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ABSTRACT

The localized features on chaotic attractor in phase space and predictability are investigated in the
present study. It will be suggested that the localized features in phase space have to be considered in
determining the predictability. The notions of the local instability including the finite-time and local-
time instabilities which determine the growth rate of error are introduced, and the calculation methods
are discussed in detail. The results from the calculation of the 3-component Lorenz model show that
such instability, correspondingly the growth rate of error. varies dramatically as the trajectories
evolve on the chaotic attractor. The region in which the growth rate of error is small is localized
considerably, and is separable from the region in which the growth rate is large. The local
predictability is of important interest. It is also suggested that such localized features may be the main

cause for a great deal of case-to-case variability of the predictive skill in the operational forecasts.

Key words: chaotic attractor, localized feature. f{inite-time instability, local-time instability,

predictability

I. INTRODUCTION

The atmospheric motion is characterized by its chaos (Lorenz 1963; 1984), and the
evolution of atmospheric flow is essentially sensitive to its initial state. The small error in the
initial atmospheric state will continually grow. Thus, there is an upper limit to the prediction
of atmospheric behavior. Quite a few of studies have been contributed to determining such an
upper limit. There were two kinds of studies. First, the upper limit to prediction of the model
atmosphere is studied (e. g. Charney et al. 1966: Leith 1965: Smagorinsky 1963). which is
convenient for the determination of the growth rate of error with different structures: second.
the upper limit to prediction of the real atmosphere is determined. Lorenz (1969) pioneered
the second kind of study. He attempted to find some atmospheric states in the historical data
available which would be so close to each other that the differences between them were
consistent with the practical observational error, and then make an estimation of the growth
rate of the difference and the predictability. Though no such states were found, he still made
an estimation based on simple extrapolation. Recently. the single long-time series was used to
determine the atmospheric predictability (e. g. Wolf et al. 1985: Fraedrich 1987), in which
the dynamical system is reconstructed with an embedding technique and some parameters,
such as Lyapunov exponent and Reny entropy. are calculated. In spite of the difference in the
methodology, thus in the estimate of the upper limit to prediction, the predictability of about
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two weeks is commonly accepted. If the work from the development of concepts of
predictability to the determination of deterministic predictability is referred to as the study of
classic predictability, such study seems to come to the end.

Operational numerical weather prediction (NWP) has shown that there is a great deal of
case-to-case variability of the predictive skill (Branstator 1986: Hollingworth et al. 1987).
Whether does such variability only depend on the internal dynamics of the atmosphere itself or
result from the deficiency of the NWP model? The theory of the classic predictability has not
given the answer. Actually. it can not give the answer. It appears that the answer is related to
the localized features of chaotic system (Lacarra et al. 1988; Mukougawa et al. 1991; Molteni
et al. 1993). A few studies have discussed the growth of finite-time error for chaotic system.
They showed that error growth may be much larger than that estimated from Lyapunov
exponent and Reny entropy. We (Li and Ji 1994) have dynamically analyzed the cause of error
growth. and indicated that the error growth rate varied considerably with the evolution of
system states. It is thus of important interest to study the relationship between the variability
of predictive skill and the localized features of chaotic system.

In the present study, finite-time and local-time instabilities will be introduced to describe
the localized features of the chaotic system. and the corresponding calculation method will be
discussed in detail. The famous Lorenz’ s system will be used to exhibit the strong localized

features of chaotic system.
II. LOCALIZED CHAOS IN PHASE SPACE

Before discussion of localized features of chaoctic attractor itself, the attention is paid to
whether chaotic attractors can coexist with periodic state or equilibrium state attractors. It
seems to be difficult to answer theoretically such a question. Here the numerical method will be
used to present a positive example.

Lorenz' s system has been extensively studied (for example, see review by Chou 1990).

