岩浆热场:它的基本特征及其与地热场的区别

张旗, 金惟俊, 李承东, 焦守涛. 岩浆热场:它的基本特征及其与地热场的区别[J]. 岩石学报, 2014, 30(2): 341-349.
引用本文: 张旗, 金惟俊, 李承东, 焦守涛. 岩浆热场:它的基本特征及其与地热场的区别[J]. 岩石学报, 2014, 30(2): 341-349.
ZHANG Qi, JIN WeiJun, LI ChengDong, JIAO ShouTao. Magma-thermal field:Its basic characteristics, and differences with geothermal field[J]. Acta Petrologica Sinica, 2014, 30(2): 341-349.
Citation: ZHANG Qi, JIN WeiJun, LI ChengDong, JIAO ShouTao. Magma-thermal field:Its basic characteristics, and differences with geothermal field[J]. Acta Petrologica Sinica, 2014, 30(2): 341-349.

岩浆热场:它的基本特征及其与地热场的区别

  • 基金项目:

    本文受国家自然科学基金重大研究计划项目(91014001)和面上基金项目(41272065)联合资助.

Magma-thermal field:Its basic characteristics, and differences with geothermal field

  • “岩浆热场”指的是由岩浆引发的瞬间热场。热场的热主要来自未固结的岩浆,岩浆加热了围岩,使下地壳、中地壳和上地壳的下部在一个短暂的时间内保持一种高热状态。岩浆热场与地热场有许多不同:(1)热的来源不同。地热场的热主要来自地壳物质放射性生成的热;岩浆热场的热来自岩浆。(2)热的分布不同。地热场的等温面总体上呈水平分布,温度随深度增加而增加;岩浆热场的等温面则围绕岩体分布,靠近岩体温度高,远离岩体温度低,故岩浆热场的等温面是大体垂直于地热场等温面分布的。(3)热场的规模不同。地热场是全球性的,岩浆热场是局部性的,只在有岩浆的地方才出现。岩体小则规模小(热场宽度仅几米或几十米),岩体大则规模大(宽约几千米);如果存在大规模岩浆活动,岩浆热场的长宽均可达几百或上千千米,如在中国东部中生代大规模岩浆活动期间。(4)热持续的时间不同。地热场可以持续很长的时间(几十、几百或几千个百万年);岩浆热场是瞬间的突发性事件,持续的时间从几年到几个百万年。岩浆热场最重要的意义是,它是热液赖以上升的通道,它有利于来自下地壳底部和壳幔过渡带的流体(热液)的活动,使含矿热液得以顺利上升,并在热场范围内进行充分的活动、对流循环、萃取围岩中的成矿金属元素,并在地壳浅部岩浆热场之上合适的部位沉淀富集成矿。“岩浆热场”的概念依赖于对岩浆物理性质和过程的深入了解,由于我们这方面的知识相对贫乏,所以目前对岩浆热场的了解还是很肤浅的。
  • 加载中
  • [1]

    Ascencio F, Samaniego F and Rivera J. 2006. Application of a spherical-radial heat transfer model to calculate geothermal gradients from measurements in deep boreholes. Geothermics, 35(1): 70-78

    [2]

    Barner HL. 1979. Geochemistry of Hydrothermal Ore Deposits. 2nd Edition. A Wiley-Interscience Publication, John Wiley and Sons

    [3]

    Best MG and Christiansen EH. 2001. Igneous Petrology. Blackwell Science Ltd., 1-458

    [4]

    Brandeis G and Jaupart C. 1986. On the interaction between convection and crystallization in cooling magma chambers. Earth and Planetary Science Letters, 77(3-4): 345-361

    [5]

    Carslaw HS and Jaeger JC. 1959. Conduction of Heat in Solids. New York: Oxford University Press, 1-386

    [6]

    Castro A. 1987. On granitoid emplacement and related structures: A review. Geol. Rundsch., 76(1): 101-124

    [7]

    Chapman DS and Rybach L. 1985. Heat flow anomalies and their interpretations. J. Geodynamics, (4): 3-37

