首页 | 本学科首页   官方微博 | 高级检索  
     


A compound method for random noise attenuation
Authors:Diriba Gemechu  Jianwei Ma  Xueshan Yong
Affiliation:1. Department of Mathematics and Center of Geophysics, Harbin Institute of Technology, Harbin, China;2. Research Institute of Petroleum Exploration and Development‐Northwest, Petrochina, Lanzhou, China
Abstract:Random noise attenuation, preserving the events and weak features by improving signal‐to‐noise ratio and resolution of seismic data are the most important issues in geophysics. To achieve this objective, we proposed a novel seismic random noise attenuation method by building a compound algorithm. The proposed method combines sparsity prior regularization based on shearlet transform and anisotropic variational regularization. The anisotropic variational regularization which is based on the linear combination of weighted anisotropic total variation and anisotropic second‐order total variation attenuates noises while preserving the events of seismic data and it effectively avoids the fine‐scale artefacts due to shearlets from the restored seismic data. The proposed method is formulated as a convex optimization problem and the split Bregman iteration is applied to solve the optimization problem. To verify the effectiveness of the proposed method, we test it on several synthetic seismic datasets and real datasets. Compared with three methods (the linear combination of weighted anisotropic total variation and anisotropic second‐order total variation, shearlets and shearlet‐based weighted anisotropic total variation), the numerical experiments indicate that the proposed method attenuates random noises while alleviating artefact and preserving events and features of seismic data. The obtained result also confirms that the proposed method improves the signal‐to‐noise ratio.
Keywords:Anisotropic variational  Seismic random noise attenuation  Shearlets  Sparse representation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号