全球新元古代冰期的记录和时限

赵彦彦, 郑永飞. 全球新元古代冰期的记录和时限[J]. 岩石学报, 2011, 27(2): 545-565.
引用本文: 赵彦彦, 郑永飞. 全球新元古代冰期的记录和时限[J]. 岩石学报, 2011, 27(2): 545-565.
ZHAO YanYan, ZHENG YongFei. Record and time of Neoproterozoic glaciations on Earth[J]. Acta Petrologica Sinica, 2011, 27(2): 545-565.
Citation: ZHAO YanYan, ZHENG YongFei. Record and time of Neoproterozoic glaciations on Earth[J]. Acta Petrologica Sinica, 2011, 27(2): 545-565.

全球新元古代冰期的记录和时限

  • 基金项目:

    本文受国家自然科学基金(40921002)和中国科学院知识创新工程项目(KZCX2-YW-008)联合资助.

Record and time of Neoproterozoic glaciations on Earth

  • 新元古代时期,地球上出现了几次大规模的大洋型和大陆型冰川事件。但是,由于新元古界地层缺少有利的冰期沉积对比标志,因此对这些冰川事件的期次、开始和结束时间、全球化程度等仍然存在较大争议。冰期沉积物的成分、结构和构造是认识古冰川活动遗迹的重要地质证据,化学沉积地层的碳同位素漂移是识别冰期的常用地球化学代理指标,岩石和矿物氧同位素的极端值已经成为古大陆冰川活动的新兴地球化学代理指标。新元古代的地层年龄、岩石学和同位素地球化学特征指示了当时全球总共发育4次冰期,其中两次属于大洋型冰川,分别称为Sturtian冰期(718~660Ma)和Marinoan冰期(651~635Ma)。其中Marinoan冰期的全球化程度最高,对应于通常所说的"雪球地球事件"。Sturtian冰期可能属于滨海相-大陆边缘相沉积,其沉积物主要在海洋到大陆边缘的过渡地区发育。在这两期大洋型冰川之前和之后存在局部的大陆/山岳型冰川,其中Sturtian冰期之前的称为Kaigas冰期(757~741Ma),而Marinoan冰期之后的称之为Gaskiers冰期(583.7~582.1Ma)。尽管中国华南地区缺少这两次大陆型冰川的沉积记录,但是岩石和矿物的稳定同位素异常提供了这两次大陆型冰川曾经存在过的地球化学证据。因此,地质学和地球化学证据都可以用来追溯地质历史上的冰川事件。
  • 加载中
  • [1]

    Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K and Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160: 179-210

    [2]

    Link PK, Christie-Blick N, Devlin WJ, Elston DP, Horodyski RJ, Levy M, Miller JMG, Pearson RC, Prave AR, Stewart JH, Winston D, Wright LA and Wrucke CT. 1993. Middle and late proterozoic stratified rocks of the western U.S. ordillera, Colorado Plateau, and Basin Range province. The Geology of North America, 463-595

    [3]

    Liu B, Xu B, Meng XY, Kou XW, He JY and Mi H. 2007. Study on the Chemical index of alteration of Neoproterozoic strata in the Tarim plate and its implications. Acta Petrologica Sinica, 23(7): 1664-1670 (in Chinese with English abstract)

    [4]

    Lorentz NJ, Corsetti FA and Link PK. 2004. Seafloor precipitates and C-isotope stratigraphy from the Neoproterozoic Scout Mountain Member of the Pocatello Formation, southeast Idaho: Implications for Neoproterozoic earth system behavior. Precambrian Research, 130: 57-70

    [5]

    Lund K, Aleinikoff JN, Evans KV and Fanning CM. 2003. SHRIMP U-Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho: Implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits. Geological Society of America Bulletin, 115: 349-372

    [6]

    Ma GG, Li HQ and Zhang ZC. 1984. An investigation of the age limits of the Sinian System in South China. Yichang Institute Geological Mineral Research, 8: 1-29 (in Chinese with English abstract)

    [7]

    Macdonald FA, Schmitz MD, Crowley JL, Roots CF, Jones DS, Maloof AC, Strauss JV, Cohen PA, Johnston DT and Schrag DP. 2010a. Calibrating the Cryogenian. Science, 327: 1241-1243

    [8]

    Macdonald FA, Cohen PA, Dudas FO and Schrag DP. 2010b. Early Neoproterozoic scale microfossils in the Lower Tindir Group of Alaska and the Yukon Territory. Geology, 38: 143-146

    [9]

