青藏高原东北缘重力场深部结构及其动力学特征

王鑫, 姜文亮, 张景发, 王德华, 田云峰, 申文豪. 2020. 青藏高原东北缘重力场深部结构及其动力学特征. 地球物理学报, 63(3): 988-1001, doi: 10.6038/cjg2020N0219
引用本文: 王鑫, 姜文亮, 张景发, 王德华, 田云峰, 申文豪. 2020. 青藏高原东北缘重力场深部结构及其动力学特征. 地球物理学报, 63(3): 988-1001, doi: 10.6038/cjg2020N0219
WANG Xin, JIANG WenLiang, ZHANG JingFa, WANG DeHua, TIAN YunFeng, SHEN WenHao. 2020. Deep structure of the gravity field and dynamic characteristics of the northeastern margin of the Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 63(3): 988-1001, doi: 10.6038/cjg2020N0219
Citation: WANG Xin, JIANG WenLiang, ZHANG JingFa, WANG DeHua, TIAN YunFeng, SHEN WenHao. 2020. Deep structure of the gravity field and dynamic characteristics of the northeastern margin of the Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 63(3): 988-1001, doi: 10.6038/cjg2020N0219

青藏高原东北缘重力场深部结构及其动力学特征

  • 基金项目:

    中国地震局地壳应力研究所基本科研业务专项(ZDJ2019-17,ZDJ2016-17),国家自然科学基金(41772219,41902218)和北京市自然科学基金(8184090)共同资助

详细信息
    作者简介:

    王鑫, 男, 1986年生, 副研究员, 主要从事重磁技术反演与深部构造研究.E-mail:wangxinjapan@163.com

  • 中图分类号: P312;P315

Deep structure of the gravity field and dynamic characteristics of the northeastern margin of the Tibetan Plateau

  • 本文采用欧拉反褶积、场源参数成像(SPI)、场源边界提取(SED)、莫霍面反演、地壳三维可视化等多源方法,对青藏高原东北缘地区的布格重力场进行反演与分析,深入研究该地区的深部结构与变形特征,探讨区域深部孕震环境及动力学机制.研究表明,青藏高原东北缘的布格重力场整体呈负异常值,具有明显的分区性,表现出鄂尔多斯盆地异常值相对偏高、阿拉善块体次之、青藏高原块体极低的特点,其中海源断裂系形成了一条宽缓的弧形重力梯度条带,梯度值达1.2 mGal·km-1.欧拉结果显示,鄂尔多斯盆地相比于青藏高原块体而言,场源点具有较强的均一性,场源强度值高(密度值高)且深度稳定在25~32 km范围内,而高原块体的中下地壳尺度广泛分布着低密度异常体.SPI图可知,海源弧形断裂系位于"浅源异常"弧形区,反映其地壳较为活跃,易发生中强地震.SED图揭示青藏高原地壳向东北扩展,经过几大断裂系的调节后运动矢量向东或东南转化,SED与GPS、SKS运动特征大致相同,说明地表-地壳-地幔的运动特征有着较强的一致性.青藏高原东北缘地区壳幔变形是连贯的,加之莫霍面由北向南、由东向西是逐渐加深的,因此属于垂向连贯变形机制,不符合下地壳管道流动力学模式.区域形成了似三联点构造格局,其中海源弧形断裂系的深部地壳结构复杂,高低密度异常体复杂交汇,是青藏高原、阿拉善、鄂尔多斯三大块体相互作用的重要枢纽,其运动学特征总体为中段走滑尾端逆冲,而断裂系正处于大型的弧形莫霍面斜坡带之上,具备强震的深部孕震环境,因此大尺度的运动调节与深部孕震条件共同促使了该地区中强震的多发.

  • 加载中
  • 图 1 

    青藏高原东北缘地震构造图

    Figure 1. 

    Seismotectonic map of the northeastern margin of the Tibetan Plateau

    图 3 

    青藏高原东北缘重力方向导数图与向上延拓图

    Figure 3. 

    Directional derivatives and upward continuation map of Bouguer gravity anomalies in the northeastern margin of the Tibetan Plateau

    图 2 

    青藏高原东北缘布格重力异常图

    Figure 2. 