    [8]

    Chen YJ, Pirajno F, Lai Y et al. 2004. Metallogenetic time and tectonic setting of the Jiaodong gold province, eastern China. Acta Petrologica Sinica, 20(4): 907-922 (in Chinese with English abstract)

    [9]

    Cong BL. 1978. Magmatism and Igneous Associations. Beijing: Geological Publishing House (in Chinese)

    [10]

    Delaney PT and Pollard DD. 1982. Solidification of basaltic magma during flow in a dike. Amer. J. Sci., 282(6): 856-885

    [11]

    Delaney PT. 1987. Heat transfer theory applied to mafic dike intrusions. In: Halls HC and Fahrig WF (eds.). Mafic Dike Swarms. Geol. Assoc. Canada, Spec. Paper., 34: 31-46

    [12]

    Duffield WA and Ruiz J. 1992. Evidence for the reversal of gradients in the uppermost parts of silicic magma reservoirs. Geology, 20(12): 1115-1118

    [13]

    Eldursi K, Branquet Y, Guillou-Frottier L and Marcoux E. 2009. Numerical investigation of transient hydrothermal processes around intrusions: Heat-transfer and fluid-circulation controlled mineralization patterns. Earth and Planetary Science Letters, 288(1-2): 70-83

    [14]

    Evans DJ, Rowley WJ, Chadwick RA et al. 1994. Seismic reflection data and the internal structure of the Lake District batholith, Cumbria, northern England. Proc. Yorkshire Geol. Soc., 50: 11-24

    [15]

    Fedotov SA. 1976. Uplift of mafic magma in Earth crust and mechanism of fracture basalt eruption. lzvestiya AN SSSR, Ser. Geol., 10: 5-23 (in Russian)

    [16]

    Feng Q and Tang XY. 1997. The magma activity's influence on conditions forming oil and gas accumulation. Northwest Geoscience, 18(1): 56-62(in Chinese with English abstract)

    [17]

    Feng ZH. 2003. Emplacement process and structural analysis of Guposhan-Huashan granitic pluton, Guangxi. Ph. D. Dissertation. Changsha: Central South University (in Chinese with English summary)

    [18]

    Feoktistov GD. 1972. Metamorphism of Clay-sandy Rocks near Contact Zone with Intrusion. Moscow: Nauka, 1-100 (in Russian)

    [19]

    Ferré E, Gleize G, Bouchez J et al. 1995. Intenal fabric and strike-slip emplacement of the Pan-African granite of Solli Hills, northern Nigeria. Tectonics, 14(5): 1205-1219

    [20]

    Ferry M. 1984. Reaction progress: A monitor of fluid-rock interaction during metamorphic and hydrothermal events. In: Walther JV and Wood BJ (eds.). Fluid-Rock Interactions during Metamorphism. New York: Springer-Verlag, 60-89

    [21]

    Galushkin Y. 1997. Thermal effects of igneous intrusions on maturity of organic matter: A possible mechanism of intrusion. Org. Geochem., 26(11-12): 645-658

    [22]

    Gao GR and Zhang MB. 1998. Mineralization characters ore-controlling and ore-searching prospect in Yinkeng multimetal orefield, Jiangxi Province. Volcanology & Mineral Resources, 19(4): 347-356(in Chinese with English abstract)

    [23]

    Gerya TV and Burg JP. 2007. Intrusion of ultramac magmatic bodies into the continental crust: Numerical simulation. Physics of the Earth and Planetary Interiors, 160(2): 124-142

    [24]

    Guerrero-Martínez FJ and Verma SP. 2013. Three dimensional temperature simulation from cooling of two magma chambers in the Las Tres Vírgenes geothermal eld, Baja California Sur, Mexico. Energy, 52: 110-118

    [25]

    Gunson M, Hall G and Johnston M. 2000. Foraminiferal coloration index as a guide to hydrothermal gradients around the Porgera intrusive complex, Papua New Guinea. Economic Geology, 95(2): 271-282

