Metamorphic Mafic Dykes from Tianzhen-Huai'an Area: Transformation Criteria of the Late Paleoproterozoic Collision to Extension in the North China Craton
-
摘要: 古元古代是华北克拉通形成过程中重要的造山构造演化阶段,该阶段形成的基性岩墙群,为深入理解裂解-俯冲-碰撞-抬升的造山构造-岩浆过程提供了重要信息.本文报道了天镇-怀安地区广泛分布于新太古代-古元古代变质基底中的变质基性岩墙(二辉麻粒岩),野外产状与区域主期构造面理协调一致,主要由单斜辉石、斜方辉石、斜长石和少量角闪石组成.LA-MC-ICPMS锆石U-Pb同位素定年获得变质基性岩墙的变质年龄为1 820~1 834 Ma,与区内麻粒岩相变质事件一致,结合区域基性岩墙年龄记录,推测其原岩形成年龄为1.95~1.91 Ga.根据岩石地球化学特征可将变质基性岩墙划分为高Mg低Ti型和低Mg高Ti型两类,两者经历了不同程度的橄榄石、单斜辉石和斜长石的分离结晶.两类基性岩墙均亏损高场强元素(如Nb、Ta、Ti、Zr和Hf),结合锆石Hf同位素分析,研究表明基性岩墙来源于俯冲流体交代的岩石圈地幔或者受到过地壳物质的混染.华北克拉通古元古代存在2.16~2.04 Ga和1.97~1.83 Ga两期基性岩墙侵位事件:早期代表在初始克拉通基础上发生的板内裂解过程,晚期记录了由俯冲碰撞到伸展的转换过程,即碰撞造山构造体制由水平挤压转变为垂向抬升,构造转换时限大致介于1.95~1.91 Ga.Abstract: Paleoproterozoic is an important orogenic tectonic evolution stage during the formation of the North China Craton. The mafic dyke swarms formed during this period provide important information to understanding the tectonic-magmatic process of rifting-subduction-collision-exhumation of the orogeny. This study reports the metamorphic mafic dykes (two-pyroxene granulite) widely distributed in the Neoarchean-Paleoproterozoic metamorphic base in the Tianzhen-Huai'an area. These dykes occur consistently with regional main tectonic foliation in the field and are mainly composed of clinopyroxene+orthopyroxene+plagioclase+amphibole. The metamorphic age of the mafic dyke is 1 820-1 834 Ma obtained by LA-MC-ICPMS zircon U-Pb isotope dating, which is consistent with the granulite facies metamorphic event in the study area. Based on the analyses of regional mafic dyke age data, we consider that the emplacement age is around 1.95-1.91 Ga. This study documents two types of metamorphic mafic dykes: high Mg low Ti type and low Mg high Ti type. They have experienced different degrees of fractional crystallization of olivine, clinopyroxene and plagioclase. Both types of mafic dykes show negative anomalies in high-field-strength elements (such as Nb, Ta, Ti, Zr, and Hf). According to the zircon Hf isotopic and the geochemical features, we suggest that the mafic dykes originated from a lithospheric mantle metasomatized by subduction fluids, or/and they were contaminated by the crust. Two episodes of metamorphosed mafic dykes are identified in the North China Craton: 2.16-2.04 Ga and 1.97-1.83 Ga. The early stage represents an intra-plate rifting process that occurred on the basis of the initial Craton; in contrast, the later period records transformation from subduction-collision to extensional setting, that is the collisional orogenic tectonic regime changed from horizontal compression to vertical uplift, and the tectonic transition time is roughly around 1.95-1.91 Ga.
-
Key words:
- mafic dyke /
- Paleoproterozoic /
- orogeny /
- geochemistry /
- North China Craton
-
0. 引言
基性岩墙群作为一种特殊的构造岩浆类型,被认为是岩石圈(或地壳)伸展体制下幔源岩浆浅部就位的产物,也是地球深部重要地质事件的岩浆响应,为理解地幔性质和壳-幔相互作用提供了重要信息.同时,它们作为前寒武纪构造-岩浆活动事件划分的时代标志和构造标志,是最佳的古地磁研究和对比标志,常被用于古构造环境的恢复和全球范围的超大陆重建(Ernst et al., 2001;Hou et al., 2008;Yuan et al., 2015;Condie,2016).基性岩墙群在全球范围内的克拉通广泛产出,在地壳形成过程中扮演重要角色,其岩浆起源、就位机制及演化规律常常与大陆裂解或造山过程密切相关.
华北克拉通前寒武纪广泛发育多期基性岩墙群侵位事件,主要包括~2.45 Ga、2.15~1.85 Ma、1.78~1.70 Ga、1.68~1.62 Ga、~12.3 Ga和0.9~0.8 Ga等(Peng et al., 2005, 2008, 2010, 2012, 2015, 2017;Hou et al., 2008;Zhai and Santosh, 2011;Ma et al., 2012;Wan et al., 2013;刘平华等,2013a,2013b;翟明国等,2014;Wang et al., 2014, 2016a;Zhai et al., 2015;Yang et al., 2019;余超,2019),同时伴随多期裂谷事件,常与超大陆的裂解相联系.如在华北克拉通广泛发育2.2~2.1 Ga变质基性岩墙,被认为是陆内伸展裂解环境的反映(杨崇辉等,2017),可能与全球范围的新太古代超大陆——基诺兰大陆的裂解事件有关.此外,在太行山区-五台山-吕梁山-恒山以及晋冀蒙交界等早前寒武纪变质岩区广泛发育的1.78~1.70 Ga未变质变形基性岩墙,是华北克拉通克拉通化和古元古代构造-岩浆演化事件结束的标志,被认为与同时期裂陷槽沉积和非造山岩浆岩一起代表哥伦比亚超大陆裂解的产物(Hou et al., 2008;Peng et al., 2008).
最近开展的1:5万和1:25万填图工作表明,晋冀蒙交界地区的怀安杂岩中存在大量变质基性岩墙,广泛分布于区内新太古代-古元古代变质基底中,目前对它们的岩石类型、形成时代、岩浆起源及成因等问题研究相对薄弱.本文以天镇-怀安地区古元古代变质基性岩墙为研究对象,基于野外地质调查,结合岩石学、地球化学、锆石U-Pb年代学和Hf同位素研究,探讨了变质基性岩墙的原岩形成时代、源区特征及其构造背景,它们对于研究华北克拉通古元古代中晚期与造山-伸展有关的岩浆-变质-构造演化具有重要意义.
1. 区域地质概况
华北克拉通是我国面积最大、最古老的克拉通,主要由多个古元古代造山带环绕的太古宙陆核组成(图 1a),其边界由显生宙的弧或碰撞带与其他克拉通相接.新太古代-古元古代构造体制是近年来华北克拉通早前寒武纪地质研究的热点(王惠初等,2011).晋冀蒙交界地区是华北克拉通典型的麻粒岩区,汇集了新太古代-古元古代变质TTG岩系、孔兹岩系、超高温泥质麻粒岩以及高压基性麻粒岩等不同性质、成因的麻粒岩类型,是研究早前寒武纪地壳形成与演化、下地壳物质结构、变质作用、流变构造以及早期板块构造等科学问题的重要载体.该区早前寒武纪基底大致以大同-兴和一线为界被划分为两套高级变质岩系,分别为南东部麻粒岩系和北西部孔兹岩系(图 1b),两者在岩石组成上明显不同,被认为分属两个不同的古元古代造山带(Zhao et al., 2005).研究区位于天镇-怀安一带,大地构造位置属华北克拉通中部造山带北段,在地质结构组成上具有典型“二元结构”,即广泛出露的早前寒武纪变质基底和中元古代以来的稳定沉积盖层(图 1c).变质基底主体为经历了古元古代构造-变质再造的新太古代TTG杂岩系(2.55~2.45 Ga;Zhao et al., 2008;Liu et al., 2012),出露面积占基底总面积的80%以上,其余包括少量的古元古代二长花岗岩类、变质基性岩墙(二辉麻粒岩)以及零星出露的条带状磁铁石英岩(BIF)、石榴黑云斜长片麻岩、含墨富铝片麻岩、大理岩等表壳岩类型,最近的研究将它们划分为新太古代和古元古代不同成因性质的表壳岩系(张家辉等,2019a,2019b;田辉等,2019).研究区内含有大量具有退变“白眼圈”结构的含石榴子石的高压基性麻粒岩,记录顺时针P-T演化轨迹,经历了峰期高压麻粒岩相和后期麻粒岩相-角闪岩相退变质作用过程(Guo et al., 2002, 2005;Zhang et al., 2016;沈其韩等,2018).区内变质基底岩石主要记录了1.85~1.82 Ga主期麻粒岩相变质和地壳深熔事件,多被认为代表了西部陆块和东部陆块碰撞形成统一的华北克拉通基底的构造过程(Zhao et al., 2005, 2008).
1.新太古代变质TTG片麻岩;2.新太古代二长花岗岩;3.新太古代条带状铁建造(BIF);4.新太古代榴云片麻岩岩组;5.古元古代高压基性麻粒岩-大理岩-富铝片麻岩组合;6.古元古代黄土窑岩组(孔兹岩系);7.中元古代沉积盖层;8.古元古代变质基性岩墙(二辉麻粒岩);9.中元古代基性岩墙;10.高压基性麻粒岩出露点;11.片麻理/层理产状(°);12.构造接触;13.断层;14.采样点Fig. 1. Tectonic subdivision of the North China Craton (a; modified from Zhao et al., 2005); Precambrain geological sketch of the Shanxi-Hebei-Inner Mongolia border area (b); geological sketch of Tianzhen-Huai'an area (c; modified from Zhang et al., 2019b)2. 野外产状及岩石学特征
天镇-怀安地区新太古代-古元古代变质杂岩中产出大量变质基性岩(图 2),主要岩性为中细粒二辉麻粒岩,它们野外呈岩墙侵入新太古代变质TTG片麻岩中,宽度一般为数十厘米至几米,沿走向延伸达几米至数百米不等,并较好地保留了原有的侵入关系(图 1c,图 2).在少量露头可见基性岩墙遭受强烈的韧-塑性变形改造,呈现布丁状、透镜状和石香肠状,但整体上这些变形的布丁体或构造透镜体沿走向具有较好的连续性,表明其原始具有岩墙/脉产出特征.在早期的地质填图过程中常常将其看做基性火山岩夹层,但笔者野外观察发现,该期变质基性岩墙直接接触围岩为TTG片麻岩,且未见与变沉积-火山岩类伴生,区内产出的变质基性火山岩常常与BIF和石榴黑云斜长片麻岩等具有表壳岩性质的岩石类型伴生产出,因此该类变质基性岩墙不属于变火山岩类.由于岩性差别较大,变质基性岩墙与围岩界线截然,且界线产状走向与围岩片麻理一致,同时变质基性岩墙内部发育的片麻理也与区域构造面理产状相协调,表明其与围岩遭受了同期变形构造改造(图 2a、2b).此外,野外可见少量变质基性岩墙遭受变质深熔作用改造,形成浅色脉体,脉宽1~3 cm不等,脉体延伸方向以片麻理走向协调一致,大部分的基性岩墙在野外显示无浅色脉体产出,岩性相对较均匀(图 2c、2e).由于该期变质基性岩中无石榴子石,主要由单斜辉石、斜方辉石、斜长石和少量角闪石组成(图 2d、2f),岩石学特征上与区内含石榴子石的高压基性麻粒岩明显不同,表明该类岩石未遭受高压麻粒岩相变质,主要记录了麻粒岩相变质,由此笔者推断其形成时代应晚于区内高压麻粒岩相变质时限.同时,野外可见变质基性岩墙被后期伟晶岩脉侵入,并切割其片麻理.综上产状关系表明,变质基性岩形成时间应为古元古代晚期.
