莺歌海盆地底辟带热流体突破的地层水化学证据

解习农 姜涛 王华 陆永潮 谢玉洪. 莺歌海盆地底辟带热流体突破的地层水化学证据[J]. 岩石学报, 2006, 22(8): 2243-2248.
引用本文: 解习农 姜涛 王华 陆永潮 谢玉洪. 莺歌海盆地底辟带热流体突破的地层水化学证据[J]. 岩石学报, 2006, 22(8): 2243-2248.
XIE XiNong, JIANG Tao, WANG Hua , LU YongChao,XIE YuHong. Expulsion of overpressured fluid revealed by geochemistry of formation water in the dirpiric structures of Yinggehal basin[J]. Acta Petrologica Sinica, 2006, 22(8): 2243-2248.
Citation: XIE XiNong, JIANG Tao, WANG Hua , LU YongChao,XIE YuHong. Expulsion of overpressured fluid revealed by geochemistry of formation water in the dirpiric structures of Yinggehal basin[J]. Acta Petrologica Sinica, 2006, 22(8): 2243-2248.

莺歌海盆地底辟带热流体突破的地层水化学证据

  • 基金项目:

    本文为教育部跨世纪人才基金项目资助课题.致谢 本文研究过程中得到中国海洋石油总公司西部分公司大力支持,在此致谢.

Expulsion of overpressured fluid revealed by geochemistry of formation water in the dirpiric structures of Yinggehal basin

  • 地层水化学特征往往反映出盆地流体的成因和演化信息。莺歌海盆地地层水样品分析表明地层水矿化度可划分3个带,即非底辟带、底辟带上方常压段和超压段。非底辟带地层水矿化度接近于正常海水,而超压带为具有较低矿化度的NaHCO3型水。底辟带上方常压段地层水矿化度变化极大,与垂向断裂距离有关,越靠近垂向断裂的井往往具有更低的矿化度和更高的HCO3^-和CO3^2-离子浓度。在远离垂向断裂的底辟带侧翼或较浅地层(〈1200m)孔隙水接近正常海水,以MgCl2型地层水为主:而在毗邻于垂向断裂的浅部储层具有明显低的矿化度,与超压带流体相似,也具有较高的HCO3^-和CO3^2-离子浓度。这些观察结果反映垂向断裂为深部超压热流体突破的主通道,底辟带上方成为地层原生孔隙水(海水)与超压带内低矿化度热流体混合场所,地层水矿化度越低,说明来自深部超压热流体所占比例越大。不同压力地层中的水化学特征可以很好地用来识别流体运移路径和可能的水-岩反应。
  • 加载中
  • [1]

    Anderson RN.1993. Recovering dynamic Gulf of mexico reserves and the US energy future.Oil Gas Journal,11:85 -91

    [2]

    Bekins B,McCaffrey AM,Dreiss SJ.1994. Influence of kinetics on the smectite to illite transition in the Barbados accretionary prism.Journal of Geophysical Research,99 (B9):18147-18158

    [3]

    Bj(φ)rlykee K.1993. Fluid flow in sedimentary basins.Sedimentary Geology,86:137-158

    [4]

    Cartwright JA.1994. Episodic basin-wide fluid expulsion from geopressured shale sequences in the North Sea basin.Geology,22:447-450

    [5]

    Gong ZS,Li ST.1997. Continental margin basin analysis and hydrocarbon accumulation of the Northern South China Sea.Beijing:Science Press,1 -508 (in Chinese)

    [6]

    Gong ZS,Li ST.2004. Dynamic research of oil and gas accumulation in northern marginal basins of South China Sea.Beijing:Science Press,1 -339 (in Chinese)

    [7]

    Hanor JS.2001. Reactive transport involving rock-buffered fluids of verying salinity.Geochimica et Cosmochimica Acta,65 (21):3721-3732

    [8]

    Hao F,Li ST,Gong ZS,Yang JH.2000. Thermal regime,interreservoir compositional heterogeneities,and reservoir-filling history of the Dongfang gas field,Yinggehai Basin,South China Sea; evidence forepisodic fluid injections in over-pressured basin.AAPG Bulletin,84:607-626

