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EVALUATION ON FEEDING INTENSITY OF AQUACULTURE EEL (ANGUILLA) BY
DOUBLE-FLOW RESIDUAL CONVOLUTION NEURAL NETWORK

LI Kai"? JIANG Xing-Long"?, XU Zhi-Yang"?, LIN Qian'?
(1. Fisheries College, Jimei University, Xiamen 361021, China; 2. Engineering Research Center of the Modern Technology for Eel
Industry, Ministry of Education, Xiamen, 361021, China)

Abstract

based on double-flow residual convolution neural network was proposed, by which the problems existing in traditional

To accurately evaluate the feeding intensity in eel (4nguilla) culture, the eel intensity evaluation method

double-flow network (Two-stream) was solved. The traditional two-flow network is shallow in network structure and not
able to extract sufficient eel feeding behavior information. Therefore, ResNet50 network was chosen to extract more
representative features. The final classification score of the traditional double-flow network could be obtained by
combining the average scores of spatial flow and time flow, and the fusion method was relatively simple, and the spatial
flow and time flow network were trained independently, which could lead to an issue that the network cannot learn the
spatio-temporal correlation characteristics of eel feeding behavior. We chose to use the feature layer fusion method to fuse
the features extracted from the spatial flow and time flow network, by which the network was trained in parallel to extract
the correlation features of the spatio-temporal network. Results show that the classification accuracy of the eel feeding
intensity evaluation in double-flow residual convolution neural network reached 98.6%, which was 5.8% and 8.5% higher
than that of single-channel spatial flow and time flow network, respectively. Compared with the traditional double-flow
network, the classification accuracy was improved by 3.2%.

Key words eel; feeding intensity; double-flow residual convolution neural network; ResNet50; parallel training;

feature layer fusion