二辉麻粒岩:中细粒变晶结构,片麻状构造;主要矿物组成为斜长石(40%~50%)、透辉石(15%~25%)、斜方辉石(15%~20%)和角闪石(~5%)等,含少量磁铁矿、磷灰石等副矿物,部分岩石含极少量石英.岩石中的峰期变质矿物组合为斜长石+单斜辉石+紫苏辉石±角闪石,为中压麻粒岩相变质程度.
3. 测试分析方法
由于研究区变质程度较高,部分变质基性岩中产出浅色脉体,岩石化学成分发生了变化,为更好地查明原岩的岩石成因,在野外采集分析测试岩石样品时,尽量选择弱变形域、岩性均匀的样品.本文样品的粉碎、岩石地化样品粉碎(200目)以及锆石分选均在河北省廊坊市宇能岩矿公司加工完成.锆石制靶、阴极发光(CL)以及透、反射照相均在北京锆年领航有限公司完成.
锆石分选首先用常规方法进行粉碎,并用浮选和电磁选方法进行分选,最后在双目镜下选出锆石.在观察锆石CL图像基础上,结合反射光和透射光照片,避开锆石中的裂隙、包裹体和杂质,选择锆石测年点位.锆石U-Pb定年和Hf同位素分析测试分析在天津地质调查中心同位素实验室完成.分析所用的LA-MC-ICPMS由New Wave的193 nm激光剥蚀系统和Thermo Fisher的Neptune多接收等离子体质谱仪组成.分析时采用GJ-1作为外部标准校正锆石中U、Th和Pb同位素分馏;同时采用NIST610玻璃作为标样计算锆石中U、Th、Pb含量;采用208Pb校正法进行普通铅校正(Andersen,2002).最后利用ICPMSDataCal程序和Isoplot3.0程序进行数据处理.锆石Lu-Hf同位素分析利用LA-MC-ICPMS进行微区原位同位素测定.分析仪器为澳大利亚科学仪器有限公司生产的RESOlution-LR激光器和Thermo Fisher公司制造的Neptune多接收器电感耦合等离子体质谱仪,分析方法见耿建珍等(2011).
锆石Hf同位素分析点与锆石U-Pb定年测试点相同.采用176Hf/177Hf=0.732 5对Hf同位素比值进行指数归一化质量歧视校正,采用173Yb/172Yb=1.352 74对Yb同位素比值进行指数归一化质量歧视校正.在εHf(t)计算时,球粒陨石的176Hf/177Hf比值为0.282 772,176Lu/177Hf比值为0.332.在单阶段Hf模式年龄计算时亏损地幔的176Hf/177Hf比值和176Lu/177Hf比值分别为0.283 25和0.038 42;在两阶段Hf模式年龄计算时,平均地壳与亏损地幔的ƒLu/Hf比值分别为-0.548 2和0.156 6. 176Lu的衰变常量选用1.867×10-11 a-1;相关计算中锆石的U-Pb年龄选择单点207Pb/206Pb年龄,相关计算公式参考吴福元等(2007).
主量元素、稀土元素及微量元素测试分析均在中国地质调查局天津地质调查中心实验室完成.主量元素采用X射线荧光光谱仪(XRF)测定,FeO采用氢氟酸、硫酸溶样、重铬酸钾滴定容量法,分析精度优于2%.稀土元素和微量元素采用电感耦合等离子体质谱仪(TJA-PQ-ExCell ICP-MS)测定,分析精度优于5%.
4. 测试结果
4.1 锆石U-Pb年龄
本次工作对采自西赵家窑的高Mg低Ti型(TW9001-2)和朱家沟的低Mg高Ti型(16ZJG-1)两个变质基性岩墙岩石样品进行了锆石U-Pb定年,数据见附表 1.两个样品中锆石晶型特征类似,呈椭球状或浑圆状,粒径在80~120 μm之间,主体在100 μm左右;在CL图像上呈灰白色或灰色,无明显岩浆振荡生长环带,锆石内部结构表现出无分带、弱分带、扇状分带、面状分带等特征(图 3).其中样品16ZJG-1中部分锆石具有核边结构,但从获得的年龄看,核-边锆石年龄相近.两个样品中锆石整体具有变质锆石特征.样品TW9001-2中除个别锆石Th/U<0.1外,其余绝大部分锆石Th/U>0.1,介于0.32~1.04.样品16ZJG-1中锆石Th/U变化较大,介于0.01~1.35.
对样品TW9001-2中23粒锆石进行了U-Pb年龄测试,获得23组年龄数据.获得的数据均位于谐和线上(图 4a),对大部分相对集中数据加权获得的207Pb/206Pb年龄为1 820±10 Ma.该年龄与区域主期变质年龄一致,应代表变质年龄.此外,获得的3个数据年龄分别为1 892±21 Ma、1 901±22 Ma和1 918±22 Ma.
对样品16ZJG-1中24粒锆石进行了U-Pb年龄测试,获得24组年龄数据.数据均位于谐和线上(图 4b),且相对集中,加权获得的207Pb/206Pb年龄为1 834±9 Ma.该年龄也与区域主期变质年龄一致,应代表变质年龄.
4.2 岩石地球化学特征
4.2.1 主量元素
变质基性岩墙样品可根据地球化学特征划分为高Mg低Ti型(MgO=6.42%~8.89%;TiO2=0.67%~1.24%)和低Mg高Ti型(MgO=3.82%~5.83%;TiO2=1.52%~2.47%),数据见附表 2.高Mg低Ti型样品的SiO2含量为46.89%~50.64%,TFeO含量较高(10.08%~13.71%),Al2O3含量为13.36%~16.66%,CaO介于10.36%~11.56%,P2O5含量相对低,介于0.069~0.110,平均值为0.085,Mg#值介于46~55,平均值为52.低Mg高Ti型样品的SiO2含量为47.17%~51.32%,TFeO含量更高(13.06%~16.56%),Al2O3含量为12.58%~15.97%,CaO介于6.96%~10.97%,P2O5含量相对较高,介于0.18~0.49,平均值为0.26,是高Mg低Ti型样品的3倍,且Mg#值介于29~44,平均值为37,明显低于高Mg低Ti型样品.
图 5 变质基性岩墙样品岩石分类Zr/TiO2×0.000 1-Nb/Y(a;Winchester and Floyd, 1977)和Al2O3-(TFeO+TiO2)-MgO图解(b;Jensen, 1976)Fig. 5. Zr/TiO2×0.000 1-Nb/Y(a; Winchester and Floyd, 1977) and Al2O3-(TFeO+TiO2)-MgO diagram(b; Jensen, 1976) of the metamorphic mafic dykes在岩石分类图解Zr/TiO2-Nb/Y中,所有样品相对集中位于玄武岩区域,少数位于与亚碱性玄武岩交界线范围(图 5a);在Al2O3-(TFeO+TiO2)-MgO图解中所有样品投入高铁拉斑玄武岩区域(图 5b),整体具有拉斑玄武岩的地球化学特征.
4.2.2 微量元素
高Mg低Ti型和低Mg高Ti型变质基性岩墙在稀土元素组成上存在明显区别.高Mg低Ti型的稀土总量较低,∑REE介于42.28×10-6~59.67×10-6,铕异常不明显(δEu=0.91~1.18),(La/Yb)N=1.44~3.06,在球粒陨石稀土配分模式图上表现为弱的右倾配分模式(图 6a).低Mg高Ti型的稀土总量相对较高,∑REE介于97.54×10-6~192.16×10-6,具有弱的负铕异常(δEu=0.81~0.99),(La/Yb)N=2.52~5.23,在球粒陨石稀土配分模式图上表现为明显的右倾配分模式,轻稀土相对于重稀土富集(图 6a).
在微量元素蛛网图上,高Mg低Ti型样品的各类微量元素标准化值均低于低Mg高Ti型,但两者具有相似的元素配分特征(图 6b),Nb、Ta、Zr、Ti元素均表现为明显的亏损.但两者的Sr异常明显不同,高Mg低Ti型样品存在明显的Sr正异常(δSr=0.66~1.95;δSr=SrN/[(CeN)×(NdN)]1/2),而低Mg高Ti型样品具有明显的Sr负异常(δSr=0.22~0.86).此外,两者在Zr、Hf元素含量上存在明显不同,高Mg低Ti型样品的Zr、Hf含量较低,平均值分别为49.7×10-6和1.75×10-6;低Mg高Ti型样品的Zr、Hf含量相对较高,平均值分别为149.5×10-6和4.71×10-6.
4.3 锆石Hf同位素
本次工作对变质基性岩墙的高Mg低Ti型样品(TW9001-2)和低Mg高Ti型样品(16ZJG-1)均进行了锆石Hf同位素测试分析,数据见附表 3.对样品TW9001-2中8粒锆石进行了Hf同位素测试,获得8组数据(图 7).获得的锆石176Hf/177Hf初始值为0.281 577~0.281 722,按照锆石表面年龄计算εHf(t)值为-2.1~3.9,大部分为正值,对应的亏损地幔单阶段模式年龄(tDM)介于2 094~2 287 Ma,平均值为2 214 Ma.对样品16ZJG-1中16粒锆石进行了Hf同位素测试,获得16组数据.获得的锆石176Hf/177Hf初始值为0.281 450~0.281 718,按照锆石表面年龄计算εHf(t)值为-6.5~3.5,大部分为正值,对应的亏损地幔单阶段模式年龄(tDM)主要介于2 098~2 391 Ma,平均值为2 242 Ma.两个样品中锆石单阶段Hf模式年龄相近,介于2 214~2 242 Ma.