    [26]

    Guo JJ and Zhou AC. 2008. Discussion on the determination methods and strategy for hot dry rocks. Energy Engineering, (6): 1-4(in Chinese with English abstract)

    [27]

    Hall A. 1971. The Relationship between geothermal gradient and the composition of granitic magmas in orogenic belts. Contr. Mineral. Petrol., 32: 186-192

    [28]

    Harris N, Ayres M and Massey J. 1995. Geochemistry of granitic melts produced during the incongruent melting of muscovite: Implications for the extraction of Himalayan leucogranite magmas. J. Geophys. Res., 100(B8): 15766-15777

    [29]

    Hildreth W. 1981. Gradients in silicic magma chambers: Implications for lithospheric magmatism. J. Geophys. Res., 86(BⅡ): 10153-10192

    [30]

    Hutton DHW, Dempster TJ, Brown PE et al. 1990. A new mechanism of granite emplacement: Intrusion in active extensional shear zones. Nature, 343: 452-455

    [31]

    Jaeger JC. 1961. The effect of the drilling fluid on temperature measured in bore holes. J. Geophys. Res., 66(2): 563-569

    [32]

    Jaeger JC. 1964. Thermal effects of intrusions. Reviews in Geophysics, 2(3): 433-466

    [33]

    Jin XD, Zhang DH and Wan TF. 2010. Upper part and deeper area ore-prospecting for hidden rock mass. Geological Bulletin of China, 29(2-3): 392-400(in Chinese with English abstract)

    [34]

    Kay RW and Kay SM. 1993. Delamination and delamination magmatism. Tectonophysics, 219(1-3): 177-189

    [35]

    Kol'tsov AB. 2010. Hydrothermal mineralization in the fields of temperature and pressure gradients. Geochemistry International, 48(11): 1097-1111

    [36]

    Kontorovich AE, Surkov VC, Troftmuk AA et al. 1981. Oil and Gas Geology of West Siberian Platform. Moscow: Nedra, 1-550 (in Russian)

    [37]

    Li DD, Luo ZH, Zhou JL, Yang ZF and Liu C. 2011. Constraints of dike thicknesses on the metallogenesis and its application to the Shihu gold deposit. Earth Science Frontiers, 18(1): 166-178 (in Chinese with English abstract)

    [38]

    Liu YS and Gao S. 1998. Anatexis of the continental crust and granites as tracers of lower crustal composions. Geological Science and Technology Information, 17(3): 31-38 (in Chinese with English abstract)

    [39]

    Luo WJ and Chen JQ. 1997. Two-way convergence and hydrothermal mineralization. Acta Geologica Gansu, 6(Suppl.): 44-49 (in Chinese with English abstract)

    [40]

    Luo ZH, Huang ZM and Ke S. 2007. An overview of granitoid. Geological Review, 53(Suppl.): 180-226 (in Chinese with English abstract)

    [41]

    Luo ZH, Lu XX and Chen BH. 2009. Introduction to the Metallogenic Theory on the Transmagmatic Fluids. Beijing: Geological Publishing House, 1-168 (in Chinese with English abstract)

    [42]

    Luo ZH, Liu JQ, Zhao CP, Guo ZF, Cheng LL, Li XH and Li DP. 2011. Deep fluids and magmatism: The deep processes beneath the Tengchong volcano group. Acta Petrologica Sinica, 27(10): 2855-2862(in Chinese with English abstract)

    [43]

    Lv XB, Yao SZ and Zhou ZG. 1997. Magmatic rock system and metallogenesis in Jiurui region, Jiangxi Province. Geology and Mineral Resources of South China, (1): 27-36(in Chinese with English abstract)

    [44]

    Ma CQ, Yang KG, Tang ZH et al. 1994. Magma Dynamics of Granitoids: Theory, Method and Case Study of the Eastern Hubei Granitoids. Wuhan: Press of China University of Geosciences, 1-260 (in Chinese with English abstract)

    [45]