    Bouguer gravity anomalies of the northeastern margin of the Tibetan Plateau

    图 4 

    欧拉反褶积场源分布图

    Figure 4. 

    Map of the field source by Euler deconvolution

    图 8 

    青藏高原东北缘地壳三维可视化模型

    Figure 8. 

    3D crust structure model of the northeastern margin of the Tibetan Plateau

    图 5 

    场源参数成像分布图

    Figure 5. 

    Map of the source parameter imaging

    图 6 

    场源边界分布图

    Figure 6. 

    Map of the source edge detection

    图 7 

    青藏高原东北缘莫霍面深度图

    Figure 7. 

    Moho depth of the northeastern margin of the Tibetan Plateau

    表 1 

    青藏高原东北缘地区的地壳平均深度、P波速度、地壳密度列表

    Table 1. 

    Average crust thickness, P wave velocity and crustal density of the northeastern margin of the Tibetan Plateau

    青藏高原块体 阿拉善块体 鄂尔多斯盆地
    深度/km VP/(km·s-1) 密度/(g·cm-3) 深度/km VP/(km·s-1) 密度/(g·cm-3) 深度/km VP/(km·s-1) 密度/(g·cm-3)
    沉积层 0~4 3.9~5.1 2.02~2.40 0~4 4.8~5.4 1.67~2.49 0~8 3.5~4.8 1.89~2.31
    上地壳 20~25 5.8~6.3 2.63~2.78 20~23 5.6~6.3 2.56~2.78 20~22 5.9~6.3 2.66~2.79
    中地壳 32~37 6.3~6.5 2.78~2.85 35~37 6.3~6.5 2.78~2.85 30~33 6.4~6.6 2.82~2.88
    下地壳 50~60 6.7~6.9 2.91~2.95 48 6.7~6.8 2.91~2.95 40~45 6.6~6.8 2.88~2.95
    上地幔顶部 - 8.00 3.33 - 8.00 3.33 - 8.00 3.33
    下载: 导出CSV
  •  

    Berteussen K A. 1977. Moho depth determinations based on spectral-ratio analysis of NORSAR long-period P waves. Physics of the Earth and Planetary Interiors, 15(1):13-27, doi:10.1016/0031-9201(77)90006-1.

     

    Bi B T, Hu X Y, Li L Q, et al. 2016. Multi-scale analysis to the gravity field of the northeastern Tibetan plateau and its geodynamic implication. Chinese Journal of Geophysics (in Chinese), 59(2):543-555, doi:10.6038/cjg20160213.

     

    Chen Q. 2010. The application of Euler Deconvolution in fault identification[Master's thesis] (in Chinese). Xi'an: Xi'an Shiyou University.

     

    Chang L J, Wang C Y, Ding Z F, et al. 2008. Seismic anisotropy of upper mantle in the northeastern margin of the Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 51(2):431-438. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/cjg2.1220

     

    Clark M K, Royden L H. 2000. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8):703-706, doi:10.1130/0091-7613(2000)28〈703:TOBTEM〉2.0.CO; 2.

     

    Deng Q D, Ran Y K, Yang X P, et al. 2007. Map of Active Tectonics in China (in Chinese). Beijing:Seismological Press.

     

    Dong X P, Teng J W. 2018. Traveltime tomography using teleseismic P wave in the northeastern Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 61(5):2066-2074, doi:10.6038/cjg2018K0214.

     

    Fan M N. 2006. The study and application of Euler Deconvolution method[Ph. D. thesis] (in Chinese). Changchun: Jilin University.

     

    Grauch V J S, Cordell L. 1987. Limitations of determining density or magnetic boundaries from the horizontal gradient of gravity or pseudogravity data. Geophysics, 52(1):118-121, doi:10.1190/1.1442236.

     

    Green R. 1976. Accurate determination of the dip angle of a geological contact using the gravity method. Geophysical Prospecting, 24(2):265-272, doi:10.1111/j.1365-2478.1976.tb00924.x.

     

    Guo X Y, Gao R, Gao J R, et al. 2018. Integrated analysis on the tectonic features of the Maxian Shan fault zone in the northeastern Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 61(2):560-569, doi:10.6038/cjg2018L0186.