5. 讨论
5.1 锆石成因及年龄解释
本次工作的变质基性岩墙样品中锆石大多为圆粒状、多边粒状无结构或具有不清晰扇状结构的锆石,大部分锆石Th/U>0.1,少数Th/U<0.1,但这些锆石获得的表面年龄相近.已有研究表明Th/U<0.1不是判断变质锆石的必要条件,高级变质尤其是麻粒岩相变质锆石的Th/U比值经常出现大于0.1的情况,这可能与锆石形成时具有较高的温度有关(杨崇辉等,2017).另外,基性岩在地球化学属性上属Si不饱和体系,结晶过程形成的锆石极少.本次样品挑选出了大量的锆石矿物,这进一步说明这些锆石是变质作用过程中形成,其所记录的年龄不能代表原岩结晶年龄.因此本文获得的两个变质基性岩墙样品年龄1 820±10 Ma和1 834±9 Ma应为麻粒岩相变质年龄,这与区域上记录的主期变质事件时限一致.同时,由于变质基性岩墙未记录高压麻粒岩相变质作用,其原岩侵位时代可能晚于高压麻粒岩相变质年龄(~1.95 Ga)(翟明国,2009;Wu et al., 2016;Zhang et al., 2016),而早于麻粒岩相变质年龄(1.85~1.82 Ga),介于1.95~1.85 Ga.此外,在样品TW9001-2中获得的3个年龄值较大的数据,为1 892~1 918 Ma,该年龄也介于1.95~1.85 Ga.前人对华北克拉通古元古代(变质)基性岩墙进行了大量的年代学研究工作(表 1),存在两期原岩形成年龄,主要介于2 162~2 035 Ma和1 968~1 914 Ma,变质年龄介于1 925~1 801 Ma,跨度较大.基于本文样品定年结果和相邻地区前人研究结果,天镇-怀安地区变质基性岩墙的原岩侵位年龄可能形成于1.95~1.91 Ga,根据现有数据还不能准确厘定其结晶年龄.天镇-怀安地区变质基性岩墙与内蒙古集宁丰镇地区徐武家变质基性岩体年龄相近(~1 931 Ma,Peng et al., 2010),可能属同期岩浆事件.此外,变质基性岩的锆石Hf同位素单阶段模式年龄主要介于2 214~2 242 Ma,该年龄与研究区内高压基性麻粒岩的锆石Hf同位素单阶段模式年龄(~2 215 Ma)相近(张家辉等,2019c),两者可能来源于同一时期的地幔分异事件.
表 1 华北克拉通古元古代(2.16~1.83 Ga)(变质)基性岩墙分布数据表Table Supplementary Table Summary of Paleoproterozoic (2.16~1.83 Ga)(metamorphic) mafic dyke swarms in the North China Craton期次 地区 位置 岩性 样品号 原岩年龄 变质年龄 定年方法 引用文献 早期基性岩墙群 大青山 哈达门沟 变质辉长岩 NM0906 2 162±10 1 827±7 SHRIMP Wan et al., 2013 冀东 石门 变质基性岩墙 JD20-2 2 162±27 1 820±7.8 SHRIMP 杨崇辉等, 2017 辽宁 海城-南芬 变质基性岩 DZ78-1 2 161±45 1 896±22 LA-ICP-MS Meng et al., 2014 辽宁 海城-南芬 变质基性岩 DZ91-1 2 161±12 LA-ICP-MS Meng et al., 2014 辽宁 海城-南芬 变质基性岩 DZ73-1 2 159±12 1 900±17 LA-ICP-MS Meng et al., 2014 辽宁 海城-南芬 变质基性岩 DZ85-1 2 157±17 1 899±26 LA-ICP-MS Meng et al., 2014 五台 横岭 变质玄武岩 2 147±5 SHRIMP Peng et al., 2005 辽宁 海城-南芬 变质基性岩 DZ74-1 2 144±16 LA-ICP-MS Meng et al., 2014 辽宁 海城 基性岩墙 YK12-1-4 2 125±6 CAMECA Yuan et al., 2015 吕梁 方山 变质基性岩墙(斜长角闪岩) 12FS-31 2 116±15 LA-ICP-MS Wang et al., 2014 吕梁 方山 变质基性岩墙(斜长角闪岩) 12FS-26 2 116±13 LA-ICP-MS Wang et al., 2014 辽宁 海城 基性岩岩基 598XLLZ2 2 115±3 CAMECA Wang et al., 2016a 辽宁 鞍山-弓长岭 变质辉长岩 A1102 2 110±31 SHRIMP 董春艳等, 2012 胶东 西留 变质辉长岩 QX2-2 2 102±3 1 907±16 LA-ICP-MS 刘平华等, 2013b 河北赞皇 北水峪 变质辉长岩 225BSY1 2 090±3 CAMECA Peng et al., 2017 山东蒙阴 孟良崮 变质基性岩墙 2 084±15 LA-ICP-MS Yang et al., 2019 恒山 义兴寨 辉长岩 07FS01 2 060±5 1 884±9 CAMECA Peng et al., 2014 恒山 义兴寨 基性岩墙 02SX109 2 060~2 035 ~1 869 SHRIMP Peng et al., 2012 晚期基性岩墙群 大青山 茅湖洞 变质辉长岩 NM0814-2 1 968±8 1 906±13 SHRIMP Wan et al., 2013 集宁 凉城红庙子 变质辉长岩 06LC17 1 964±9 1 907±37 SHRIMP Peng et al., 2010 集宁 1 954±6 1 925±8 CAMECA Peng et al., 2010 大青山 变质辉长岩 NM0915 1 951±9 1 884±11 SHRIMP Wan et al., 2013 吕梁 方山 变质基性岩墙(斜长角闪岩) 11FS-08 1 949.9±9.6 LA-ICP-MS Wang et al., 2014 吕梁 变质基性岩墙(斜长角闪岩) 11FS-02 1 944±17 LA-ICP-MS Wang et al., 2014 吕梁 方山 变质基性岩墙(斜长角闪岩) 11FS-12 1 939.6±8.2 LA-ICP-MS Wang et al., 2014 集宁 凉城郭林窑 辉长苏长岩 P09GLY1 1 936±4 1 913±6 CAMECA Peng et al., 2014 集宁 徐武家 变质闪长岩 02SX021 1 931±8 1 862±19 SHRIMP Peng et al., 2010 大青山 立甲子 变质基性岩墙 BT35-2 > 1 930 1 892±9 LA-ICP-MS 刘平华等, 2013a 大青山 哈达门沟 变质辉长岩 NM0811 1 924±17 1 853±13 SHRIMP Wan et al., 2013 大青山 石拐 变质辉长岩 NM0911 1 831±13 SHRIMP Wan et al., 2013 吕梁 庞泉沟 变质基性岩墙(斜长角闪岩) 12PQG-29 1 919±18 LA-ICP-MS Wang et al., 2014 天镇-怀安 西赵家窑北 变质基性岩墙 TW9001-2 ~1 918(?) 1 820±10 LA-ICP-MS 本文 朱家沟 变质基性岩墙 16ZJG-1 1 834±9 LA-ICP-MS 集宁 西沟 变质辉长岩 06JN05 1 857±4 SHRIMP Peng et al., 2010 中条山 变质基性岩墙 ZT03 1 847±14 LA-ICP-MS 张少华等, 2019 山东蒙阴 野店 变质基性岩墙 05SD-21 1 841±17 LA-ICP-MS Wang et al., 2007 大青山 东坡 辉长苏长岩 P09DP2 1 801±8 CAMECA Peng et al., 2014 中条山 陶家窑 基性岩墙 1 838±32 LA-ICP-MS 冯娟萍等, 2020 辽宁 国华 基性岩墙 FX12-25-1 1 826±7 CAMECA Yuan et al., 2015 注:原岩年龄和变质年龄单位为Ma. 5.2 岩石成因
5.2.1 变质作用过程对元素影响判定
变质作用常常影响岩石中元素含量的变化,尤其是大离子亲石元素(如K、Rb、Sr、Ba、Cs等)在变质作用过程特别是高级变质作用中往往属于活动元素,而稀土元素和高场强元素(如Th、Nb、Ta、Zr、Hf、Y、Ti、Cr等)活动性相对较弱(Rudnick et al., 1985;Rollinson,1993;Kerrich et al., 1999).Zr元素是变质作用过程中相对不活动性元素,利用Zr与其他元素在双变量图中的相关性是判别岩石是否遭受变质作用改造的简便而有效的方法(Polat et al., 2002;张家辉等,2019c),以此来判定变质作用过程中元素的活动性对岩石地球化学性质的影响.在图 8中,变质基性岩墙的Ti、Yb、Sm、Hf、Nb、Ta等元素与Zr元素显示出较好的线性关系,而La、Th、Ga元素与Zr元素相关性相对较差.这表明重稀土元素、高场强元素以及Ti等元素在变质过程中保持相对稳定.此外,地球化学测试主要选择受后期变质-变形改造较弱的岩石样品,因此本文主要选择相对不活泼元素Th和不活泼的高场强元素以及稀土元素进行岩石分类及成因讨论,它们基本可以反映原岩的成分特征及成因属性.
5.2.2 分离结晶
本文变质基性岩墙样品均具有较低的SiO2含量(46.89%~51.32%),低MgO(3.82%~8.89%)、Ni(23.2×10-6~149.0×10-6)和Cr(20.5×10-6~226.0×10-6)含量,且低Mg#值(29~58),其岩浆不可能直接来源于地幔橄榄岩的部分熔融.同时,两类变质基性岩墙样品具有不同Mg#值和TiO2、TFe2O3含量,它们在形成过程中可能经历了不同程度镁铁质矿物(如橄榄石和单斜辉石)的分离结晶作用.随着MgO含量减小,变质基性岩墙的Al2O3逐渐降低,表明岩石中存在斜长石的结晶分异;Cr和Ni含量明显降低,TiO2和TFe2O3含量明显升高,表明橄榄石和单斜辉石是主要的结晶分异矿物(图 9).其中低Mg高Ti型样品的Mg#值较低(Mg#=29~44),且具有明显的负铕异常和轻-重稀土分异特点,经历更高程度的结晶分异,可能发生了橄榄石、辉石、斜长石的结晶分异,是拉斑系列演化的富铁残余岩浆的产物,表现为相对富集铁钛氧化物(高TFe2O3、TiO2)和磷灰石(高P2O5),斜长石组分较低(低Al2O3和CaO),锆刚好达到了饱和.而高Mg低Ti型样品的Mg#值相对较高(Mg#=46~58),且轻重稀土分异较弱,表明经历的结晶分异相对较弱,无负铕异常,斜长石未发生分离,同时在岩浆演化过程中Zr和P2O5含量相对稳定没有参与分异,表现为与MgO含量无相关性(图 9).此外,在野外高Mg低Ti型和低Mg高Ti型两类基性岩墙的岩石学特征和产状无明显区别,它们可能来源于同一岩浆源区,分属于同一岩浆演化过程的早期和晚期分异产物.