    Ma CQ. 1986. Some kinetic parameters estimation methods in magmatic activity: The application of the principles of fluid dynamics. Geological Science and Technology Information, 5(3): 47-54 (in Chinese with English abstract)

    [46]

    Ma DS. 1998. Large-scale fluid flow systems in the crust and their implications for metallogenesis of hydrothermal ore deposits. Geological Journal of China Universities, 4(3): 250-261 (in Chinese with English abstract)

    [47]

    Mao JW, Xie GQ, Zhang ZH et al. 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologica Sinica, 21(1): 169-188 (in Chinese with English abstract)

    [48]

    Mao JW, Xie GQ, Guo CL et al. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallgenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23(10): 2329-2338 (in Chinese with English abstract)

    [49]

    Marsh BD. 1982. On the mechanics of igneous diapirism, stoping and zone melting. Am. J. Sci., 282(6): 808-855

    [50]

    McBirney AR and Murase T. 1984. Rheological properties of magmas. Ann. Rev. Earth Planet. Sci., 12: 337-357

    [51]

    Norton D and Taylor HP. 1975. Quantitatives simulation of the hydrothermal systems of crystallizing magmas on the basic of transport theory and oxygen isotope data: An analysis of the Skaergaard intrusion. Journal of Petrology, 20: 421-486

    [52]

    Paterson SR and Tobisch OT. 1992. Rates of processes in magmatic arcs: Implications for the timing and nature of pluton emplacement and wall rock deformation. Journal of Structural Geology, 14(3): 291-300

    [53]

    Petford N, Kerr RC and Lister JR. 1993. Dyke transport of granitoid magma. Geology, 21(9): 845-848

    [54]

    Petford N, Cruden AR, McCaffrey KJW et al. 2000. Granite magma formation, transport and emplacement in the Earth's crust. Nature, 408: 669-673

    [55]

    Pitcher WS. 1987. Granites and yet more granites forty years on. Geol. Rund., 76(1): 51-59

    [56]

    Pitcher WS. 1993. The Nature and Origin of Granite. Glasgow and London: Blackie Academic, 182-190

    [57]

    Qieliemianski KA. 1977. Applied Geothermal Science. In: Zhao Y and Chen M (Trans.). 1982. Beijing: Geological Publishing House (in Chinese)

    [58]

    Rao C. 2007. Numerical simulation of heat and liquid transfer in the hydrothermal ore-forming progresses. Master Degree Thesis. Chengdu: Chengdu University of Tecnology (in Chinese with English summary)

    [59]

    Raymond AC and Murchison DG. 1988. Development of organic maturation in the thermal aureoles of sills and its relation to sediment compaction. Fuel, 67(12): 1599-1608

    [60]

    Roman-Berdiel T, Pueyo-Morer EL and Casas-Sainz AM. 1995. Granite emplacement during contemporary shortening and normal faulting: Structure and magnetic study of the Veiga Massif (NW Spain). J. Struct. Geol., 17(12): 1689-1706

    [61]

    Roman-Berdiel T, Gapais D and Brun JP. 1997. Granite intrusion along strike-slip zones in experiment and nature. Am. J. Sci., 297(6): 651-678

    [62]

    Roy RF, Klackwell DD and Decker ER. 1972. Continental heat flow. In: Robertson EC (ed.). The Nature of the Solid Earth. New York: McGraw-Hill, 506-543

    [63]

    Rubin AM. 1995. Propagation of magma-filled cracks. Annual Review of Earth and Planetary Sciences, 23: 287-336

    [64]

    Rutter MJ and Wyllie PJ. 1988. Melting of vapour-absent tonalite at 10kbar to simulate dehydration-melting in the deep crust. Nature, 331(6152): 159-160

    [65]

    Shao F. 2007. Study on water-rock interaction and its relation with uranium metallogenesis. Ph. D. Dissertation. Wuhan: China University of Geosciences (in Chinese with English summary)

    [66]

    Simmons G. 1967. Interpretation of heat flow anomalies 2. flux due to initial temperature of intrusives. Reviews of Geophysics, 5(2): 109-120