    Martin MW, Grazhdankin DV, Bowring SA, Evans DAD, Fedonkin MA and Kirschvink JL. 2000. Age of Neoproterozoic Bilatarian body and trace fossils, White Sea, Russia: Implications for Metazoan evolution. Science, 288: 841-845

    [10]

    McDonough MR and Parrish RR. 1991. Proterozoic gneisses of the Malton Complex, near Valemount, British Columbia: U-Pb ages and Nd isotopic signatures. Canadian Journal of Earth Sciences, 28: 1202-1216

    [11]

    Melezhik VA, Fallick AE and Pokrovsky BG. 2005. Enigmatic nature of thick sedimentary carbonates depleted in 13C beyond the canonical mantle value: The challenges to our understanding of the terrestrial carbon cycle. Precambrian Research, 137: 131-165

    [12]

    Myrow P and Kaufman AJ. 1998. A newly discovered cap carbonate above Varanger age glacial deposits in Newfoundland, Canada. Journal of Sedimentary Research, 69: 784-793

    [13]

    Park JK. 1997. Paleomagnetic evidence of low-latitude glaciation during deposition of the Neoproterozoic Rapitan Group, Mackenzic Mountains, N.W.T., Canada. Canada Journal of Earth Sciences, 34: 34-49

    [14]

    Passchier S and Erukanure E. 2010. Palaeoenvironments and weathering regime of the Neoproterozoic Squantum Tillite, Boston Basin: No evidence of a snowball Earth. Sedimentology, 57: 1526-1544

    [15]

    Porter SM, Knoll AH and Affaton P. 2004. Chemostratigraphy of Neoproterozoic cap carbonates from the Volta Basin, West Africa. Precambrian Research, 130: 99-112

    [16]

    Preiss WV. 2000. The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambrian Research, 100: 21-63

    [17]

    Reynolds MW and Elston DP. 1986. Stratigraphy and sedimentation of part of the Proterozoic Chuar Group, Grand Canyon, Arizona, 18. Geological Society of America, Abstracts with Programs, 405

    [18]

    Ross GW and Villeneuve ME. 1997. U-Pb geochronology of strange stones in Neoproterozoic diamictites, Canadian Cordillera: Implications for provenance and ages of deposition. Report 10, Geologial Survey of Canada Current Research

    [19]

    Schaefer BF and Burgess JM. 2003. Re-Os isotopic age constraints on deposition in the Neoproterozoic Amadeus Basin: Implications for the "Snowball Earth". Journal of the Geological Society (London), 160: 825-828

    [20]

    Schmidt PW and Williams GE. 1995. The Neoproterozoic climatic paradox: Equatorial paleolatitude for Marinoan glaciation near sea level in South Australia. Earth and Planetary Science Letters, 134: 107-124

    [21]

    Seeley JM and Keller GR. 2003. Delineation of subsurface Proterozoic Unkar and Chuar Group sedimentary basins in northern Arizona using gravity and magnetics: Implications for hydrocarbon source potential. American Association of Petroleum Geologists Bulletin, 87: 1299-1321

    [22]

    Semikhatov MA. 1991. General problems of Proterozoic stratigraphy in the USSR. Soviet Scientific Reviews, Section G, Geology Reviews, 1: 192

    [23]

    Shen B, Xiao S, Zhou C, Kaufman AJ and Yuan X. 2010. Carbon and sulfur isotope chemostratigraphy of the Neoproterozoic Quanji Group of the Chaidam Basin, NW China: Basin stratification in the aftermath of an Ediacaran glaciation postdating the Shuram event? Precambrian Research, 177: 241-252

    [24]

    Shields GA. 2005. Neoproterozoic cap carbonates: A critical appraisal of existing models and the plume world hypothesis. Terra Nova, 17: 299-310

    [25]

    Sohl LE, Christic-Blick N and Kent DV. 1999. Paleomagnetic polarity reversals in Marinoan (ca. 600Ma) glacial deposits of Australia: Implicatons for the duration of low-latitude glaciation in Neoproteroozic time. Geological Society of America Bulletin, 111: 1120-1139

    [26]

    Tang J, Zheng YF, Wu YB, Gong B, Zha X and Liu X. 2008. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China. Precambrian Research, 161: 389-418

    [27]

    Thompson MD and Bowring SA. 2000. Age of the Squantum "tillite", Boston basin, Masschusetts: U-Pb Zircon constraints on terminal Neoproterozoic glaciation. American Journal of Science, 300: 630-655

    [28]