5.2.3 地壳混染
在研究镁铁质岩石的地幔源区特征前,有必要探讨基性岩浆在上升过程中是否遭受地壳物质的混染.与地幔起源的物质相比,大陆地壳具有较低的Nb/La、Nb/Ta、Sm/Nb (0.17~0.25)、MgO(%)值,更高的Th/La、Th/Nb、La/Sm (2.9~6.6)和SiO2(%)值(Rudnick and Gao, 2003).因此可以利用MgO(%)与Nb/La、Nb/Ta、Sm/Nb比值的正相关关系和与Th/La、Th/Nb、La/Sm比值的负相关关系来指示地壳物质同化混染(Wang et al., 2016b;Zhang et al., 2020).天镇-怀安地区变质基性岩墙样品的MgO(%)与Nb/La、Nb/Ta、Sm/Nb、Th/La、Th/Nb无明显的相关性,而与La/Sm存在负相关(图 10).同时,在稀土配分图解中(图 6a),低Mg高Ti型变质基性岩表现出轻稀土元素(La-Sm)的明显富集,高Mg低Ti型轻稀土富集不明显,这表明前者可能受地壳混染可能性更大,后者混染程度较低.两类变质基性岩墙的锆石Hf同位素存在较大变化(图 7),明显偏离2.2 Ga亏损地幔演化线,不排除受地壳混染的可能.Th/La与Th/Nb比值与MgO(%)没有展示出相应的负相关性,则可能与Th具有一定的活动性有关(图 8).基于现有数据,并考虑到麻粒岩相中元素的变化,现难以估计地壳混染量,也难以确定这些地球化学特征是否继承自源区.
5.2.4 源区特征
天镇-怀安地区变质基性岩墙具有较低的锆石176Hf/177Hf初始值(0.281 450~0.281 722)和变化较大的εHf(t)值(-6.5~3.9),表明其来源于同位素组成相对富集的地幔源区.同时,变质基性岩墙在微量元素组成上明显亏损高场强元素Nb-Ta、Ti和Zr-Hf等,这些特征与岛弧玄武岩(IAB)、活动大陆边缘玄武岩特征类似(Grove et al., 2003),与洋中脊玄武岩(MORB)和洋岛玄武岩(OIB)明显不同(Pearce,2008),且在微量元素构造判别图解中,也主要投在弧火山岩区域(图 11),它们的岩浆源区可能受到来自俯冲板片流体的影响(Wang et al., 2016b),但也不能排除在基性岩浆源区或上升侵位过程中受到地壳物质的混染,因为地壳物质也具有明显的Nb-Ta和Ti负异常(Rudnick and Gao, 2003).
N-MORB.正常型洋中脊玄武岩;E-MORB.富集型洋中脊玄武岩;OIB.洋岛玄武岩;IAT.岛弧拉斑玄武岩;CAB.岛弧钙碱性玄武岩;WPT.板内拉斑玄武岩;WPAB.板内碱性玄武岩Fig. 11. Th/Yb-Nb/Yb(a; Pearce, 2008) and Th-Hf/3-Nb/16(b; Wood, 1980) diagrams of metamorphic mafic dykes5.3 地质意义
近30年来,华北克拉通早前寒武纪地质研究取得重大进展,尤其是在其北缘麻粒岩地体中识别出高温-高压(HT-HP)麻粒岩和高温-超高温(HT-UHT)麻粒岩,它们对理解华北克拉通古元古代构造格局、高压-超变温变质作用以及早期板块构造机制等一系列重大科学问题提供了重要信息(Zhao et al., 2001, 2005, 2013;Guo et al., 2005, 2012;Kröner et al., 2006;Santosh et al., 2007, 2012;赵国春,2009;翟明国,2009;Wei et al., 2014;Zhang et al., 2016;Wu et al., 2016;Jiao et al., 2017;Liao and Wei, 2019;Liu et al., 2019).但实际上,部分问题仍存在较大争议,如对晋冀蒙交界地区高压麻粒岩相变质年龄及变质动力学过程的解释,其本质是华北克拉通中西部在古元古代存在一次还是两次造山热事件?古元古代末期(~1.85 Ga)的构造环境是挤压还是伸展背景?古元古代是华北克拉通形成过程中重要的造山构造演化阶段,这得到大多数地质学家的认同.目前较流行的观点认为,华北克拉通的孔兹岩带(~1.95 Ga)和中部造山带(~1.85 Ga)分别代表古元古代两次不同的碰撞造山事件(Zhao et al., 2005),但也有研究者认为华北克拉通古元古代(1.95~1.80 Ga)是一个连续的构造演化过程,高压基性麻粒岩可能呈面状分布,代表最下部地壳成分,~1.85 Ga不存在造山过程,而是代表折返剥露过程(翟明国,2009).古元古代基性岩墙群作为含有特殊意义的构造岩浆岩,可以为讨论碰撞造山及抬升伸展过程提供约束.
古元古代变质基性岩墙在内蒙古乌拉山-大青山、集宁-丰镇、晋冀蒙交界、恒山、赞皇、中条、冀东、辽吉以及胶东等地均有出露(表 1),年代学研究揭示其侵位时限集中在2.16~1.83 Ga之间,且主要存在2.16~2.04 Ga和1.97~1.83 Ga早、晚两期(Peng et al., 2005, 2010, 2012, 2017;翟明国等,2009;董春艳等,2012;刘平华等,2013a,2013b;Meng et al., 2014;Wang et al., 2014;Yuan et al., 2015;Wang et al., 2016a;Yang et al., 2019;张少华等,2019;冯娟萍等,2020),代表华北克拉通在古元古代中晚期存在的大规模幔源岩浆侵位事件.基性岩墙群形成于伸展背景已得到大家的广泛认同,且常见的构造成因模式有地幔柱驱动的大陆裂谷、俯冲作用相关的弧后盆地以及造山后伸展等构造背景(Heaman,1997;Zhang et al., 2012;Ernst et al., 2013).古元古代早期岩墙群(2.16~2.04 Ga),被认为与同期的A型花岗岩和火山岩一起形成于大陆裂谷拉张环境,与早期超大陆裂解有关(Zhai,2011;杜利林等,2012;Peng et al., 2012;Du et al., 2013;Wang et al., 2014;Peng,2015;Wang et al., 2016a;杨崇辉等,2017;Liu et al., 2018;Yang et al., 2019;张少华等,2019),这在全球范围内可以对比(Condie,2016).张家辉等(2019 c)报道了天镇地区具有MORB地球化学性质的高压基性麻粒岩组合,也指示该阶段的伸展背景.宣化-怀安-恒山一带广泛出露的高压基性麻粒岩,其原岩性质为基性岩墙(赵国春等,2009),形成时代应大于1.95 Ga,笔者推测其应属于古元古代早期基性岩墙群的一部分,形成于华北克拉通裂解过程,后在碰撞过程中记录高压麻粒岩相变质作用.古元古代晚期基性岩墙(1.97~1.83 Ga)被认为与华北克拉通不同陆块间的碰撞造山密切相关,多被认为形成于碰撞后的地壳伸展背景(Zhao et al., 2005;Wang et al., 2007;Peng et al., 2010;Zhai,2011;Wan et al., 2013;Wang et al., 2014;冯娟萍等,2020).本文报道的天镇-怀安地区变质基性岩墙应属于古元古代晚期基性岩墙群的一部分.可见,华北克拉通两期基性岩墙侵位事件分属为两个构造体制,代表不同的构造演化阶段:早期代表在新太古代初始克拉通基础上发生的陆内裂解,晚期代表古元古代碰撞造山后的伸展背景.
从晋冀蒙三省地区晚期基性岩墙年龄统计上看,其侵位时代与区域内高压麻粒岩相(~1.95 Ga)、超高温变质作用(1.92~1.91 Ga)和麻粒岩相(~1.85 Ga)变质作用时限相重叠(Guo et al., 2002, 2005, 2012;Zhao et al., 2005;Santosh et al., 2007, 2012;Peng et al., 2014;Wu et al., 2016;Zhang et al., 2016;Jiao et al., 2017, Liao and Wei, 2019),这可能与(1)高级变质岩中变质锆石年龄的复杂性和不确定性;(2)造山带空间上的穿时性,如造山带不同位置的时间记录不同;(3)年龄解释的争论,如麻粒岩的年龄应代表冷却年龄(魏春景,2018)等有关.天镇-怀安地区变质基性岩墙(二辉麻粒岩)结晶年龄可能介于1.95~1.91 Ga,主要与区域内超高温变质事件相关联.对集宁-怀安一带超高温麻粒岩的变质动力学研究表明,洋脊俯冲导致的基性岩浆侵位(Peng et al., 2010;Guo et al., 2012)或地幔柱活动(Li and Wei, 2018;Wang et al., 2019)可能是控制超高温变质的主要原因,这与该地区存在大规模基性岩墙群相符,如徐武家岩墙和本文报道的天镇-怀安地区大量产出的变质基性岩墙(二辉麻粒岩),它们代表了该阶段处于伸展的构造体制.高压麻粒岩相变质代表了碰撞造山过程,伴随盆地收缩和地壳加厚等,是挤压构造体制产物.因此未记录高压麻粒岩相变质作用的晚期变质基性岩墙群是古元古代碰撞造山过程由水平挤压构造体制向垂向抬升伸展构造体制转变的区域性地质标志.天镇-怀安地区变质基性岩墙(二辉麻粒岩)中记录的末期变质事件(~1.85 Ga),是一次区域性麻粒岩相变质事件,广泛出现在集宁-大同、天镇-怀安以及恒山-五台等地的变质杂岩体中.早期研究表明该期变质代表了西部陆块和东部陆块碰撞造山过程(Guo et al., 2005;Zhao et al., 2005, 2012;赵国春,2009),随后的研究揭示也可能代表了造山后地壳伸展背景下麻粒岩地体抬升的缓慢冷却(翟明国,2009;Wei et al., 2014)或存在的第二期陆内造山事件(魏春景,2018;Duan et al., 2019;Qian et al., 2019).但由于晚期变质基性岩墙缺少P-T轨迹的支持,很难确定~1.85 Ga变质作用属于碰撞挤压或是持续伸展冷却过程,但高压基性麻粒岩的P-T轨迹已揭示从高压麻粒岩相到麻粒岩相可能是一个连续的演化过程(Zhao et al., 2001;Guo et al., 2002;Zhang et al., 2016;Liao and Wei, 2019).因此,笔者更倾向于该期变质基性岩墙(二辉麻粒岩)是在碰撞后高压麻粒岩地体脱离高压麻粒岩相变质作用条件抬升到达中低压麻粒岩相变质作用条件过程中发生侵位的,1.95~1.85 Ga其可能处于一个持续的缓慢冷却过程.