    [67]

    Sparks RSJ, Huppert HE, Turner JS et al. 1984. The fluid dynamics of evolving magma chambers. Phil. Trans. R. Soe. Lond., A310(1514): 511-534

    [68]

    Speer JA, McSween HY Jr and Gates AE. 1994. Generation, segregation, ascent, and emplacement of Alleghanian pluton in the southern Applachians. The Journal of Geology, 102(3): 249-267

    [69]

    Tang XY, Zhang GC, Liang JS, Yang SC, Rao S and Hu SB. 2013. Influence of igneous intrusions on the temperature field and organic maturaty of the Changchang sag, Qiongdongnan basin, South China Sea. Chinese J. Geophys., 56(1): 159-169 (in Chinese with English abstract)

    [70]

    Thompson AB, James A and Connolly D. 1995. Melting of the continental crust: Some thermal and petrological constraints on anatexis in continental collision zones andother tectonic settings. J. Geophys. Res., 100(B8): 15565-15579

    [71]

    Thrasher J. 1992. Thermal effect of the Tertiary Cuillins intrusive complex in the Jurassic of the Hebrides: An organic geochemical study. In: Parnell J (ed.). Basins on the Atlantic Seaboard: Petroleum Geology, Sedimentology, and Basin Evolution. Geol. Soc. Spec. Publ., 62: 35-49

    [72]

    Turcotte DL and Schubert G. 1982. Geodynamics: Application of Continuum Physics to Geological Problems. New York: John Wiley and Sons. Inc.

    [73]

    Villas RN and Norton DL. 1977. Irreversible mass transfer between circulating hydrothermal fluids and the Mayflower Stock. Econ. Geol., 72(8): 1471-1540

    [74]

    Wan TF, Teyssier C, Zhen HL et al. 2001. Emplacement mechanism of Linglong granitoid complex, Shandong Peninsula, China. Science in China (Series D), 44(6): 535-544

    [75]

    Wan ZJ, Zhao YS and Kang JR. 2005. Simulation and forecast method of geothermal resources in hot dry rock. Chinese Journal of Rock Mechanics and Engineering, 24(6): 945-949 (in Chinese with English abstract)

    [76]

    Wang DY, Lu XC, Xu SJ et al. 2011. Heat-transfer-model analysis of thermal effect of intrusive sills on organic-rich host rocks in sedimentary basins. Journal of Nanjing University (Natural Sciences), 47(1): 45-50 (in Chinese with English abstract)

    [77]

    Wang M, Wang YW and Xue FL. 2012. Finite element simulation of effect of magmatic intrusion on maturity of organic matter in surrounding rock. Fault-Block Oil and Gas Field, 19(2): 172-176(in Chinese with English abstract)

    [78]

    Wang T, Wang XX and Li WP. 1999a. Multiple emplacement mechanism and space of granitoid plutons. Geological Review, 45(2): 142-150 (in Chinese with English abstract)

    [79]

    Wang T, Zhang GW, Wang XX et al. 1999. Growth partterns of granitoid plutons and their implications for tectonics, kinematics and dynamics: Examples from granitoid plutons in the core of the Qinling orogenic belt, China. Chinese Journal of Geology, 34(3): 326-335 (in Chinese with English abstract)

    [80]

    Webber KL, Simmons WB, Falster AU and Foord EE. 1999. Cooling rates and crystallization dynamics of shallow level pegmatite-aplite dikes, San Diego County, California. American Mineralogist, 84(5-6): 708-717

    [81]

    Wei ZL. 1994. Oil-gas pools in transition spans and analysis of their formation conditions. Geotectonica et Metallogenia, 18(1): 26-32(in Chinese with English abstract)

    [82]

    Weinberg RF and Podladchikov YY. 1994. Diapiric ascent of magmas through power law crust and mantle. J. Geophys. Res., 99(B5): 9543-9559

    [83]

    Wu CR. 1992. Magmatic thermo-metamorphism of coal. Coal Geology and Exploration, 20(4): 24-29(in Chinese with English abstract)