    Timmons JM, Karlstrom KE, Dehler CM, Geissman JW and Heizler MT. 2001. Proterozoic multistage (ca. 1.1 and 0.8 Ga) extension recorded in the Grand Canyon Supergroup and establishment of northwest- and north-trending tectonic grains in the southwestern United States. Geological Society of America Bulletin, 113: 163-181

    [29]

    Trindade RIF and Macouin M. 2007. Paleolatitude of glacial deposits and paleogeography of Neoproterozoic ice ages. C. R. Geoscience, 339: 200-211

    [30]

    Vidal G and Knoll AH. 1983. Proterozoic plackton. Geology Society of American Memoir, 161: 265-277

    [31]

    Walter MR, Veevers JJ, Calver CR, Gorjan P and Hill AC. 2000. Dating the 840~544Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models. Precambrian Research, 100: 371-433

    [32]

    Wang JQ. 2004. Origin C-isotopic variations in sedimentary rocks after Neoproterozoic glaciations, South China. Acta Palaeontologica Sinica, 43(3): 424-432 (in Chinese with English abstract)

    [33]

    Wang J, Jiang G, Xiao S, Li Q and Wei Q. 2008. Carbon isotope evidence for widespread methane seeps in the ca. 635Ma Doushantuo cap carbonate in south China. Geology, 36: 347-350

    [34]

    Wang ZQ, Yin CY, Gao ZL, Liu YQ, Tang F and Zhang CH. 2006. Chemostratigraphic studies to explain Neoproterozoic stratigraphic division and correlation. Earth Science Frontiers, 13(6): 268-279 (in Chinese with English abstract)

    [35]

    Weil AB, Geissman JW, Heizler M and Van der Voo R. 2003. Paleomagnetism of Middle Proterozoic mafic intrusions and Upper Proterozoic (Nankoweap) red beds from the Lower Grand Canyon Supergroup, Arizona. Tectonophysics, 375: 199-220

    [36]

    Weil AB, Geissman JW and Van der Voo R. 2004. Paleomagnetism of the Neoproterozoic Chuar Group, Grand Canyon Supergroup, Arizona: Implications for Laurentias Neoproterozoic APWP and Rodinia break-up. Precambrian Research, 129: 71-92

    [37]

    Williams M, Crossey LJ, Jercinovic M, Bloch JD, Karlstrom KE, Dehler CM, Heizler M, Bowring S and Goncalves P. 2003. Dating sedimentary sequences: In situ U/Th-Pb microprobe dating of early diagenetic monazite and Ar-Ar dating of marcasite nodules: Case study from Neoproterozoic black shales in the southwestern U.S. GSA Abstracts with Programs, 35: 595

    [38]

    Xiao S, Bao H, Wang H, Kaufman AJ, Zhou C, Li G, Yuan X and Ling H. 2004. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: Evidence for a post-Marinoan glaciation. Precambrian Research, 130: 1-26

    [39]

    Xu B, Jian P, Zheng H, Zou H, Zhang L and Liu D. 2005. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: Implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations. Precambrian Research, 136: 107-123

    [40]

    Xu B, Kou XW, Song B, Wei W and Wang Y. 2008. SHRIMP dating of the Upper Proterozoic volcanic rocks in the Tarim plate and constraints on the Neoproterozoic glaciation. Acta Petrologica Sinica, 24(12): 2857-2862 (in Chinese with English abstract)

    [41]

    Xu B, Xiao S, Zou H, Chen Y, Li ZX, Song B, Liu D, Zhou C and Yuan X. 2009. SHRIMP zircon U-Pb constratints on Neoproterzoic Quruqtagh diamictites in NW China. Precambrian Research, 168: 247-258

    [42]

    Yin CY, Liu DY, Gao LZ, Xing YS, Jian P and Shi YR. 2003. Lower boundary age of the Nanhua System and the Gucheng glacial stage: Evidence from SHRIMP II dating. Chinese Science Bulletin, 48(16): 1657-1662

    [43]

    Yin CY, Tang F, Liu YQ, Gao ZL, Yang ZQ, Wang ZQ, Liu P, Xing YS and Song B. 2005. New U-Pb zircon ages from the Ediacaran(Sinian) System age of in the Yangtze Gorges:Constraint on the Miaohe biota and Marinoan glaciation. Geological Bulletin of China, 24(5): 393-400 (in Chinese with English abstract)

    [44]

