xia Dongxing, Wu Sangyun, Liu Zhenxia, et al. Research on the activity of submarine sand waves off Dongfang, Hainan Island[J]. Journal of Oceanography of Huanghai & Bohai Seas, 2001, 19(1): 17−24. doi: 10.3969/j.issn.1671-6647.2001.01.003 [15] 鲍晶晶. 台湾浅滩沙波动力特征研究[D]. 武汉: 中国地质大学, 2014.Bao Jingjing. Hydrodynamic characteristics of sand waves in the Taiwan shoal[D]. Wuhan: China University of Geosciences, 2014. [16] 唐秋华. 东海北部外陆架海底底形特征及其成因研究[D]. 青岛: 中国海洋大学, 2009.Tang Qiuhua. Submarine bedforms and formation cause in the outer shelf of the north of the East China Sea[D]. Qingdao: Ocean University of China, 2009. [17] Jain C S, Kennedy J F. The growth of sand waves[C]//International Symposium on Stochastic Hydraulics. Pittsburgh: University of Pittsburgh School of Engineering Publication Series, 1971: 449-472. [18] Moll J R, Schilperoort T, de Leeuw A J. Stochastic analysis of bedform dimensions[J]. Journal of Hydraulic Research, 1987, 25(4): 465−479. doi: 10.1080/00221688709499263 [19] Jerolmack D, Mohrig D. Interactions between bed forms: topography, turbulence, and transport[J]. Journal of Geophysical Research: Earth Surface, 2005, 110(F2): F02014. [20] van der Mark C F, Blom A, Hulscher S J M H. Variability in bedform characteristics using flume and river data[C]//Proceedings of the 5th IAHR Symposium on River, Coastal and Estuarine Morphodynamics. London: Taylor and Francis Group, 2007: 923–930. [21] 阳凡林, 李家彪, 吴自银, 等. 多波束测深瞬时姿态误差的改正方法[J]. 测绘学报, 2009, 38(5): 450−456. doi: 10.3321/j.issn:1001-1595.2009.05.012Yang Fanlin, Li Jiabiao, Wu Ziyin, et al. The methods of removing instantaneous attitude errors for multibeam bathymetry data[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(5): 450−456. doi: 10.3321/j.issn:1001-1595.2009.05.012 [22] 赵荻能, 吴自银, 周洁琼, 等. 声速剖面精简运算的改进D-P算法及其评估[J]. 测绘学报, 2014, 43(7): 681−689.Zhao Dineng, Wu Ziyin, Zhou Jieqiong, et al. A method for streamlining and assessing sound velocity profiles based on improved D-P algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(7): 681−689. [23] 赵荻能, 吴自银, 李家彪, 等. CUBE曲面滤波参数联合优选关键技术及应用[J]. 测绘学报, 2019, 48(2): 245−255. doi: 10.11947/j.AGCS.2019.20180082Zhao Dineng, Wu Ziyin, Li Jiabiao, et al. The key technology and application of parameter optimization combined CUBE and surface filter[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 245−255. doi: 10.11947/j.AGCS.2019.20180082 [24] 吴自银, 阳凡林, 罗孝文, 等. 高分辨率海底地形地貌——可视计算与科学应用[M]. 北京: 科学出版社, 2017.Wu Ziyin, Yang Fanlin, Luo Xiaowen, et al. High Resolution Submarine Gemorphology—Theory and Technology for Surveying and Post-Processing[M]. Beijing: Science Press, 2017. [25] 吴自银, 阳凡林, 李守军, 等. 高分辨率海底地形地貌——探测处理理论与技术[M]. 北京: 科学出版社, 2017.Wu Ziyin, Yang Fanlin, Li Shoujun, et al. High Resolution Submarine Gemorphology—Visual Computation and Scientific Applications[M]. Beijing: Science Press, 2017. [26] Wu Ziyin, Jin Xianglong, Li Jiabiao, et al. Linear sand ridges on the outer shelf of the East China Sea[J]. Science Bulletin, 2005, 50(21): 2517−2528. doi: 10.1007/BF03183643 [27] Wu Ziyin, Jin Xianglong, Cao Zhenyi, et al. Distribution, formation and evolution of sand ridges on the East China Sea shelf[J]. Science in China Series D: Earth Sciences, 