    [84]

    Yang KG and Yang WR. 1997. Post-collision orogeny process and origin of huge quantity granites in orogenic belt. Geological Science and Technology Information, 16(4): 16-22(in Chinese with English abstract)

    [85]

    Yang XK, Liu CY, Yang YH et al. 2005. The concept, classification and research progress on thermal structure. Earth Science Frontiers, 12(4): 385-396(in Chinese with English abstract)

    [86]

    Zhang BT, Wu JQ, Ling HF et al. 2007. The calculation of U-Th-K radiogenic heat and effects on granitic cooling-crystallization process, and its geological significance. Science in China (Series D), 37(2): 155-159 (in Chinese)

    [87]

    Zhang J and Shi YL. 1997. The thermal modeling of magma intrusion in sedimentary basins. Progress in Geophysics, 12(3): 55-64(in Chinese with English abstract)

    [88]

    Zhang Q. 2012. Granite and metallogenic relationship discussion (1): Comment on the popular magmatic hydrothermal mineralization theory. Gansu Geology, 21(4): 1-14(in Chinese with English abstract)

    [89]

    Zhang Q and Li CD. 2012. Granites: Implications for Continental Geodynamics. Beijing: Ocean Press, 1-276 (in Chinese with English abstract)

    [90]

    Zhang Q, Jin WJ, Li CD and Jiao ST. 2013. Identification and implication of magma thermal field in the geothermal field. Progress in Geophys., 28(5): 2495-2507 (in Chinese with English abstract)

    [91]

    Zhang YH and Gu JY. 2003. Hydrothermal circular flow: Significant influence on reservoirs in intrusion rock-exomorphic zone. Special Oil and Gas Reservoirs, 10(1): 86-89(in Chinese with English abstract)

    [92]

    Zhao CB, Lin G, Hobbs BE, Ord A, Wang YJ and Mühlhaus HB. 2003. Effects of hot intrusions on pore-uid ow and heat transfer in uid-saturated rocks. Comput. Methods Appl. Mech. Engrg., 192(16-18): 2007-2030

    [93]

    Zhao CP, Ran H and Wang Y. 2012. Present-day mantle-derived helium release in the Tengchong volcanic field, Southwest China: Implications for tectonics and magmatism. Acta Petrologica Sinica, 28(4): 1189-1204(in Chinese with English abstract)

    [94]

    Zhou AC, Zhao YS, Guo JJ et al. 2010. Study of geothermal extraction scheme of hot dry rock in Tibetan Yangbajing region. Chinese Journal of Rock Mechanics and Engineering, 29(Suppl. 2): 89-95(in Chinese with English abstract)

    [95]

    Zhou JY, Wu ZL and Zhuang XG. 1997. Geothermal field study and its significance in eastern Zhejiang, Fujian and Guangdong provinces. Geological Science and Technology Information, 16(2): 7-12(in Chinese with English abstract)

    [96]

    Zhou TF, Yue SC and Lan TY. 1995. Magmatic dynamics and its relations to metallization of diorites in Yueshan, Anhui Province. Mineral Deposits, 14(4): 303-313(in Chinese with English abstract)

    [97]

    Zhou XR, Wu CL, Huang XC et al. 1993. Characteristics of cognate inclusions in intermediate-acid intrusive rocks of Tongling area and their magmatic dynamcs. Acta Petrologica et Mineralogica, 12(1): 20-31(in Chinese with English abstract)

    [98]

    Zhu CQ, Tian YT, Xu M et al. 2010a. The effect of Emeishan supper mantle plume to the thermal evolution of source rocks in the Sichuan basin. Chinese J. Geophys., 53(1): 119-127(in Chinese with English abstract)

    [99]

    Zhu CQ, Xu M, Yuan YS et al. 2010b. Palaeo-geothermal response and record of the effusing of Emeishan basalts in Sichuan basin. Chinese Sci. Bull., 55(10): 949-956

    [100]