     

    Hilley G E, Bürgmann R, Zhang P Z, et al. 2005. Bayesian inference of plastosphere viscosities near the Kunlun Fault, northern Tibet. Geophysical Research Letters, 32(1):L01302, doi:10.1029/2004gl021658.

     

    Jiang W L, Wang X, Tian T, et al. 2014. Detailed crustal structure of the North China and its implication for seismicity. Journal of Asian Earth Sciences, 81:53-64, doi:10.1016/j.jseaes.2013.11.021.

     

    Jiang W L, Zhang J F. 2012. Fine crustal structure beneath Capital area of China derived from gravity. Chinese Journal of Geophysics (in Chinese), 55(5):1646-1661, doi:10.6038/j.issn.0001-5733.2012.05.022.

     

    Jiang W W, Hao T Y, Song H B. 2000. Crustal structure and geological and geophysical features of Ordos basin. Progress in Geophysics (in Chinese), 15(3):45-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz200003005

     

    Lease R O, Burbank D W, Zhang H P, et al. 2012. Cenozoic shortening budget for the northeastern edge of the Tibetan Plateau: Is lower crustal flow necessary? Tectonics, 31(3): TC3011, doi: 10.1029/2011TC003066.

     

    Li Q H, Guo J K, Zhou M D, et al. 1991. The velocity structure of Chengxian-Xiji profile. Northwestern Seismological Journal (in Chinese), 13(S1):37-43. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ1991S1006.htm

     

    Li S L, Zhang X K, Ren Q F, et al. 2001. Seismic sounding profile and its interpretation in the region of Xiji-Zhongwei. Seismology and Geology (in Chinese), 23(1):86-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz200101011

     

    Li S L, Zhang X K, Zhang C K, et al. 2002. A preliminary study on the crustal velocity structure of Maqin-Lanzhou-Jingbian by means of deep seismic sounding profile. Chinese Journal of Geophysics (in Chinese), 45(2):210-217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200202007

     

    Li X Q, Ren J W, Yang P X, et al. 2015. Regularity of tectonic differential uplifting rates of both the east and west sides of Liupanshan Mountain since the Quaternary. Quaternary Sciences (in Chinese), 35(2):445-452, doi:10.11928/j.issn.1001-7410.2015.02.19.

     

    Li Y H, Wu Q J, An Z H, et al. 2006. The Poisson ratio and crustal structure across the NE Tibetan Plateau determined from receiver functions. Chinese Journal of Geophysics (in Chinese), 49(5):1359-1368. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200605015

     

    Li Y K, Gao R, Gao J W, et al. 2015. Characteristics of crustal velocity structure along Qingling orogenic belt. Progress in Geophysics (in Chinese), 30(3):1056-1069, doi:10.6038/pg20150309.

     

    Li Y K, Gao R, Mi S X, et al. 2014. The characteristics of crustal velocity structure for Liupan mountain-Ordos basin in the northeastern margin of Qinghai-Xizang (Tibet) Plateau. Geological Review (in Chinese), 60(5):1147-1157.

     

    Liang S M, Gan W J, Shen C Z, et al. 2013. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. Journal of Geophysical Research:Solid Earth, 118(10):5722-5732, doi:10.1002/2013jb010503.

     

    Liao Y M, Wang D J, He G Q, et al. 1992. Preliminary study on paleoseismic events on the fault zone along the north fringe of Longshoushan at Baijiazui. Northwestern Seismological Journal (in Chinese), 14(1):96-97. http://en.cnki.com.cn/Article_en/CJFDTotal-ZBDZ199201017.htm

     

    Lithgow-Bertelloni C, Richards M A. 1998. The dynamics of Cenozoic and Mesozoic plate motions. Reviews of Geophysics, 36(1):27-78, doi:10.1029/97rg02282.

     

    Liu M J, Mooney W D, Li S L, et al. 2006. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Garzê terrane to the Ordos basin. Tectonophysics, 420(1-2):253-266, doi:10.1016/j.tecto.2006.01.025.