As 1s well-known. the equations of Lorenz’ s system are

d

42 oy —az, 9
dy o

Fri Yx — y — zz, 2
dz

prii bz + zy. (3

In the present study, 6 =10 and 6=28/3. 7 is served as a bifurcation parameter. If
¥ <1. 0, the system has a fixed point (0, 0, 0), which is stable and called equilibrium state
attractor. If ¥ > 1. 0, there exist three fixed points; (0, 0, 0), (£ V&6 (¥ — 1),

+ V6 (Y—1), Y—1). and the fixed point (0, 0, 0) becomes unstable. For 1<<r<24. 74,
other two fixed points are stable. For ¥>>24. 74, all three fixed points become unstable, so no
equilibrium state attractors will exist. For the last case, it has been shown (Chou 1990) that
the system goes into chaos, i. e., the system possesses a chaotic attractor or a strange
attractor.

We are now interested in the possibility of existence of chaos outside the basin of
equilibrium state attractors. Such a phenomenon seems to be possible, but no theoretical
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Fig. 1. Phase space evolution of Lorenz’ s system with ¥=24. 0. (a) The trajectory in the X-Y plane
starting from the initial state (1.0, 2.0, 3.0); (b) same asin (a), but for the Y-Z plane: ()
and (d) same as in (a) and (b) respectively, but for initial state (7.0, 7.0, 23.0).

evidence has been given and no positive example is presented. However, we will show a
positive example. For 7 = 24. E) the system has two stable equilibrium states: (+15. 17,
+15.17, 23.0). Trajectories will be shown in a 2D cut (Fig. 1). The trajectory starting from
the initial state (1.0, 2.0, 3.0) is given in the X-Y plane in Fig. la and in the Y-Z plane in
Fig. 1b. It can be seen that the evolution exhibits chaos. In fact, such evolution is evidently in
a similar way to the standard Lorenz attractor, i. e. the chaotic attractor with ¥=28. 0. On
the other hand, if a trajectory starts from the initial state lying in the neighborhood of the
equilibrium state attractors, it will then gradually get into the attractors. Figures 1c and 1d
present such a trajectory from the initial state (7.0, 7.0, 23.0).

The system has been integrated for a long time of 200 time units (corresponding to 10 000
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Fig. 2. The power spectrum of Y-component for integration time of 200 time units.

integration steps) to further verify the chaotic evolution for the initial state (1. 0. 2.0, 3.0).
Figure 2 shows the power spectrum. The spectral distribution is very broad, which is clearly
indicative of the chaotic property of the system. We have also integrated the system with
different time step sizes and calculation schemes, and obtained consistent results, which
indicates that the chaos is independent of the used calculation method.

The coexistence of chaos and stable equilibrium states in phase space implies that the
stability of equilibrium states can not indicate the stable feature of whole phase space. The
stability may vary with different regions in phase space. We have to examine the variability of
instability with the evolution of system states to reveal the stable features of whole phase
space. As far as predictability is concerned. the range of predictability strongly depends on the
initial states. No loss of predictability will occur for the initial states in the basins of equilibrium
state attractors in phase space. but predictability will lose at last for the initial states outside the
basins. Predictability may also be an initial problem.

The above discussion is concerned with different type of attractor in phase space. In the
following, we will focus on the localized features of chaotic attractor itself, and show that

predictability may vary with different positions on chaotic attractor.

III. MATHEMATICAL REPRESENTATION OF LOCALIZED FEATURES OF CHAOTIC
ATTRACTOR

A {few parameters have been proposed to describe the chaotic attractor, such as Lyapunov
exponent, Kolmogorov entropy and fractal dimension. These indices can be used well to
represent global features instead of localized features. Thus. it is required to develop new
notions to give a good description of the localized features of chaotic attractor. One of the basic
properties of chaos is its sensitivity to the initial state. In view of such properties, we will
introduce finite-time and local-time instabilities to describe localized features.

Consider a real N-dimensional dynamical system with a state vector x. whose evolution
equation is

dr
T = F @ (4
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The evolution of a small perturbation z’ is determined by the linearized counterpart of

(1), which can be written as
d(% = Az, (5

where A is the Jacobian of F evaluated at a prescribed time ¢. Integrating over some portion of
trajectory from ¢, to t, we can write Eq. (5) in integral form

x (1) =8 Uatpdx (L), (61
Here the *’" has been omitted for the sake of brevity. x (#,) is a initial perturbation, which
can be thought to be error in this study. S (¢, #,) is a linear operator, which is called the
resolvent of (5).