    陈衍景, Pirajno F, 赖勇等. 2004. 胶东矿集区大规模成矿时间和构造环境. 岩石学报, 20(4): 907-922

    [101]

    从柏林. 1978. 岩浆活动与火成岩组合. 北京: 地质出版社

    [102]

    冯乔, 汤锡元. 1997. 岩浆活动与油气成藏地质条件的关系. 西北地质科学, 18(1): 56-62

    [103]

    冯佐海. 2003. 广西姑婆山-花山花岗岩体侵位过程及构造解析. 博士学位论文.长沙: 中南大学

    [104]

    高贵荣, 张勉斌. 1998. 江西省于都县银坑贵多金属矿田矿化特征、成矿控制及找矿方向. 火山地质与矿产, 19(4): 347-356

    [105]

    郭进京, 周安朝. 2008. 高温岩体圈定的思路与方法探讨. 能源工程, (6): 1-4

    [106]

    金旭东, 张德会, 万天丰. 2010. 隐伏岩体顶上带与深部成矿预测. 地质通报, 29(2-3): 392-400

    [107]

    李德东, 罗照华, 周久龙, 杨宗锋, 刘翠. 2011. 岩墙厚度对成矿作用的约束: 以石湖金矿为例. 地学前缘, 18(1): 166-178

    [108]

    刘勇胜, 高山. 1998. 地壳深熔(anatexis)与花岗岩对下地壳的示踪作用. 地质科技情报, 17(3): 31-38

    [109]

    罗文积, 陈家清. 1997. 双向汇聚热液成矿. 甘肃地质学报, 6(增刊): 44-49

    [110]

    罗照华, 黄忠敏, 柯珊. 2007. 花岗质岩石的基本问题. 地质论评, 53(增刊): 180-226

    [111]

    罗照华, 卢欣祥, 陈必河. 2009. 透岩浆流体成矿作用导论. 北京: 地质出版社, 1-168

    [112]

    罗照华, 刘嘉麒, 赵慈平, 郭正府, 程黎鹿, 李晓惠, 李大鹏. 2011. 深部流体与岩浆活动: 兼论腾冲火山群的深部过程. 岩石学报, 27(10): 2855-2862

    [113]

    吕新彪, 姚书振, 周宗桂. 1997. 江西九瑞地区岩浆岩系统与成矿. 华南地质与矿产, (1): 27-36

    [114]

    马昌前. 1986. 岩浆活动中某些动力学参数的估算方法: 流体动力学原理的应用. 地质科技情报, 5(3): 47-54

    [115]

    马昌前, 杨坤光, 唐仲华等. 1994. 花岗岩类岩浆动力学——理论方法及鄂东花岗岩类例析. 武汉: 中国地质大学出版社

    [116]

    马东升. 1998. 地壳中流体的大规模流动系统及其成矿意义. 高校地质学报, 4(3): 250-261

    [117]

    毛景文, 谢桂青, 张作衡等. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21: 169-188

    [118]

    毛景文, 谢桂青, 郭春丽等. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329-2338

    [119]

    切列缅斯基ГА. 1977. 实用地热学.见:赵羿, 陈明译. 1982.北京: 地质出版社

    [120]

    饶超. 2007. 热液成矿过程中热及流体传输的计算机数值模拟. 硕士学位论文, 成都: 成都理工大学

    [121]

    邵飞. 2007. 水-岩相互作用及其与铀矿成矿关系研究——以相山铀矿田为例. 博学位论文, 武汉: 中国地质大学

    [122]

    唐晓音, 张功成, 梁建设等. 2013. 琼东南盆地长昌凹陷火成岩侵入体对温度场及烃源岩成熟度的影响. 地球物理学报, 56(1): 159-169

    [123]

    万天丰, Teyssier C, 曾华霖等. 2000. 山东玲珑花岗质岩体侵位机制. 中国科学(D辑), 30(4): 337-340

    [124]

    万志军, 赵阳升, 康建荣. 2005. 高温岩体地热资源模拟与预测方法. 岩石力学与工程学报, 24(6): 945-949

    [125]