     

    Liu Q M, Zhao J M, Lu F, et al. 2014. Crustal structure of northeastern margin of the Tibetan Plateau by receiver function inversion. Science China Earth Sciences, 57(4):741-750, doi:10.1007/s11430-013-4772-5.

     

    Ma Z J, Gao X L, Song Z F. 2006. Analysis and tectonic interpretation to the horizontal-gradient map calculated from Bouguer gravity data in the China mainland. Chinese Journal of Geophysics (in Chinese), 49(1):106-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200601015

     

    Meng X H, Shi L, Guo L H, et al. 2012. Multi-scale analyses of transverse structures based on gravity anomalies in the northeastern margin of the Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 55(12):3933-3941, doi:10.6038/j.issn.0001-5733.2012.12.006.

     

    Oldenburg D W. 1974. The inversion and interpretation of gravity anomalies. Geophysics, 39(4):526-536, doi:10.1190/1.1440444.

     

    Parker R L. 1972. The rapid calculation of potential anomalies. Geophysical Journal of the Royal Astronomical Society, 31:447-455. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-246X.1973.tb06513.x

     

    Peter L J. 1949. The direct approach to magnetic interpretation and its practical application. Geophysics, 14(3):290-320, doi:10.1190/1.1437537.

     

    Pi J L, Teng J W, Ding Z F, et al. 2018. Numerical simulation on the dynamic response of Liupanshan tectonic belt in the northeastern Tibetan Plateau and its adjacent regions. Progress in Geophysics (in Chinese), 33(1):0064-0073, doi:10.6038/pg2018AA0604.

     

    Reid A B, Allsop J M, Granser H, et al. 1990. Magnetic interpretation in three dimensions using euler deconvolution. Geophysics, 55(1):80-91, doi:10.1190/1.1442774.

     

    Ricard Y, Richards M A, Lithgow-Bertelloni C, et al. 1993. A geodynamic model of mantle density heterogeneity. Journal of Geophysical Research:Solid Earth, 98(B12):21895-21909, doi:10.1029/93jb02216.

     

    Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313):788-790, doi:10.1126/science.276.5313.788.

     

    She Y W, Fu G Y, Su X N, et al. 2016. Crustal isostasy and uplifting mechanism of the Liupanshan area. Progress in Geophysics (in Chinese), 31(4):1464-1472, doi:10.6038/pg20160408.

     

    Smith R S, Thurston J B, Dai T F, et al. 1998. iSPITM-the improved source parameter imaging method. Geophysical Prospecting, 46(2):141-151, doi:10.1046/j.1365-2478.1998.00084.x.

     

    Tang R M, Zhang J. 2006. Gravity gradient inversion of deep structure in the southwest sea basin. Journal of Geomechanics (in Chinese), 12(1):49-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb200601008

     

    Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547):1671-1677, doi:10.1126/science.105978.

     

    Thurston J B, Smith R S. 1997. Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI (TM) method. Geophysics, 62(3):807-813, doi:10.1190/1.1444190.

     

    Tian Q J, Ding G Y. 1998. The tectonic feature of a Quasi trijunction in the northeastern corner of Qinghai Xizang plateau. Earthquake Research in China (in Chinese), 14(4):27-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800741166

     

    Tian X B, Zhang Z J. 2013. Bulk crustal properties in NE Tibet and their implications for deformation model. Gondwana Research, 24(2):548-559, doi:10.1016/j.gr.2012.12.024.

     

    Wang C Y, Li Y H, Lou H. 2016. Issues on crustal and upper-mantle structures associated with geodynamics in the northeastern Tibetan Plateau. Chinese Science Bulletin (in Chinese), 61(20):2239-2263, doi:10.1360/N972016-00160.

     

    Wang C Y, Sandvol E, Zhu L, et al. 2014. Lateral variation of crustal structure in the Ordos block and surrounding regions, North China, and its tectonic implications. Earth and Planetary Science Letters, 387:198-211, doi:10.1016/j.epsl.2013.11.033.

     

    Wang C Y, Zhu L P, Lou H, et al. 2010. Crustal thicknesses and Poisson's ratios in the eastern Tibetan Plateau and their tectonic implications. Journal of Geophysical Research:Solid Earth, 115(B11):B011301, doi:10.1029/2010JB007527.