2010, 53(1): 101−112. [28] Wu Ziyin, Jin Xianglong, Zhou Jieqiong, et al. Comparison of buried sand ridges and regressive sand ridges on the outer shelf of the East China Sea[J]. Marine Geophysical Research, 2017, 38(1/2): 187−198. [29] Wu Ziyin, Li Jiabiao, Jin Xianglong, et al. Distribution, features, and influence factors of the submarine topographic boundaries of the Okinawa Trough[J]. Science China Earth Sciences, 2014, 57(8): 1885−1896. doi: 10.1007/s11430-013-4810-3 [30] Gutierrez R R, Abad J D, Parsons D R, et al. Discrimination of bed form scales using robust spline filters and wavelet transforms: methods and application to synthetic signals and bed forms of the Río Paraná, Argentina[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(3): 1400−1418. doi: 10.1002/jgrf.20102 [31] Knaapen M A F. Sandwave migration predictor based on shape information[J]. Journal of Geophysical Research: Earth Surface, 2005, 110(F4): F04S11. [32] 余威, 吴自银, 周洁琼, 等. 台湾浅滩海底沙波精细特征、分类与分布规律[J]. 海洋学报, 2015, 37(10): 11−25. doi: 10.3969/j.issn.0253-4193.2015.10.002Yu Wei, Wu Ziyin, Zhou Jieqiong, et al. Meticulous characteristics, classification and distribution of seabed sand wave on the Taiwan bank[J]. Haiyang Xuebao, 2015, 37(10): 11−25. doi: 10.3969/j.issn.0253-4193.2015.10.002 [33] 周洁琼, 吴自银, 赵荻能, 等. 海底沙波特征线的最优方向剖面自动识别方法[J]. 海洋学报, 2015, 37(7): 97−107. doi: 10.3969/j.issn.0253-4193.2015.07.010Zhou Jieqiong, Wu Ziyin, Zhao Dineng, et al. Automatic recognition of sand wave topographic features based on optimally-directional profiling method[J]. Haiyang Xuebao, 2015, 37(7): 97−107. doi: 10.3969/j.issn.0253-4193.2015.07.010 [34] Zhou Jieqiong, Wu Ziyin, Jin Xianglong, et al. Observations and analysis of giant sand wave fields on the Taiwan Banks, northern South China Sea[J]. Marine Geology, 2018, 406: 132−141. doi: 10.1016/j.margeo.2018.09.015 [35] Ashley G M. Classification of large-scale subaqueous bedforms; a new look at an old problem[J]. Journal of Sedimentary Research, 1990, 60(1): 160−172. doi: 10.2110/jsr.60.160 [36] Flemming B W. Underwater sand dunes along the southeast African continental margin—observations and implications[J]. Marine Geology, 1978, 26(3/4): 177−198. [37] Press W H, Teukolsky S A, Vettering W T, et al. Numerical Recipes in C++[M]. Beijing: Publishing House of Electronics Industry, 2003. [38] 陈传峰, 朱长仁, 宋洪芹. 基于巴特沃斯低通滤波器的图像增强[J]. 现代电子技术, 2007, 30(24): 163−165, 168. doi: 10.3969/j.issn.1004-373X.2007.24.057Chen Chuanfeng, Zhu Changren, Song Hongqin. Image enhancement based on buterworth low pass filter[J]. Modern Electronics Technique, 2007, 30(24): 163−165, 168. doi: 10.3969/j.issn.1004-373X.2007.24.057 [39] van Dijk T A G P, Lindenbergh R C, Egberts P J P. Separating bathymetric data representing multiscale rhythmic bed forms: a geostatistical and spectral method compared[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F4): F04017. [40] Smith S W. The Scientist and Engineer's Guide to Digital Signal Processing[M]. San Diego, California: California Technical Publishing, 1997. 期刊类型引用(2)
1. 杜跃,欧阳锡钰. 基于多波束的海底复杂地貌图像识别方法研究. 机械设计与制造工程. 2023(02): 127-130 . 百度学术
2. 汪九尧,周洁琼,吴自银,朱超,赵荻能. 基于近底原位观测的小尺度海底沙波地形小波分解. 海洋学研究. 2022(02): 32-41 . 百度学术
其他类型引用(1)
-