    Yin CY, Wang YG, Tang F, Wan YS, Wang ZQ, Gao ZL, Xing YS and Liu PJ. 2006. SHRIMP II U-Pb zircon data from the Nanhua Datangpo Formation in Songtao County, Guizhou Province. Acta Geologica Sinica, 80(2): 273-278 (in Chinese with English abstract)

    [45]

    Yuan XL, Xiao SH, Yin LM, Knoll AH, Ming ZC and Mu XN. 2002. Doushantuo Dossils: Life on the Eve of Animal Radiation. Hefei: University of Science and Technology of China Press, 17-128 (in Chinese)

    [46]

    Zhang QR, Liu HY, Chen ME and Lu GY. 1993. More study of sedimentary stratigraphy of Sinian glaciation in Southern Anhui. Journal of Stratigraphy, 17(3): 186-193 (in Chinese with English abstract)

    [47]

    Zhang QR and Chu XL. 2006. The stratigraphic classification and correlation of the Jiangkou glaciation in the Yangtze block and the stratotype section of the Nanhua System. Journal of Stratigraphy, 30(4): 306-314 (in Chinese with English abstract)

    [48]

    Zhang QR, Li XH, Feng LJ, Huang J and Song B. 2008a. A new age constraint on the onset of the Neoproteorzoic glaciations in the Yangtze platform, South China. Journal of Geology, 116: 423-429

    [49]

    Zhang QR, Chu XL and Feng LJ. 2009. Discussion on the Neoproterozoic glaciations in the South China Block and their related paleolatitudes. Chinese Science Bulletin, 54: 1786-1796

    [50]

    Zhang SH, Jiang GQ, Zhang JM, Song B, Kennedy MJ and Christie-Blick N. 2005. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on Late Neoproterozoic glaciaiton. Geology, 33: 473-476

    [51]

    Zhang SH, Jiang GQ and Han YG. 2008b. The age of the Nantuo Formation and Nantuo Glaciation in South China. Terra Nova, 20: 289-294

    [52]

    Zhao YY, Zheng YF and Chen FK. 2009. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China. Chemical Geology, 265: 345-362

    [53]

    Zhao YY and Zheng YF. 2010. Stable isotope evidence for involvement of deglacial meltwater in Ediacaran carbonates in South China. Chemical Geology, 271: 86-100

    [54]

    Zheng YF. 2003. Neoproterozoic magmatic activity and global change. Chinese Science Bulletin, 48: 1639-1656

    [55]

    Zheng YF, Wu YB, Chen FK, Gong B, Li L and Zhao ZF. 2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta, 68: 4145-4165

    [56]

    Zheng YF, Wu YB, Gong B, Chen RX, Tang J and Zhao ZF. 2007. Tectonic driving of Neoproterozoic glaciations: Evidence from extreme oxygen isotope signature of meteoric water in granite. Earth and Planetary Science Letters, 256: 196-210

    [57]

    Zheng YF, Gong B, Zhao ZF, Wu YB and Chen FK. 2008. Zircon U-Pb age and O isotope evidence for Neoproterozoic low-18O magmatism during supercontinental rifting in south China: Implications for the snowball earth event. American Journal of Science, 308: 484-516

    [58]

    Zhou CM, Yan K, Hu J, Meng FW, Chen Z, Xue YS, Cao RJ, Yin LM, Wang JQ, Wang JL, Xiao SH, Bao HM and Yuan XL. 2001. The Neoproterozoic tillites at Lantian, Xiuning County, Anhui Province. Journal of Stratigraphy, 25(4): 247-253 (in Chinese with English abstract)

    [59]

    Zhou CM, Tucker R, Xiao SH, Peng ZX, Yuan XL and Cheng Z. 2004. New constraints on the ages of Neoproterozoic glaciations in south China. Geology, 32: 437-440

    [60]

    Zhou J, Li XH, Ge W and Li ZX. 2007. Age and origin of Middle Neoproterozoic mafic magmatism in southern Yangtze Block and relevance to the break-up of Rodinia. Gondwana Research, 12: 184-197

    [61]

    Zhou CM and Xiao SH. 2007. Ediacaran δ13C chemostratigraphy of South China. Chemical Geology, 237: 89-108

    [62]

    Zhu MY, Strauss H and Shields GA. 2007a. From snowball earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 1-6

    [63]

    Zhu MY, Zhang J and Yang A. 2007b. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeography Palaeoclimatology Palaeoecology, 254: 7-61

    [64]

    Zhu MY. 2010. The origin and Cambrian explosion of animals: Fossil evidences from China. Acta Palaeontologica Sinica, 49 (3): 269-287 (in Chinese with English abstract)