     

    Wang M, Luo Y, Luo F, et al. 2012. The application and development of Euler Deconvolution in gravity and magnetic field. Geophysical and Geochemical Exploration (in Chinese), 36(5):834-841. http://d.old.wanfangdata.com.cn/Periodical/wtyht201205025

     

    Wang S J, Liu B J, Jia S X, et al. 2017. Study on S-wave velocity structure difference of Yinchuan basin and blocks on both sides using artificial seismic sounding profiles. Progress in Geophysics (in Chinese), 32(5):1936-1943, doi:10.6038/pg20170510.

     

    Wang X, Zhang J F, Jiang W L, et al. 2019. Gravity field and deep seismogenic environment in the Longmen Shan and adjacent regions, Eastern Tibetan Plateau. Journal of Asian Earth Sciences, 176:79-87, doi:10.1016/j.jseaes.2019.02.003.

     

    Wang X S, Fang J, Xu H Z. 2013. 3D density structure of lithosphere beneath northeastern margin of the Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 56(11):3770-3778, doi:10.6038/cjg20131118.

     

    Wu L X, Yang M Z, Zhao W M, et al. 2011. Crust thickness inversed from multi-scale decomposition of Bouguer gravity anomalies in northeastern of Qinghai-Tibet Plateau. Journal of Geodesy and Geodynamics (in Chinese), 31(1):19-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201101005

     

    Xiao Q B, Zhang J, Zhao G Z, et al. 2013. Electrical resistivity Structures northeast of the Eastern Kunlun Fault in the Northeastern Tibet:Tectonic implications. Tectonophysics, 601:125-138, doi:10.1016/j.tecto.2013.05.003.

     

    Xu J C, Li W Y, Liu Y X. 2016. Application of euler deconvolution method in airborne gravity exploration. Progress in Geophysics (in Chinese), 31(1):390-395, doi:10.6038/pg20160145.

     

    Yin A, Dang Y Q, Wang L C, et al. 2008. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1):The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin. Geological Society of America Bulletin, 120(7-8):813-846, doi:10.1130/b26180.1.

     

    Zeng H L. 2005. Gravity Field and Gravity Exploration (in Chinese). Beijing:Geological Publishing House.

     

    Zhang H S, Gao R, Tian X B, et al. 2015. Crustal Swave velocity beneath the northeastern Tibetan plateau inferred from teleseismic Pwave receiver functions. Chinese Journal of Geophysics (in Chinese), 58(11):3982-3992, doi:10.6038/cjg20151108.

     

    Zhang P Z, Burchfiel B C, Molnar P, et al. 1991. Amount and style of late cenozoic deformation in the Liupan Shan Area, Ningxia Autonomous region, China. Tectonics, 10(6):1111-1129, doi:10.1029/90tc02686.

     

    Zhang S Q, Wu L J, Guo J M, et al. 1985. An interpretation of the dss data on Menyuan-Pingling-Weinan profile in west China. Acta Geophysica Sinica (in Chinese), 28(5):460-472. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX198505002.htm

     

    Zhang Z J, Bai Z M, Klemperer S L, et al. 2013. Crustal structure across northeastern Tibet from wide-angle seismic profiling:Constraints on the Caledonian Qilian orogeny and its reactivation. Tectonophysics, 606:140-159, doi:10.1016/j.tecto.2013.02.040.

     

    Zhao G Z, Tang J, Zhan Y, et al. 2005. Relation between electricity structure of the crust and deformation of crustal blocks on the northeastern margin of Qinghai-Tibet Plateau. Science in China (Series D:Earth Sciences), 48(10):1613-1626. doi: 10.1360/02YD0047

     

    Zheng W J, Yuan D Y, Zhang P Z, et al. 2016. Tectonic geometry and kinematic dissipation of the active faults in the northeastern Tibetan Plateau and their implications for understanding northeastward growth of the plateau. Quaternary Sciences (in Chinese), 36(4):775-788, doi:10.11928/j.issn.1001-7410.2016.04.01.

     

    Zheng W J, Zhang P Z, He W G, et al. 2013. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau:evidence from decadal GPS measurements and late Quaternary slip rates on faults. Tectonophysics, 584:267-280, doi:10.1016/j.tecto.2012.01.006.