6. 结论
通过对晋冀蒙交界天镇-怀安地区变质基性岩墙群的研究得到如下结论:
(1) 变质基性岩墙广泛分布于新太古代-古元古代变质基底中,产状与区域构造面理协调一致,主要岩性为二辉麻粒岩,与区内高压基性麻粒岩明显不同.
(2) 变质基性岩墙中获得的变质年龄为1 820~1 834 Ma,与区内麻粒岩相变质事件一致,少量锆石年龄为1 892~1 918 Ma,结合区域基性岩墙年龄记录,笔者推测原岩形成年龄为1.95~1.91 Ga.
(3) 变质基性岩墙为拉斑玄武岩系列,可划分为高Mg低Ti和低Mg高Ti型两类,分别经历了不同程度的橄榄石、单斜辉石和斜长石的分离结晶.两者均亏损高场强元素(如Nb、Ta、Ti、Zr和Hf),结合锆石Hf同位素组成,其岩浆起源于俯冲流体交代的岩石圈地幔或者受到过地壳物质的混染.
(4) 华北克拉通在古元古代存在2.16~2.04 Ga和1.97~1.83 Ga两期基性岩浆侵位事件:早期代表在初始克拉通基础上发生的板内裂解过程,晚期记录了俯冲碰撞向伸展裂解的转换过程,即碰撞造山构造体制由水平挤压转变为垂向抬升,且构造转换时限大致介于1.95~1.91 Ga.
致谢: 本文是“1:5万天镇、怀安镇、东六马坊幅区域地质矿产调查”子项目(2016~2018)研究成果,在工作过程中得到吉林大学金巍教授和李伟民副教授指导与帮助;岩石样品分析测试得到天津地质调查中心实验测试室的同事帮助;审稿人魏春景教授、彭澎研究员、杨崇辉研究员提出很多有益的修改意见,在此一并表示衷心感谢! 附表见本刊官网(http://www.earth-science.net). -
图 1 华北克拉通构造单元划分图(a;据Zhao et al., 2005);晋冀蒙交界地区早前寒武纪地质简图(b);天镇-怀安地区地质简图(c;据张家辉等,2019b修改)
1.新太古代变质TTG片麻岩;2.新太古代二长花岗岩;3.新太古代条带状铁建造(BIF);4.新太古代榴云片麻岩岩组;5.古元古代高压基性麻粒岩-大理岩-富铝片麻岩组合;6.古元古代黄土窑岩组(孔兹岩系);7.中元古代沉积盖层;8.古元古代变质基性岩墙(二辉麻粒岩);9.中元古代基性岩墙;10.高压基性麻粒岩出露点;11.片麻理/层理产状(°);12.构造接触;13.断层;14.采样点
Fig. 1. Tectonic subdivision of the North China Craton (a; modified from Zhao et al., 2005); Precambrain geological sketch of the Shanxi-Hebei-Inner Mongolia border area (b); geological sketch of Tianzhen-Huai'an area (c; modified from Zhang et al., 2019b)
图 5 变质基性岩墙样品岩石分类Zr/TiO2×0.000 1-Nb/Y(a;Winchester and Floyd, 1977)和Al2O3-(TFeO+TiO2)-MgO图解(b;Jensen, 1976)
Fig. 5. Zr/TiO2×0.000 1-Nb/Y(a; Winchester and Floyd, 1977) and Al2O3-(TFeO+TiO2)-MgO diagram(b; Jensen, 1976) of the metamorphic mafic dykes
图 6 变质基性岩墙样品的稀土元素配分图(a)及微量元素蛛网图(b)
Fig. 6. Chondrite-normalized REE patterns (a) and primary mantle-normalized trace element spider diagram (b) of the metamorphic mafic dykes
图 11 变质基性岩墙微量元素Th/Yb-Nb/Yb(a;Pearce, 2008)和Th-Hf/3-Nb/16(b;Wood, 1980)图解
N-MORB.正常型洋中脊玄武岩;E-MORB.富集型洋中脊玄武岩;OIB.洋岛玄武岩;IAT.岛弧拉斑玄武岩;CAB.岛弧钙碱性玄武岩;WPT.板内拉斑玄武岩;WPAB.板内碱性玄武岩
Fig. 11. Th/Yb-Nb/Yb(a; Pearce, 2008) and Th-Hf/3-Nb/16(b; Wood, 1980) diagrams of metamorphic mafic dykes
表 1 华北克拉通古元古代(2.16~1.83 Ga)(变质)基性岩墙分布数据表
Table 1. Summary of Paleoproterozoic (2.16~1.83 Ga)(metamorphic) mafic dyke swarms in the North China Craton
期次 地区 位置 岩性 样品号 原岩年龄 变质年龄 定年方法 引用文献 早期基性岩墙群 大青山 哈达门沟 变质辉长岩 NM0906 2 162±10 1 827±7 SHRIMP Wan et al., 2013 冀东 石门 变质基性岩墙 JD20-2 2 162±27 1 820±7.8 SHRIMP 杨崇辉等, 2017 辽宁 海城-南芬 变质基性岩 DZ78-1 2 161±45 1 896±22 LA-ICP-MS Meng et al., 2014 辽宁 海城-南芬 变质基性岩 DZ91-1 2 161±12 LA-ICP-MS Meng et al., 2014 辽宁 海城-南芬 变质基性岩 DZ73-1 2 159±12 1 900±17 LA-ICP-MS Meng et al., 2014 辽宁 海城-南芬 变质基性岩 DZ85-1 2 157±17 1 899±26 LA-ICP-MS Meng et al., 2014 五台 横岭 变质玄武岩 2 147±5 SHRIMP Peng et al., 2005 辽宁 海城-南芬 变质基性岩 DZ74-1 2 144±16 LA-ICP-MS Meng et al., 2014 辽宁 海城 基性岩墙 YK12-1-4 2 125±6 CAMECA Yuan et al., 2015 吕梁 方山 变质基性岩墙(斜长角闪岩) 12FS-31 2 116±15 LA-ICP-MS Wang et al., 2014 吕梁 方山 变质基性岩墙(斜长角闪岩) 12FS-26 2 116±13 LA-ICP-MS Wang et al., 2014 辽宁 海城 基性岩岩基 598XLLZ2 2 115±3 CAMECA Wang et al., 2016a 辽宁 鞍山-弓长岭 变质辉长岩 A1102 2 110±31 SHRIMP 董春艳等, 2012 胶东 西留 变质辉长岩 QX2-2 2 102±3 1 907±16 LA-ICP-MS 刘平华等, 2013b 河北赞皇 北水峪 变质辉长岩 225BSY1 2 090±3 CAMECA Peng et al., 2017 山东蒙阴 孟良崮 变质基性岩墙 2 084±15 LA-ICP-MS Yang et al., 2019 恒山 义兴寨 辉长岩 07FS01 2 060±5 1 884±9 CAMECA Peng et al., 2014 恒山 义兴寨 基性岩墙 02SX109 2 060~2 035 ~1 869 SHRIMP Peng et al., 2012 晚期基性岩墙群 大青山 茅湖洞 变质辉长岩 NM0814-2 1 968±8 1 906±13 SHRIMP Wan et al., 2013 集宁 凉城红庙子 变质辉长岩 06LC17 1 964±9 1 907±37 SHRIMP Peng et al., 2010 集宁 1 954±6 1 925±8 CAMECA Peng et al., 2010 大青山 变质辉长岩 NM0915 1 951±9 1 884±11 SHRIMP Wan et al., 2013 吕梁 方山 变质基性岩墙(斜长角闪岩) 11FS-08 1 949.9±9.6 LA-ICP-MS Wang et al., 2014 吕梁 变质基性岩墙(斜长角闪岩) 11FS-02 1 944±17 LA-ICP-MS Wang et al., 2014 吕梁 方山 变质基性岩墙(斜长角闪岩) 11FS-12 1 939.6±8.2 LA-ICP-MS Wang et al., 2014 集宁 凉城郭林窑 辉长苏长岩 P09GLY1 1 936±4 1 913±6 CAMECA Peng et al., 2014 集宁 徐武家 变质闪长岩 02SX021 1 931±8 1 862±19 SHRIMP Peng et al., 2010 大青山 立甲子 变质基性岩墙 BT35-2 > 1 930 1 892±9 LA-ICP-MS 刘平华等, 2013a 大青山 哈达门沟 变质辉长岩 NM0811 1 924±17 1 853±13 SHRIMP Wan et al., 2013 大青山 石拐 变质辉长岩 NM0911 1 831±13 SHRIMP Wan et al., 2013 吕梁 庞泉沟 变质基性岩墙(斜长角闪岩) 12PQG-29 1 919±18 LA-ICP-MS Wang et al., 2014 天镇-怀安 西赵家窑北 变质基性岩墙 TW9001-2 ~1 918(?) 1 820±10 LA-ICP-MS 本文 朱家沟 变质基性岩墙 16ZJG-1 1 834±9 LA-ICP-MS 集宁 西沟 变质辉长岩 06JN05 1 857±4 SHRIMP Peng et al., 2010 中条山 变质基性岩墙 ZT03 1 847±14 LA-ICP-MS 张少华等, 2019 山东蒙阴 野店 变质基性岩墙 05SD-21 1 841±17 LA-ICP-MS Wang et al., 2007 大青山 东坡 辉长苏长岩 P09DP2 1 801±8 CAMECA Peng et al., 2014 中条山 陶家窑 基性岩墙 1 838±32 LA-ICP-MS 冯娟萍等, 2020 辽宁 国华 基性岩墙 FX12-25-1 1 826±7 CAMECA Yuan et al., 2015 注:原岩年龄和变质年龄单位为Ma. -
Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb.Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X" target=="_blank"> https://doi.org/10.1016/S0009-2541(02)00195-X Condie, K. C., 2016. The Supercontinent Cycle. Earth as an Evolving Planetary System. Elsevier, Amsterdam, 201-235. https://doi.org/10.1016/b978-0-12-803689-1.00007-9" target=="_blank"> https://doi.org/10.1016/b978-0-12-803689-1.00007-9 Dong, C. Y., Ma, M. Z., Liu, S. J., et al., 2012. Middle Paleoproterozoic Crustal Extensional Regime in the North China Craton: New Evidence from SHRIMP Zircon U-Pb Dating and Whole-Rock Geochemistry of Meta-Gabbro in the Anshan-Gongchangling Area. Acta Petrologica Sinica, 28(9): 2785-2792 (in Chinese with English abstract). Du, L. L., Yang, C. H., Ren, L. D., et al., 2012. The 2.2-2.1 Ga Magmatic Event and Its Tectonic Implication in the Lüliang Mountains, North China Craton. Acta Petrologica Sinica, 28(9): 2751-2769 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201209007 Du, L. L., Yang, C. H., Wang, W., et al., 2013. Paleoproterozoic Rifting of the North China Craton: Geochemical and Zircon Hf Isotopic Evidence from the 2 137 Ma Huangjinshan A-Type Granite Porphyry in the Wutai Area. Journal of Asian Earth Sciences, 72: 190-202. https://doi.org/10.1016/j.jseaes.2012.11.040" target=="_blank"> https://doi.org/10.1016/j.jseaes.2012.11.040 Duan, Z. Z., Wei, C. J., Li, Z., 2019. Metamorphic P-T Paths and Zircon U–Pb Ages of Paleoproterozoic Metabasic Dykes in Eastern Hebei and Northern Liaoning: Implications for the Tectonic Evolution of the North China Craton. Precambrian Research, 326: 124-141. https://doi.org/10.1016/j.precamres.2017.11.001" target=="_blank"> https://doi.org/10.1016/j.precamres.2017.11.001 Ernst, R. E., Bleeker, W., Sö derlund, U., et al., 2013. Large Igneous Provinces and Supercontinents: Toward Completing the Plate Tectonic Revolution. Lithos, 174: 1-14. https://doi.org/10.1016/j.lithos.2013.02.017" target=="_blank"> https://doi.org/10.1016/j.lithos.2013.02.017 Ernst, R. E., Grosfils, E. B., Mège, D., 2001. Giant Dike Swarms: Earth, Venus, and Mars.Annual Review of Earth and Planetary Sciences, 29(1): 489-534. https://doi.org/10.1146/annurev.earth.29.1.489" target=="_blank"> https://doi.org/10.1146/annurev.earth.29.1.489 Feng, J. P., Ouyang, Z. J., Ma, H. Y., et al., 2020. U-Pb Chronology, Geochemical Characteristics and Significance of the Taojiayao Basic Dike Swarms in the Zhongtiao Mountain, Southeastern Margin of North China Craton. Acta Geologica Sinica, 94(2): 573-586 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb202002014 Geng, J. Z., Li, H. K., Zhang, J., et al., 2011. Zircon Hf Isotope Analysis by Means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508-1513 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201110004 Grove, T. L., Elkins-Tanton, L. T., Parman, S. W., et al., 2003. Fractional Crystallization and Mantle-Melting Controls on Calc-Alkaline Differentiation Trends. Contributions to Mineralogy and Petrology, 145(5): 515-533. https://doi.org/10.1007/s00410-003-0448-z" target=="_blank"> https://doi.org/10.1007/s00410-003-0448-z Guo, J. H., O'Brien, P. J., Zhai, M. G., 2002. High-Pressure Granulites in the Sanggan Area, North China Craton: Metamorphic Evolution, P-T Paths and Geotectonic Significance. Journal of Metamorphic Geology, 20(8): 741-756. https://doi.org/10.1046/j.1525-1314.2002.00401.x" target=="_blank"> https://doi.org/10.1046/j.1525-1314.2002.00401.x Guo, J. H., Peng, P., Chen, Y., et al., 2012. UHT Sapphirine Granulite Metamorphism at 1.93-1.92 Ga Caused by Gabbronorite Intrusions: Implications for Tectonic Evolution of the Northern Margin of the North China Craton. Precambrian Research, 222-223: 124-142. https://doi.org/10.1016/j.precamres.2011.07.020" target=="_blank"> https://doi.org/10.1016/j.precamres.2011.07.020 Guo, J. H., Sun, M., Chen, F. K., et al., 2005. Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-Pressure Granulites in the Sanggan Area, North China Craton: Timing of Paleoproterozoic Continental Collision. Journal of Asian Earth Sciences, 24(5): 629-642. https://doi.org/10.1016/j.jseaes.2004.01.017" target=="_blank"> https://doi.org/10.1016/j.jseaes.2004.01.017 Heaman, L. M., 1997. Global Mafic Magmatism at 2.45 Ga: Remnants of an Ancient Large Igneous Province?. Geology, 25(4): 299. https://doi.org/10.1130/0091-7613(1997)0250299:gmmagr>2.3.co;2 doi: 10.1130/0091-7613(1997)0250299:gmmagr>2.3.co;2 Hou, G. T., Santosh, M., Qian, X. L., et al., 2008. Configuration of the Late Paleoproterozoic Supercontinent Columbia: Insights from Radiating Mafic Dyke Swarms. Gondwana Research, 14(3): 395-409. https://doi.org/10.1016/j.gr.2008.01.010" target=="_blank"> https://doi.org/10.1016/j.gr.2008.01.010 Jensen, L. S., 1976. A New Cation Plot for Classifying Subalkalic Volcanic Rocks. Ontario Geological Survey, Toronto. Jiao, S. J., Fitzsimons, I. C. W., Guo, J. H, 2017. Paleoproterozoic UHT Metamorphism in the Daqingshan Terrane, North China Craton: New Constraints from Phase Equilibria Modeling and SIMS U-Pb Zircon Dating. Precambrian Research, 303: 208-227. https://doi.org/10.1016/j.precamres.2017.03.024" target=="_blank"> https://doi.org/10.1016/j.precamres.2017.03.024 Kerrich, R., Polat, A., Wyman, D., et al., 1999. Trace Element Systematics of Mg-, to Fe-tholeiitic Basalt Suites of the Superior Province: Implications for Archean Mantle Reservoirs and Greenstone Belt Genesis. Lithos, 46(1): 163-187. https://doi.org/10.1016/S0024-4937(98)00059-0" target=="_blank"> https://doi.org/10.1016/S0024-4937(98)00059-0 Kröner, A., Wilde, S. A., Zhao, G. C., et al., 2006. Zircon Geochronology and Metamorphic Evolution of Mafic Dykes in the Hengshan Complex of Northern China: Evidence for Late Palaeoproterozoic Extension and Subsequent High-Pressure Metamorphism in the North China Craton. Precambrian Research, 146(1-2): 45-67. https://doi.org/10.1016/j.precamres.2006.01.008" target=="_blank"> https://doi.org/10.1016/j.precamres.2006.01.008 Li, X. W., Wei, C. J., 2018. Ultrahigh-Temperature Metamorphism in the Tuguiwula Area, Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 36(4): 489-509. https://doi.org/10.1111/jmg.12301" target=="_blank"> https://doi.org/10.1111/jmg.12301 Liao, Y., Wei, C. J., 2019. Ultrahigh-Temperature Mafic Granulite in the Huai'an Complex, North China Craton: Evidence from Phase Equilibria Modelling and Amphibole Thermometers. Gondwana Research, 76: 62-76. https://doi.org/10.1016/j.gr.2019.05.010" target=="_blank"> https://doi.org/10.1016/j.gr.2019.05.010 Liu, F., Guo, J. H., Peng, P., et al., 2012. Zircon U-Pb Ages and Geochemistry of the Huai'an TTG Gneisses Terrane: Petrogenesis and Implications for ~2.5 Ga Crustal Growth in the North China Craton. Precambrian Research, 212-213: 225-244. https://doi.org/10.1016/j.precamres.2012.06.006" target=="_blank"> https://doi.org/10.1016/j.precamres.2012.06.006 Liu, H., Li, X. P., Kong, F. M., et al., 2019. Ultra-High Temperature Overprinting of High Pressure Pelitic Granulites in the Huai'an Complex, North China Craton: Evidence from Thermodynamic Modeling and Isotope Geochronology. Gondwana Research, 72: 15-33. https://doi.org/10.1016/j.gr.2019.02.003" target=="_blank"> https://doi.org/10.1016/j.gr.2019.02.003 Liu, J., Zhang, J., Liu, Z. H., et al., 2018. Geochemical and Geochronological Study on the Paleoproterozoic Rock Assemblage of the Xiuyan Region: New Constraints on an Integrated Rift-and-Collision Tectonic Process Involving the Evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 310: 179-197. https://doi.org/10.1016/j.precamres.2018.03.005" target=="_blank"> https://doi.org/10.1016/j.precamres.2018.03.005 Liu, P. H., Liu, F. L., Cai, J., et al., 2013a. Geochronological and Geochemical Study of the Lijiazi Mafic Granulites from the Daqingshan-Wulashan Metamorphic Complex, the Central Khondalite Belt in the North China Craton. Acta Petrologica Sinica, 29(2): 462-484 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201302009 Liu, P. H., Liu, F. L., Wang, F., et al., 2013b. Petrological and Geochronological Preliminary Study of the Xiliu ~2.1 Ga Meta-Gabbro from the Jiaobei Terrane, the Southern Segment of the Jiao-Liao-Ji Belt in the North China Craton. Acta Petrologica Sinica, 29(7): 2371-2390 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201307009.htm Ma, M. Z., Wan, Y. S., Santosh, M., et al., 2012. Decoding Multiple Tectonothermal Events in Zircons from Single Rock Samples: SHRIMP Zircon U–Pb Data from the Late Neoarchean Rocks of Daqingshan, North China Craton. Gondwana Research, 22(3): 810-827. https://doi.org/10.1016/j.gr.2012.02.020" target=="_blank"> https://doi.org/10.1016/j.gr.2012.02.020 Meng, E., Liu, F. L., Liu, P. H., et al., 2014. Petrogenesis and Tectonic Significance of Paleoproterozoic Meta-Mafic Rocks from Central Liaodong Peninsula, Northeast China: Evidence from Zircon U–Pb Dating and in Situ Lu–Hf Isotopes, and Whole-Rock Geochemistry. Precambrian Research, 247: 92-109. https://doi.org/10.1016/j.precamres.2014.03.017" target=="_blank"> https://doi.org/10.1016/j.precamres.2014.03.017 Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016" target=="_blank"> https://doi.org/10.1016/j.lithos.2007.06.016 Peng, P., 2015. Precambrian Mafic Dyke Swarms in the North China Craton and Their Geological Implications. Science China Earth Sciences, 58(5): 649-675. https://doi.org/10.1007/s11430-014-5026-x" target=="_blank"> https://doi.org/10.1007/s11430-014-5026-x Peng, P., Guo, J. H., Zhai, M. G., et al., 2010. Paleoproterozoic Gabbronoritic and Granitic Magmatism in the Northern Margin of the North China Craton: Evidence of Crust-Mantle Interaction. Precambrian Research, 183(3): 635-659. https://doi.org/10.1016/j.precamres.2010.08.015" target=="_blank"> https://doi.org/10.1016/j.precamres.2010.08.015 Peng, P., Guo, J. H., Zhai, M. G., et al., 2012. Genesis of the Hengling Magmatic Belt in the North China Craton: Implications for Paleoproterozoic Tectonics. Lithos, 148: 27-44. https://doi.org/10.1016/j.lithos.2012.05.021" target=="_blank"> https://doi.org/10.1016/j.lithos.2012.05.021 Peng, P., Wang, X. P., Windley, B. F., et al., 2014. Spatial Distribution of ~1 950-1 800 Ma Metamorphic Events in the North China Craton: Implications for Tectonic Subdivision of the Craton. Lithos, 202-203: 250-266. https://doi.org/10.1016/j.lithos.2014.05.033" target=="_blank"> https://doi.org/10.1016/j.lithos.2014.05.033 Peng, P., Yang, S. Y., Su, X. D., et al., 2017. Petrogenesis of the 2 090 Ma Zanhuang Ring and Sill Complexes in North China: A Bimodal Magmatism Related to Intra-Continental Process. Precambrian Research, 303: 153-170. https://doi.org/10.1016/j.precamres.2017.03.015" target=="_blank"> https://doi.org/10.1016/j.precamres.2017.03.015 Peng, P., Zhai, M. G., Ernst, R. E., et al., 2008. A 1.78 Ga Large Igneous Province in the North China Craton: The Xiong'er Volcanic Province and the North China Dyke Swarm. Lithos, 101(3-4): 260-280. https://doi.org/10.1016/j.lithos.2007.07.006" target=="_blank"> https://doi.org/10.1016/j.lithos.2007.07.006 Peng, P., Zhai, M. G., Zhang, H. F., et al., 2005. Geochronological Constraints on the Paleoproterozoic Evolution of the North China Craton: SHRIMP Zircon Ages of Different Types of Mafic Dikes. International Geology Review, 47(5): 492-508. https://doi.org/10.2747/0020-6814.47.5.492" target=="_blank"> https://doi.org/10.2747/0020-6814.47.5.492 Polat, A., Hofmann, A. W., Rosing, M. T., 2002. Boninite-Like Volcanic Rocks in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184(3): 231-254. https://doi.org/10.1016/S0009-2541(01)00363-1" target=="_blank"> https://doi.org/10.1016/S0009-2541(01)00363-1 Qian, J. H., Yin, C. Q., Wei, C. J., et al., 2019. Two Phases of Paleoproterozoic Metamorphism in the Zhujiafang Ductile Shear Zone of the Hengshan Complex: Insights into the Tectonic Evolution of the North China Craton. Lithos, 330-331: 35-54. https://doi.org/10.1016/j.lithos.2019.02.001" target=="_blank"> https://doi.org/10.1016/j.lithos.2019.02.001 Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Group, London. Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R.L., ed., The Crust. Elsevier-Pergamon, Oxford. Rudnick, R. L., McLennan, S. M., Taylor, S. R., 1985. Large Ion Lithophile Elements in Rocks from High-Pressure Granulite Facies Terrains. Geochimica et Cosmochimica Acta, 49(7): 1645-1655. https://doi.org/10.1016/0016-7037(85)90268-6" target=="_blank"> https://doi.org/10.1016/0016-7037(85)90268-6 Santosh, M., Liu, S. W., Tsunogae, T., et al., 2012. Paleoproterozoic Ultrahigh-Temperature Granulites in the North China Craton: Implications for Tectonic Models on Extreme Crustal Metamorphism. Precambrian Research, 222: 77-106. https://doi.org/10.1016/j.precamres.2011.05.003" target=="_blank"> https://doi.org/10.1016/j.precamres.2011.05.003 Santosh, M., Tsunogae, T., Li, J. H., et al., 2007. Discovery of Sapphirine-Bearing Mg-Al Granulites in the North China Craton: Implications for Paleoproterozoic Ultrahigh Temperature Metamorphism. Gondwana Research, 11(3): 263-285. https://doi.org/10.1016/j.gr.2006.10.009" target=="_blank"> https://doi.org/10.1016/j.gr.2006.10.009 Shen, Q. H., Geng, Y. S., Song, H. X., 2018. Progress on Metamorphic Petrology and Metamorphic Geology of China in the Last nearly 70 Years. Earth Science, 43(1): 1-23 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201801001 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19" target=="_blank"> https://doi.org/10.1144/gsl.sp.1989.042.01.19 Tian, H., Zhang, J. H., Wang, H. C., et al., 2019. Formation Age and Tectonic Setting of Iron-Bearing Formation in Huai'an Complex, North China Craton. Earth Science, 44(1):37-55 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201901004 Wan, Y. S., Xu, Z. Y., Dong, C. Y., et al., 2013. Episodic Paleoproterozoic (~2.45, ~1.95 and ~1.85 Ga) Mafic Magmatism and Associated High Temperature Metamorphism in the Daqingshan Area, North China Craton: SHRIMP Zircon U–Pb Dating and Whole-Rock Geochemistry. Precambrian Research, 224: 71-93. https://doi.org/10.1016/j.precamres.2012.09.014" target=="_blank"> https://doi.org/10.1016/j.precamres.2012.09.014 Wang, B., Tian, W., Wei, C. J., et al., 2019. Ultrahigh Metamorphic Temperatures over 1 050 ℃ Recorded by Fe-Ti Oxides and Implications for Paleoproterozoic Magma-Induced Crustal Thermal Perturbation in Jining Area, North China Craton. Lithos, 348/349: 105180. https://doi.org/10.1016/j.lithos.2019.105180" target=="_blank"> https://doi.org/10.1016/j.lithos.2019.105180 Wang, H. C., Yu, H. F., Miao, P. S., et al., 2011. Precambrian Research in China: New Advances and Perspectives. Geological Survey and Research, 34(4): 241-252, 312 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=QHWJ201104002&dbcode=CJFD&year=2011&dflag=pdfdown Wang, X. C., Wilde, S. A., Xu, B., et al., 2016b. Origin of Arc-Like Continental Basalts: Implications for Deep-Earth Fluid Cycling and Tectonic Discrimination.Lithos, 261: 5-45. https://doi.org/10.1016/j.lithos.2015.12.014" target=="_blank"> https://doi.org/10.1016/j.lithos.2015.12.014 Wang, X. P., Peng, P., Wang, C., et al., 2016a. Petrogenesis of the 2115 Ma Haicheng Mafic Sills from the Eastern North China Craton: Implications for an Intra-Continental Rifting. Gondwana Research, 39: 347-364. https://doi.org/10.1016/j.gr.2016.01.009" target=="_blank"> https://doi.org/10.1016/j.gr.2016.01.009 Wang, X., Zhu, W. B., Ge, R. F., et al., 2014. Two Episodes of Paleoproterozoic Metamorphosed Mafic Dykes in the Lvliang Complex: Implications for the Evolution of the Trans-North China Orogen. Precambrian Research, 243: 133-148. https://doi.org/10.1016/j.precamres.2013.12.014" target=="_blank"> https://doi.org/10.1016/j.precamres.2013.12.014 Wang, Y. J., Zhao, G. C., Fan, W. M., et al., 2007. LA-ICP-MS U-Pb Zircon Geochronology and Geochemistry of Paleoproterozoic Mafic Dykes from Western Shandong Province: Implications for Back-Arc Basin Magmatism in the Eastern Block, North China Craton. Precambrian Research, 154(1): 107-124. https://doi.org/10.1016/j.precamres.2006.12.010" target=="_blank"> https://doi.org/10.1016/j.precamres.2006.12.010 Wei, C. J., 2018. Paleoproterozoic Metamorphism and Tectonic Evolution in Wutai-Hengshan Region, Trans-North China Orogen. Earth Science, 43(1): 24-43 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201801002 Wei, C. J., Qian, J. H., Zhou, X. W., 2014. Paleoproterozoic Crustal Evolution of the Hengshan-Wutai-Fuping Region, North China Craton. Geoscience Frontiers, 5(4): 485-497. https://doi.org/10.1016/j.gsf.2014.02.008" target=="_blank"> https://doi.org/10.1016/j.gsf.2014.02.008 Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2" target=="_blank"> https://doi.org/10.1016/0009-2541(77)90057-2 Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. https://doi.org/10.1016/0012-821x(80)90116-8" target=="_blank"> https://doi.org/10.1016/0012-821x(80)90116-8 Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 Wu, J. L., Zhang, H. F., Zhai, M. G., et al., 2016. Discovery of Pelitic High-Pressure Granulite from Manjinggou of the Huai'an Complex, North China Craton: Metamorphic P-T Evolution and Geological Implications. Precambrian Research, 278: 323-336. https://doi.org/10.1016/j.precamres.2016.03.001" target=="_blank"> https://doi.org/10.1016/j.precamres.2016.03.001 Yang, C. H., Du, L. L., Geng, Y. S., et al., 2017. Paleoproterozoic Metamafic Dyke Swarms in the Eastern Hebei Massif, the Eastern North China Craton: ~2.1 Ga Extension and ~1.8 Ga Metamorphism. Acta Petrologica Sinica, 33(9): 2827-2849 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201709012.htm Yang, L. H., Hou, G. T., Liu, S. W., et al., 2019. 2.09 Ga Mafic Dykes from Western Shandong, Eastern Block of North China Craton, and Their Tectonic Implications.Precambrian Research, 325: 39-54. https://doi.org/10.1016/j.precamres.2019.02.007" target=="_blank"> https://doi.org/10.1016/j.precamres.2019.02.007 Yu, C., 2019. Geochronological and Geochemical Characteristics of the Tonalite and Its Geological Implication in the Qinyuan Area, Northern Liaoning Province. Geological Survey and Research, 42(1): 18-29 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201901003 Yuan, L. L., Zhang, X. H., Xue, F. H., et al., 2015. Two Episodes of Paleoproterozoic Mafic Intrusions from Liaoning Province, North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 264: 119-139. https://doi.org/10.1016/j.precamres.2015.04.017" target=="_blank"> https://doi.org/10.1016/j.precamres.2015.04.017 Zhai, M. G., 2009. Two Kinds of Granulites (HT-HP and HT-UHT) in North China Craton: Their Genetic Relation and Geotectonic Implications. Acta Petrologica Sinica, 25(8):1753-1771 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200908005.htm Zhai, M. G., 2011. Cratonization and the Ancient North China Continent: A Summary and Review. Science China Earth Sciences, 54(8): 