We have chosen an inner product such that
(x, y) = 2"Dy = y"Dxz. 7)

where x and y are N-dimensional vectors. T stands for matrix transpose. D should be a

positive symmetrical matrix. The norm of a vector y is ||y||= v (¥, ¥) , and || v||* can be
called the generalized energy.
Let
_ =@
=7l (8)

o gives the perturbation growth rate from time £, to z. The larger ¢ is, the more rapidly the
perturbations amplify. Obviously, o is also a measure of sensitivity to the initial state.
From Eq. (6). we can get
|z]|2 = X (t)TS(tst)" D S (£,2)X (£,). 9)
Let H=S (t.2,)" D S (¢t. t,). it is easily proved that H is a positive symmetrical matrix.

Introduce the generalized eigenvalue problem

Hv = ADv . (10
Because D is a positive symmetrical matrix. we can have decomposition
D=LL", an
Substitution of Eq. (11) into Eq. (10) yields
(L"H L™ (LTv) = AL™w , (12

where 177 is the transpose of inverse matrix L™'. Let = L"v. So Eq. (12) becomes the
general eigenvalue problem of matrix GG with the eigenvector u, where G=L 'HL™". G is also
a positive symmetrical matrix. Therefore, all the eigenvectors u,(j=1, 2, 3,+**, N) of the
matrix G will form a complete orthonormal basis in the Euclidean space.
We have
v, = L Tu,, (13)

it can then be obtained

(vrv)=vDv,=u"L' DL "u, =u"u = ;Jv jjj a4
Thus it has been shown that all v,”’s (;=1., 2, 3,--, N) form a complete orthonormal basis
in the given generalized energy inner product space. Let the eigenvalues be such arranged that
A > A 2> Ay

A given state vector x (#,) can be expanded in terms of the eigenvectors:
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N
x (t) = P 'acoj'U,‘v (15>
=1

where &,= (x (t,). v,) is called the projection of the state vector x (z,) onto the eigenvector
v,. Considering ||z (z,) ||?=1/&]|>. we substitute Eq. (15) into Eq. (9), then have

|2 = &5 A &, (16)
where &= (&,,,60, *,éw)7. Als a diagonal matrix, and its diagonal element is A;. We can
easily get from Eq. (16)

o< A, an

where A, is the generalized eigenvalue associated with v,. If and only if x, is parallel to the
eigenvector v,, Eq. (17) becomes an equality. For such a case, A is just the growth rate of the
perturbation energy error.

We define the finite-time instability for the trajectory portion from time ¢, to ¢ if there
exists such an initial perturbation that the generalized perturbation energy will grow. Thus, if
A >>1.0. the trajectory is unstable. The larger the A, is, the more unstable the trajectory. For
the large 4,. initially close trajectory will disperse rapidly, and the evolution of the system state
will be extremely sensitive to the initial state. We also refer to A, as a finite-time instability
index.

The above derivation has given the method to calculate A4,. S (2, t,) is first evaluated.
then the generalized eigenvalue problem is solved. For the dynamical system with small
dimension, S (¢, ¢,) may be evaluated column by column by integrating (5). However, the
computation amount will become enormous for the dynamical system with large dimension if
the method is still be used. A specific method (Lacarra 1988; Molteni et al. 1993) has now
been developed for the case with large dimension.