     

    毕本腾, 胡祥云, 李丽清等. 2016. 青藏高原东北部多尺度重力场及其地球动力学意义. 地球物理学报, 59(2):543-555, doi:10.6038/cjg20160213. http://www.geophy.cn//CN/abstract/abstract12575.shtml

     

    常利军, 王春镛, 丁志峰等. 2008. 青藏高原东北缘上地幔各向异性研究. 地球物理学报, 51(2):431-438. doi: 10.3321/j.issn:0001-5733.2008.02.015 http://www.geophy.cn//CN/abstract/abstract452.shtml

     

    陈青. 2010. 欧拉反褶积在断裂识别中的应用[硕士论文]. 西安:西安石油大学.

     

    邓起东, 冉勇康, 杨晓平等. 2007. 中国活动构造图. 北京:地震出版社.

     

    董兴鹏, 滕吉文. 2018. 青藏高原东北缘远震P波走时层析成像研究. 地球物理学报, 61(5):2066-2074, doi:10.6038/cjg2018K0214. http://www.geophy.cn//CN/abstract/abstract14527.shtml

     

    范美宁. 2006. 欧拉反褶积方法的研究及应用[博士论文]. 长春:吉林大学.

     

    郭晓玉, 高锐, 高建荣等. 2018. 青藏高原东北缘马衔山断裂带构造属性的综合研究. 地球物理学报, 61(2):560-569, doi:10.6038/cjg2018L0186. http://www.geophy.cn//CN/abstract/abstract14355.shtml

     

    姜文亮, 张景发. 2012. 首都圈地区精细地壳结构-基于重力场的反演. 地球物理学报, 55(5):1646-1661, doi:10.6038/j.issn.0001-5733.2012.05.022. http://www.geophy.cn/CN/abstract/abstract8668.shtml

     

    江为为, 郝天珧, 宋海斌. 2000. 鄂尔多斯盆地地质地球物理场特征与地壳结构. 地球物理学进展, 15(3):45-53. doi: 10.3969/j.issn.1004-2903.2000.03.005

     

    李清河, 郭建康, 周民都等. 1991. 成县-西吉剖面地壳速度结构. 西北地震学报, 13(S1):37-43. http://d.old.wanfangdata.com.cn/NSTLQK/10.1142-S0129183110015671/

     

    李松林, 张先康, 任青芳等. 2001. 西吉-中卫地震测深剖面及其解释. 地震地质, 23(1):86-92. doi: 10.3969/j.issn.0253-4967.2001.01.011

     

    李松林, 张先康, 张成科等. 2002. 玛沁-兰州-靖边地震测深剖面地壳速度结构的初步研究. 地球物理学报, 45(2):210-217. doi: 10.3321/j.issn:0001-5733.2002.02.007 http://www.geophy.cn//CN/abstract/abstract3488.shtml

     

    李小强, 任金卫, 杨攀新等. 2015. 六盘山东西两侧第四纪以来构造差异隆升速率递变性. 第四纪研究, 2015, 35(2):445-452, doi:10.11928/j.issn.1001-7410.2015.02.19.

     

    李永华, 吴庆举, 安张辉等. 2006. 青藏高原东北缘地壳S波速度结构与泊松比及其意义. 地球物理学报, 49(5):1359-1368. doi: 10.3321/j.issn:0001-5733.2006.05.015 http://www.geophy.cn//CN/abstract/abstract610.shtml

     

    李英康, 高锐, 高建伟等. 2015. 秦岭造山带的东西向地壳速度结构特征. 地球物理学进展, 30(3):1056-1069, doi:10.6038/pg20150309.

     

    李英康, 高锐, 米胜信等. 2014. 青藏高原东北缘六盘山-鄂尔多斯盆地的地壳速度结构特征. 地质论评, 60(5):1147-1157. http://d.old.wanfangdata.com.cn/Periodical/dzlp201405019

     

    廖元模, 王多杰, 何根巧等. 1992. 龙首山北缘断裂带东段古地震事件的初步研究. 西北地震学报, 14(1):96-97.