1110-1120. https://doi.org/10.1007/s11430-011-4250-x" target=="_blank"> https://doi.org/10.1007/s11430-011-4250-x Zhai, M. G., Hu, B., Peng, P., et al., 2014. Meso-Neoproterozoic Magmatic Events and Multi-Stage Rifting in the NCC. Earth Science Frontiers, 21(1): 100-119 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201401010 Zhai, M. G., Hu, B., Zhao, T. P., et al., 2015. Late Paleoproterozoic-Neoproterozoic Multi-Rifting Events in the North China Craton and Their Geological Significance: A Study Advance and Review. Tectonophysics, 662: 153-166. https://doi.org/10.1016/j.tecto.2015.01.019" target=="_blank"> https://doi.org/10.1016/j.tecto.2015.01.019 Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005" target=="_blank"> https://doi.org/10.1016/j.gr.2011.02.005 Zhang, H. F., Wang, H. Z., Santosh, M., et al., 2016. Zircon U-Pb Ages of Paleoproterozoic Mafic Granulites from the Huai'an Terrane, North China Craton (NCC): Implications for Timing of Cratonization and Crustal Evolution History. Precambrian Research, 272: 244-263. https://doi.org/10.1016/j.precamres.2015.11.004" target=="_blank"> https://doi.org/10.1016/j.precamres.2015.11.004 Zhang, J. H., Tian, H., Wang, H. C., et al., 2019a. Re-Definition of the Two-Stage Early-Precambrian Meta-Supracrustal Rocks in the Huai'an Complex, North China Craton: Evidences from Petrology and Zircon U-Pb Geochronology. Earth Science, 44(1): 1-22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201901001.htm Zhang, J. H., Wang, H. C., Tian, H., et al., 2019b. Geochemistry of the Neoarchean and Paleoproterozoic Al-Rich Metamorphic Supracrustal Rocks in the Huai'an Complex, North China Craton and Its Tectonic Significances. Acta Geologica Sinica, 93(7): 1618-1638 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201907006 Zhang, J. H., Wang, H. C., Tian, H., et al., 2019c. Petrogenesis of the MORB Type High-Pressure Mafic Granulite from the Huai'an Complex in North China Craton and Its Tectonic Implications. Acta Petrologica Sinica, 35(11): 3506-3528 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.11.16 Zhang, S. H., Zhang, R. Y., Zhou, J. Y., 2019. LA-ICP-MS Zircon U-Pb Age, Geochemical Characteristics of the Paleoproterozoic Metamorphosed Mafic Dykes in Zhongtiao Mountains, Shanxi Province, and Their Geological Implications. Geological Review, 65(6): 1350-1362 (inChinesewithEnglishabstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201906005 Zhang, S. H., Zhao, Y., Santosh, M., 2012. Mid-Mesoproterozoic Bimodal Magmatic Rocks in the Northern North China Craton: Implications for Magmatism Related to Breakup of the Columbia Supercontinent. Precambrian Research, 222/223: 339-367. https://doi.org/10.1016/j.precamres.2011.06.003" target=="_blank"> https://doi.org/10.1016/j.precamres.2011.06.003 Zhang, Y. Y., Yuan, C., Sun, M., et al., 2020. Two Late Carboniferous Belts of Nb-Enriched Mafic Magmatism in the Eastern Tianshan: Heterogeneous Mantle Sources and Geodynamic Implications. GSA Bulletin, Online. https://doi.org/10.1130/b35366.1" target=="_blank"> https://doi.org/10.1130/b35366.1 Zhao, G. C., 2009. Metamorphic Evolution of Major Tectonic Units in the Basement of the North China Craton: Key Issues and Discussion. Acta Petrologica Sinica, 25(8): 1772-1792 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252026187.html Zhao, G. C., Cawood, P. A., Li, S. Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222-223: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016" target=="_blank"> https://doi.org/10.1016/j.precamres.2012.09.016 Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2001. High-Pressure Granulites (Retrograded Eclogites) from the Hengshan Complex, North China Craton: Petrology and Tectonic Implications. Journal of Petrology, 42(6): 1141-1170. https://doi.org/10.1093/petrology/42.6.1141" target=="_blank"> https://doi.org/10.1093/petrology/42.6.1141 Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002" target=="_blank"> https://doi.org/10.1016/j.precamres.2004.10.002 Zhao, G. C., Wilde, S. A., Sun, M., et al., 2008. SHRIMP U-Pb Zircon Geochronology of the Huai'an Complex: Constraints on Late Archean to Paleoproterozoic Magmatic and Metamorphic Events in the Trans-North China Orogen. American Journal of Science, 308(3): 270-303. https://doi.org/10.2475/03.2008.04" target=="_blank"> https://doi.org/10.2475/03.2008.04 Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207-1240. https://doi.org/10.1016/j.gr.2012.08.016" target=="_blank"> https://doi.org/10.1016/j.gr.2012.08.016 董春艳, 马铭株, 刘守偈, 等, 2012.华北克拉通古元古代中期伸展体制新证据:鞍山-弓长岭地区变质辉长岩的锆石SHRIMP U-Pb定年和全岩地球化学.岩石学报, 28(9): 2785-2792. http://d.wanfangdata.com.cn/Periodical/ysxb98201209009 杜利林, 杨崇辉, 任留东, 等, 2012.吕梁地区2.2~2.1 Ga岩浆事件及其构造意义.岩石学报, 28(9): 2751-2769. http://qikan.cqvip.com/Qikan/Article/Detail?id=43428508 冯娟萍, 欧阳征健, 马海勇, 等, 2020.华北克拉通东南缘中条山陶家窑基性岩墙群U-Pb定年、地球化学特征及其构造环境.地质学报, 94(2): 573-586. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb202002014 耿建珍, 李怀坤, 张健, 等, 2011.锆石Hf同位素组成的LA-MC-ICP-MS测定.地质通报, 30(10): 1508-1513. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201110004 刘平华, 刘福来, 蔡佳, 等, 2013a.华北克拉通孔兹岩带中段大青山-乌拉山变质杂岩立甲子基性麻粒岩年代学及地球化学研究.岩石学报, 29(2): 462-484. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201302009 刘平华, 刘福来, 王舫, 等, 2013b.胶北西留古元古代~2.1 Ga变辉长岩岩石学与年代学初步研究.岩石学报, 29(7): 2371-2390. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201307009.htm 沈其韩, 耿元生, 宋会侠, 2018.近70年中国变质岩石学-变质地质学的研究进展.地球科学, 43(1): 1-23. doi: 10.3799/dqkx.2018.001 田辉, 张家辉, 王惠初, 等, 2019.怀安杂岩中含BIF岩石组合的形成时代及产出构造背景.地球科学, 44(1): 37-51. doi: 10.3799/dqkx.2018.301 王惠初, 于海峰, 苗培森, 等, 2011.前寒武纪地质学研究进展与前景.地质调查与研究, 34(4): 241-252, 312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201104001 魏春景, 2018.华北中部造山带五台-恒山地区古元古代变质作用与构造演化.地球科学, 43(1): 24-43. doi: 10.3799/dqkx.2018.002 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2): 185-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 杨崇辉, 杜利林, 耿元生, 等, 2017.冀东古元古代基性岩墙群的年龄及地球化学: ~2.1 Ga伸展及~1.8 Ga变质.岩石学报, 33(9): 2827-2849. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201709012.htm 余超, 2019.辽北清原地区英云闪长岩年代学、地球化学特征及其地质意义.地质调查与研究, 42(1): 18-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201901003 翟明国, 2009.华北克拉通两类早前寒武纪麻粒岩(HT-HP和HT-UHT)及其相关问题.岩石学报, 25(8): 1753-1771. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200908003 翟明国, 胡波, 彭澎, 等, 2014.华北中:新元古代的岩浆作用与多期裂谷事件.地学前缘, 21(1): 100-119. http://www.cqvip.com/QK/98600X/201401/50137027.html 张家辉, 田辉, 王惠初, 等, 2019a.华北克拉通怀安杂岩中早前寒武纪两期变质表壳岩的重新厘定:岩石学及锆石U-Pb年代学证据.地球科学, 44(1): 1-22. doi: 10.3799/dqkx.2018.259 张家辉, 王惠初, 田辉, 等, 2019b.华北克拉通怀安杂岩新太古代和古元古代富铝变质表壳岩的地球化学特征及构造意义.地质学报, 93(7): 1618-1638. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201907006 张家辉, 王惠初, 田辉, 等, 2019c.华北克拉通怀安杂岩中"MORB"型高压基性麻粒岩的成因及其构造意义.岩石学报, 35(11): 3506-3528. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201911016 张少华, 张瑞英, 周金昱, 2019.中条山地区古元古代变基性岩墙的地球化学特征、LA-ICP-MS U-Pb年龄及其地质意义.地质论评, 65(6): 1350-1362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201906005 赵国春, 2009.华北克拉通基底主要构造单元变质作用演化及其若干问题讨论.岩石学报, 25(8): 1772-1792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200908004 期刊类型引用(7)
1. 王金芳,宋宇桐,李康硕,陆泽芊,刘辰雨,李英杰,陈公正. 冀北古元古代东瓦窑杂岩体的发现及其对华北克拉通伸展事件的制约. 地质通报. 2024(01): 46-60 . 百度学术
2. 程小鑫,吴鸿翔,孙大亥,黄伟康,陈汉林,林秀斌,朱孔阳,章凤奇. 塔里木盆地西北缘二叠纪基性岩浆侵入事件及其构造意义. 岩石学报. 2022(03): 743-772 . 百度学术
3. 王惠初,张家辉,任云伟,施建荣,相振群,常青松,王智. 华北克拉通中北部麻粒岩带基础地质调查进展及相关问题讨论. 华北地质. 2022(01): 18-41 . 百度学术
4. 常青松,施建荣,张家辉,王惠初,任云伟. 集宁地区古元古代基性麻粒岩两期变质事件的地质意义. 华北地质. 2022(02): 68-75 . 百度学术
5. 王惠初,康健丽,任云伟,肖志斌,相振群,王智. 胶-辽-吉带构造属性与演化阶段新划分:胶北变质辉长岩的启示. 岩石学报. 2021(01): 185-210 . 百度学术
6. 张家辉,王惠初,相振群,杨济远,田辉,任云伟,康辰凯. 晋冀交界怀安镇幅1:50000地质图数据库. 中国地质. 2021(S1): 69-78 . 百度学术
7. 张贵山,彭仁,温汉捷,赵志琦,张磊,邱红信,孟乾坤. 闽西南E-MORB型基性岩墙成因:来自地球化学、锆石U-Pb年代学及Sr-Nd同位素证据. 地球科学. 2021(12): 4230-4246 . 本站查看
其他类型引用(3)
-
dqkxzx-45-9-3239-附表1 2 3.doc
-