Now we turn to the discussion of local-time instability. Considering the matrix equation

WD) a5 a0, (18
t
and referring to Eq. (6), we can obtain
2
Aol _ st bt pare a

Let C=A"D-+DA. It can be seen that C is a symmetrical matrix. We introduce a generalized

eigenvalue problem similar to that for finite-time instability :
Cv = ADw. 200

From the same discussion as above, we can also show that all v,'s (j=1, 2, 3,*, N) form

a complete orthonormal basis in the given energy inner product space, and get

dllzl® _ 4
o = £TAE, D
where €, = (z, v;) is called the projection of the state vector z onto the eigenvector v,, We can
thus have
, )
deJ;” = Allx||% for x parallel to v;. ) (22)
and '
2 -
Al 2. e

If and only if x, is parallel to the eigenvector v;, (23) becomes an equality. It can be
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Fig. 3. Evolution of the state of the Lorenz' s system. (a) the index of the finite-time instability for
At=t—1t,=0.1: (b) the error evolution from the initial error (0. 2. 0. 2. 0. 2): (¢) the

evolution of the Z-component: (d) the evolution of the X-component.

found that a perturbation may grow for A, >>0. 0. Thus we define the trajectory at time ¢ as the
local-time instability if A4,>>0. 0. It is noteworthy that the interaction between perturbations
selves contributes nothing to the error growth rate for the large-scale atmospheric motion. So
Eq. (19) holds independent of the assumption that perturbations have only small amplitude.
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From the discussion above, it is obvious that finite-time instability and local-time
instability could be power notions to describe the localized features of chaotic system and the
variability of its sensitivity to the initial state. In the following, we will show that, as
expected, there exist strongly localized features on chaotic attractors.

IV. LOCALIZED FEATURE OF CHAOTIC ATTRACTOR

The famous Lorenz system is used in the following discussion. We take values o= 10,
b=8/3 and ¥=28. 0. So the system possesses the so-called “standard Lorenz attractor”. We
will examine the variability of the instability for the trajectory starting from the initial state
(1.0, 2.0, 3.0). This initial state is chosen arbitrarily, but different initial values will not
change the conclusions. D is taken as an identity matrix here.

1. For Finite-Time Instability

We first use the finite-time instability to describe the localized features, and take value
At=t—1t,=0. 1. Figure 3a shows the evolution of the finite-time instability index A,. A, varies
considerably with the evolution of the system state. The local maxima have the values about
7.0 10 8.0, i.e. the error can maximally increase to 7 to 8 times as large as that in the initial
state during the period of 0.1 time units. But the local minima are close to 1. 0 or a little
smaller than 1. 0, which indicates that the error will not increase and even decrease. Figure 3b
presents the time evolution of the root-mean-square error from the small initial error (0.2, 0.
2. 0. 2). From the comparison between Fig. 3a and Fig. 3b, one can find that the error
extremely increases after the instability evolves to a strong maximum. In fact, the error keeps
in a small value first, then the error rapidly amplifies to the saturation value during the period
of 3 to 4 time units when a strong maximum of instability occurs. For the later evolution, the
small perturbation assumption is no longer valid. Nevertheless, it can still be seen that the
error maximum seems to correspond to the instability maximum to some extent.
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Fig. 4. For ¥=28.0. The trajectory starting from the initial state (1.0, 2.0. 20.0): (a) in the X-Y
plane: (b) in the Y-Z plane.
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We will show that the chaotic attractor possesses strong localized features, Comparing
Fig. 3a with Figs. 3c and 3d. one can see that the maxima of finite-time instability index are
well consistent with the minima of the Z-component. This actually indicates that maximum
instability may be localized in a fixed region on the attractor. In order to describe the
localizability more clearly, we present the distribution of instability indices in phase space.
Figure 4a depicts the time evolution of the trajectory on the X-Y plane over the integration
time of 40 time units, and Fig. 4b in the Y-Z plane. Figures 5a and 5b show the distribution of
the points for A, > 4. 0 corresponding to Figs. 4a and 4b (4, is calculated every 0. 05 tine
units) . It can be seen that all strongly unstable points are localized in a small region compared
with the attractor itself in both the X-Y plane and the Y-Z plane, which well accord with the
position where the ensemble disperses rapidly shown by Palmer (1993). Furthermore. the
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instability.
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maximum instability is closely related to the evolution feature of the trajectory portion.
Comparison of Fig. 3a with Figs. 3c and 3d shows that the maximum instability is associated
with the transition of the equilibrium states with which the trajectory circles. However, the
transition does not always correspond to strong maximum of the instability. Close examination
shows that the transition will accord with the strong maximum of instability only if the Z-
component has a small value. In contrast, the instability will be relatively weak for the Z-
component with a large value, even though the transition occurs. Therefore, as we have
expected, the strong instability is localized in a small region. and associated with the special
evolution behavior of the trajectory.