     

    马宗晋, 高祥林, 宋正范. 2006. 中国布格重力异常水平梯度图的判读和构造解释. 地球物理学报, 49(1):106-114. doi: 10.3321/j.issn:0001-5733.2006.01.015 http://www.geophy.cn//CN/abstract/abstract177.shtml

     

    孟小红, 石磊, 郭良辉等. 2012. 青藏高原东北缘重力异常多尺度横向构造分析. 地球物理学报, 55(12):3933-3941, doi:10.6038/j.issn.0001-5733.2012.12.006. http://www.geophy.cn//CN/abstract/abstract9088.shtml

     

    皮娇龙, 滕吉文, 丁志峰等. 2018. 青藏高原东北缘六盘山构造带及邻域的动力学响应数值模拟. 地球物理学进展, 33(1):0064-0073, doi:10.6038/pg2018AA0604.

     

    佘雅文, 付广裕, 苏小宁等. 2016. 六盘山地区地壳重力均衡与隆升机制研究. 地球物理学进展, 31(4):1464-1472, doi:10.6038/pg20160408.

     

    唐仁敏, 张健. 2006. 利用重力梯度反演南海西南海盆深部构造. 地质力学学报, 12(1):49-54. doi: 10.3969/j.issn.1006-6616.2006.01.008

     

    田勤俭, 丁国瑜. 1998. 青藏高原东北隅似三联点构造特征. 中国地震, 14(4):27-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800741166

     

    王椿镛, 李永华, 楼海. 2016. 与青藏高原东北部地球动力学相关的深部构造问题. 科学通报, 61(20):2239-2263, doi:10.1360/N972016-00160.

     

    王明, 骆遥, 罗锋等. 2012. 欧拉反褶积在重磁位场中应用与发展. 物探与化探, 36(5):834-841. http://d.old.wanfangdata.com.cn/Periodical/wtyht201205025

     

    王帅军, 刘保金, 嘉世旭等. 2017. 利用人工地震测深剖面研究银川盆地及两侧区域的S波速度结构. 地球物理学进展, 32(5):1936-1943, doi:10.6038/pg20170510.

     

    王新胜, 方剑, 许厚泽. 2013. 青藏高原东北缘岩石圈三维密度结构. 地球物理学报, 56(11):3770-3778, doi:10.6038/cjg20131118. http://www.geophy.cn//CN/abstract/abstract9882.shtml

     

    吴立辛, 杨明芝, 赵卫明等. 2011. 利用重力多尺度分解资料反演青藏高原东北缘地壳厚度. 大地测量与地球动力学, 31(1):19-23. http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201101005

     

    徐剑春, 李文勇, 刘燕戌. 2016. 欧拉反褶积法在航空重力勘探中的应用. 地球物理学进展, 31(1):390-395, doi:10.6038/pg20160145.

     

    曾华霖. 2005. 重力场与重力勘探. 北京:地质出版社.

     

    张洪双, 高锐, 田小波等. 2015. 青藏高原东北缘地壳S波速度结构及其动力学含义-远震接收函数提供的证据. 地球物理学报, 58(11):3982-3992, doi:10.6038/cjg20151108. http://www.geophy.cn/CN/abstract/abstract11973.shtml

     

    张少泉, 武利均, 郭建明等. 1985. 中国西部地区门源-平凉-渭南地震测深剖面资料的分析解释. 地球物理学报, 28(5):460-472. doi: 10.3321/j.issn:0001-5733.1985.05.003 http://www.geophy.cn/CN/abstract/abstract5037.shtml

     

    赵国泽, 汤吉, 詹艳等. 2004. 青藏高原东北缘地壳电性结构和地块变形关系的研究. 中国科学 D辑:地球科学, 34(10):908-918, doi:10.3969/j.issn.1674-7240.2004.10.003.

     

    郑文俊, 袁道阳, 张培震等. 2016. 青藏高原东北缘活动构造几何图像、运动转换与高原扩展. 第四纪研究, 36(4):775-788, doi:10.11928/j.issn.1001-7410.2016.04.01.

  • 加载中

(8)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2019-05-29
修回日期:  2020-02-25
上线日期:  2020-03-05

目录