    [65]

    储雪蕾, Todt W, 张启锐, 陈福坤, 黄晶. 2005. 黄华-震旦系界线的锆石U-Pb年龄. 科学通报, 50(7): 600-602

    [66]

    冯连君, 储雪蕾, 张启锐, 张同钢. 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用. 地学前缘, 10(4): 539-543

    [67]

    甘晓春, 赵风清, 李惠民等. 1993. 湖南板溪群的单颗粒锆石U-Pb年龄. 北京: 地质出版社, 10-12

    [68]

    葛文春, 李献华, 李正祥, 周汉文. 2001. 龙胜地区铁镁质侵入体:年龄及其地质意义. 地质科学, 36(1): 112-118

    [69]

    何金有, 徐备, 孟祥英, 寇晓威, 刘兵, 王宇, 米合. 2007. 新疆库鲁克塔格地区新元古代层序地层学研究及对比. 岩石学报, 23(7): 1645-1654

    [70]

    黄晶, 储雪蕾, 张启锐, 冯连君. 2007. 新元古代冰期及其年代. 地学前缘, 14(2): 249-256

    [71]

    寇晓威, 王宇, 卫巍, 何金有, 徐备. 2008. 塔里木板块上元古界阿勒通沟组何黄羊组:新识别的冰期何间冰期?. 岩石学报, 24(12): 2863-2868

    [72]

    刘兵, 徐备, 孟祥英, 寇晓威, 何金有, 卫巍, 米合. 2007. 塔里木板块新元古代地层化学蚀变指数研究及其意义. 岩石学报, 23(7): 1664-1670

    [73]

    马国干, 李华芹, 张自超. 1984. 华南地区震旦纪时限范围的研究. 宜昌地区矿产研究所所刊, 8: 1-29

    [74]

    王金权. 2004. 皖南震震旦系蓝田组沉积岩有机碳同位素记录. 古生物学报, 43(3): 424-432

    [75]

    王自强, 尹崇玉, 高林志, 柳永清, 唐烽, 张传恒. 2006. 用化学地层学研究新元古代地层划分和对比. 地学前缘, 13(6): 268-270

    [76]

    徐备, 寇晓威, 宋彪, 卫巍, 王宇. 2008. 塔里木板块上元古界火山岩SHRIMP定年及其对新元古代冰期时代的制约. 岩石学报, 24(12): 2857-2862

    [77]

    尹崇玉, 刘敦一, 高林志, 王自强, 邢裕盛, 简平, 石玉若. 2003. 南华系底界与古城冰期的年龄:SHRIMP II定年证据. 科学通报, 48(16): 1721-1725

    [78]

    尹崇玉, 唐烽, 柳永清, 高志林, 杨之青, 王自强, 刘鹏举, 邢裕盛, 宋彪. 2005. 长江三峡地区埃迪卡拉(震旦)纪锆石U-Pb新年龄对庙河生物群和马雷诺冰期时限的限定. 地质通报, 24(5): 393-400

    [79]

    尹崇玉, 王砚耕, 唐烽, 万渝生, 王自强, 高志林, 邢裕盛, 刘鹏举. 2006. 贵州松桃南华系大塘坡组凝灰岩锆石SHRIMP II U-Pb年龄. 地质学报, 80(2): 273-278

    [80]

    袁训来, 肖书海, 尹磊明, 安德鲁.诺尔, 周传明, 穆西南. 2002. 陡山沱期生物群:早期动物辐射前夕的生命. 合肥:中国科学技术大学出版社, 17-128

    [81]

    张启锐, 刘鸿允, 陈孟莪, 鲁刚毅. 1993. 皖南震旦系冰期地层的再认识. 地层学杂志, 17(3): 186-193

    [82]

    张启锐, 储雪蕾. 2006. 扬子地区江口冰期地层的划分对比与南华系层型剖面. 地层学杂志, 30(4): 306-314

    [83]

    周传明, 燕夔, 胡杰, 孟凡巍, 陈哲, 薛耀梧, 曹瑞骥, 尹磊明, 王金权, 王金龙, 肖书海, 鲍惠铭, 袁训来. 2001. 皖南新元古代两次冰期事件. 地层学杂志, 25(4): 247-253

    [84]

    朱茂炎. 2010. 动物的起源和寒武纪大爆发:来自中国的化石证据. 古生物学报, 49(3): 269-287

  • 加载中
计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2010-10-08
修回日期:  2010-12-10
刊出日期:  2011-02-28

目录