    王大勇, 陆现彩, 徐士进等. 2011. 沉积盆地内侵入岩席对富含有机质围岩热影响的热传输模型研究. 南京大学学报(自然科学版), 47(1): 45-50

    [126]

    王满, 王英伟, 薛林福. 2012. 岩浆侵入对围岩中有机质成熟度影响的有限元模拟. 断块油气田, 19(2): 172-176

    [127]

    王涛, 王晓霞, 李伍平. 1999a. 试论花岗质深成岩体的复合定位机制及定位空间问题. 地质论评, 45(2): 142-150

    [128]

    王涛, 张国伟, 王晓霞等. 1999b. 花岗岩体生长方式及构造运动学、动力学意义. 地质科学, 34(3): 326-335

    [129]

    魏洲龄. 1994. 过渡际油气藏及其形成条件分析. 大地构造与成矿学, 18(1): 26-32

    [130]

    吴传荣. 1992. 煤的岩浆热变质作用. 煤田地质与勘探, 20(4): 24-29

    [131]

    杨坤光, 杨巍然. 1997. 碰撞后的造山过程及造山带巨量花岗岩的成因. 地质科技情报, 16(4): 16-22

    [132]

    杨兴科, 刘池洋, 杨永恒等. 2005. 热力构造的概念分类特征及其研究进展. 地学前缘, 12(4): 385-396

    [133]

    章邦桐, 吴俊奇, 凌洪飞等. 2007. U-Th-K放射成因热对花岗岩冷却-结晶过程影响的计算及地质意义. 中国科学(D辑), 37(2): 155-159

    [134]

    张健, 石耀霖. 1997. 沉积盆地岩浆侵入的热模拟. 地球物理学进展, 12(3): 55-64

    [135]

    张旗. 2012. 花岗岩与成矿关系的讨论之一: 评流行的岩浆热液成矿理论. 甘肃地质, 21(4): 1-14

    [136]

    张旗, 李承东. 2012. 花岗岩: 地球动力学意义. 北京: 海洋出版社, 1-276

    [137]

    张旗, 金惟俊, 李承东, 焦守涛. 2013. 地热场中"岩浆热场"的识别及其意义. 地球物理学进展, 28(5): 2495-2507

    [138]

    张映红, 顾家裕. 2003. 热液环流: 侵入岩-外变质带储层发育的重要影响因素. 特种油气藏, 10(1): 86-89

    [139]

    赵慈平, 冉华, 王云. 2012. 腾冲火山区的现代幔源氦释放: 构造和岩浆活动意义. 岩石学报, 28(4): 1189-1204

    [140]

    周安朝, 赵阳升, 郭进京等. 2010. 西藏羊八井地区高温岩体地热开采方案研究. 岩石力学与工程学报, 29(增刊2): 89-95

    [141]

    周江羽, 吴冲龙, 庄新国. 1997. 浙闽粤东部地热场研究及其意义. 地质科技情报, 16(2): 7-12

    [142]

    周涛发, 岳书仓, 兰天佑. 1995. 安徽月山地区闪长岩类岩浆动力学及其与成矿作用的联系. 矿床地质, 14(4): 303-313

    [143]

    周珣若, 吴才来, 黄许陈等. 1993. 铜陵中酸性侵入岩同源包体特征及岩浆动力学. 岩石矿物学杂志, 12(1): 20-31

    [144]

    朱传庆, 田云涛, 徐明等. 2010a. 峨眉山超级地幔柱对四川盆地烃源岩热演化的影响. 地球物理学报, 53(1): 119-127

    [145]

    朱传庆, 徐明, 袁玉松等. 2010b. 峨眉山玄武岩喷发在四川盆地的地热学响应. 科学通报, 55(6): 474-482

  • 加载中
计量
  • 文章访问数:  8808
  • PDF下载数:  12954
  • 施引文献:  0
出版历程
收稿日期:  2013-08-17
修回日期:  2013-11-11
刊出日期:  2014-02-28

目录