In order to give the localized features of the distribution of weak instability on the chaotic
attractors, Figures 5c and 5d present the points for A, <(1. 2. It can be seen that the weak
instability is also localized in a very small region. It is of important interest that the region of
strong instability is separable from that of weak instability. This further confirms the strong
localizability of the chaotic attractor. The localizability strongly suggests that the considerable
variation with the position on the chaotic attractors is an essential aspect of predictability, and
those indices describing the global property of chaotic attractors may not completely reveal the

essence of predictability.
2 . For Local-Time Instability

The local-time instability in fact determines the instantaneous error growth rate, and it is
independent of small perturbation assumption. The following calculation will further show the
strong localizability of the chaotic attractor, and the relationship between finite-time and local-

time instabilities will be discussed.
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Fig. 6. (a) The evolution of the local-time instability index: (b) the equivalent growth rate for time-

interval of 0.1 time units.
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Figure 6a presents the evolution of the maximum growth rate 4. In order to compare it
with {inite-time instability, we have computed equivalent growth rates for the time interval of
0. 1 time units, which is depicted in Fig. 6b. One can see that both the evolution behavior and
the magnitude of error growth rate are well consistent with those for finite-time instability. As
done for finite-time instability, Figure 7 presents the distribution of points in 2D cuts for the
equivalent growth rate larger than 4. 0 and smaller than 1. 2. Such distribution also accords
with that for finite-time instability. Therefore, the analysis of local-time instability further
confirms the conclusions obtained above from the calculation of finite-time instability.

V. CONCLUSION AND DISCUSSION

It has been found in the operational numerical weather prediction (NWP) that there is a
great deal of case-to-case variabilities of the predictive skill. This fact has attracted extensive
interests. The close examination of such phenomenon will benefit us to improve the
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understanding of the cause for the loss of predictability and provide us with new line of thought
to better use the NWP products as well as to make extended-range forecasts. In the theory of
the classic predictability, the parameters describing the global features of chaotic attractor,
such as Lyapunov exponent and Reny entropy, are generally used to estimate the range of
predictability. But the classic theory can not obviously interpret such variation of
predictability. In the present study. we have suggested that the localized features of chaotic
attractor have to be studied. Then, we have introduced the notions of finite-time and local-
time instability to describe the localized features of chaotic attractor, which determine
maximum finite-time and instantaneous error growth rate. These growth rates can be
calculated by solving the eigenvalue problems of a positive symmetrical and general symmetrical
matrix, respectively.

The famous Lorenz system has been used to exhibit the localized features of chaotic
attractor. In the phase space, chaotic and equilibrium state attractors may coexist. For such a
case, whether the predictability loses or not completely depends on the initial state.
Furthermore, on the chaotic attractor itself, finite-time and local-time instabilities both vary
considerably, and the chaotic attractor possesses strong localized features. The strong and
weak instabilities are clearly separable from each other in phase space. The loss of predictability
results from the error growth only when the system state evolves into strong unstable regions.
For an individual prediction. the range of predictability will be large if the system state does
not evolve into strong unstable regions. Conversely, the range of predictability will be small.
The variation of predictability with the position on the chaotic attractor is its essential aspect.
These results suggest that a great deal of case-to-case variabilities of the predictive skill in the
operational forecast may be the direct reflection of the localized features of chaotic attractor.
Our results also imply that the variability of the predictive skill may exist even for the complete
NWP model. It is noteworthy that the analysis of the operational products has been indicative
of the relationship between the variability of the predictive skill and the localized features of the

chaotic atmospheric attractor in the phase space. which will be presented in another paper.
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