    [9]

    Hao F.2005. Kinetics of hydrocarbon generation and mechanisms of petroleum accumulation in overpressured basins.Beijing:Science Press,1-403 (in Chinese)

    [10]

    Hower J,Eslinger EV,Hower ME,Perry EA.1976. Mechanism of burial and metamorphism of argillaceous sediment:1. Mineralogical and chemical evidence.Geological Society of America Bulletin,87:725-737

    [11]

    Huang BJ,Xiao XM,Dong WL.2002. Multiphase natural gas migration and accumulation and its relationship to diaper structures in the DF1-1 gas field,South China Sea.Marine and Petroleum Geology,19:861-872

    [12]

    Hunt JM.1996. Petroleum geology and geochemistry.2nd edition.Freeman and Company,pp743

    [13]

    Land LS.1995. Na-Ca-Cl saline formation waters,Frio Formation(Oligocene),south Texas,USA:Products of diagenesis.Geochimica et Cosmochimica Acta,59(11):2163 -2174.

    [14]

    Losh S,Walter L,Meulbroek P,Martini A,Cathles L,Whelan J.2002. Reservoir fluids and their migration into the South Eugene Island Block 330 reservoirs,offshore Louisiana.AAPG Bulletin,86(8):1463 1488

    [15]

    Luo XR,Dong W L,Yang J H,Yang W.2003. Overpressuring mechanisms in the Yinggehai Basin South China Sea.AAPG Bulletin,87 (4):629-645

    [16]

    Muggeridge A,Abacioglu Y,England W,Smalley C.2004. Dissipation of anomalous pressures in the subsurface.Journal of Geophysical Research,109,B11104,doi:10.1029/2003JB002922

    [17]

    Parnell J.2002. Fluid seeps at continental margins:Towards an integrated plumbing system.Geofluids,2(2):57 -61

    [18]

    Roberts SJ,Nunn JA.1995. Episodic fluid expulsion from geopressured sediments.Marine and Petroleum Geology,12:195 -204

    [19]

    Wilkinson M,Darby D,Haszeldine RS,Couples GD.1997. Secondary Porosity Generation During Deep Burial Associated with Overpressure Leak-Off:Fulmar Formation,United Kingdom Central Graben.AAPG Bulletin,81 (5):803-813

    [20]

    Worden RH,Morad S.2003. Clay minerals in sandstones:controls on formation,distribution and evolution.In:Worden RH,Morad S(eds.).Clay mineral cements in sandstones.Special Publication of International Association of Sedimentologists,34:3-41

    [21]

    Xie XN,Li ST,Dong WL,Zhang QM.1999. Overpressure development and hydrofracturing in the Yinggehai basin,South China Sea.Journal of Petroleum Geology,22(4):437 -454

    [22]

    Xie XN,Li ST,Dong WL,Hu ZL.2001. Evidence for hot fluid flow along faults near diapiric structure of the Yinggehai basin,South China Sea.Marine and Petroleum Geology,18(6):715 -728

    [23]

    Xie XN,Li ST,He HY,Liu XF.2003a.Seismic evidence for fluid migration pathways from an overpressured systems in the South China Sea.Geofluids,3(4):245 -253

    [24]

    Xie XN,Jiao JJ,Li ST,Cheng JM.2003b.Salinity variation of formation water and diagenesis reaction in abnormally pressured environments.Science in China(seri.D),46 (3):437-454

    [25]

    龚再升,李思田.1997.南海北部大陆边缘盆地分析与油气聚集.北京:科学出版社,1-508

    [26]

    龚再升,李思田.2004.南海北部大陆边缘盆地油气成藏动力学研究.北京:科学出版社,1-339

    [27]

    郝芳.2005.超压盆地生烃作用动力学与油气成藏机理.北京:科学出版社,1-403

  • 加载中
计量
  • 文章访问数:  6771
  • PDF下载数:  7236
  • 施引文献:  0
出版历程
修回日期:  2006-05-12
刊出日期:  2006-08-31

目录