西藏林周盆地中酸性脉岩的年代学、地球化学和岩石成因

董铭淳, 赵志丹, 朱弟成, 刘栋, 董国臣, 莫宣学, 胡兆初, 刘勇胜, 邹子昊. 西藏林周盆地中酸性脉岩的年代学、地球化学和岩石成因[J]. 岩石学报, 2015, 31(5): 1268-1284.
引用本文: 董铭淳, 赵志丹, 朱弟成, 刘栋, 董国臣, 莫宣学, 胡兆初, 刘勇胜, 邹子昊. 西藏林周盆地中酸性脉岩的年代学、地球化学和岩石成因[J]. 岩石学报, 2015, 31(5): 1268-1284.
DONG MingChun, ZHAO ZhiDan, ZHU DiCheng, LIU Dong, DONG GuoChen, MO XuanXue, HU ZhaoChu, LIU YongSheng, ZOU ZiHao. Geochronology, geochemistry, and petrogenesis of the intermediate and acid dykes in Linzhou Basin, southern Tibet[J]. Acta Petrologica Sinica, 2015, 31(5): 1268-1284.
Citation: DONG MingChun, ZHAO ZhiDan, ZHU DiCheng, LIU Dong, DONG GuoChen, MO XuanXue, HU ZhaoChu, LIU YongSheng, ZOU ZiHao. Geochronology, geochemistry, and petrogenesis of the intermediate and acid dykes in Linzhou Basin, southern Tibet[J]. Acta Petrologica Sinica, 2015, 31(5): 1268-1284.

西藏林周盆地中酸性脉岩的年代学、地球化学和岩石成因

  • 基金项目:

    本文受国家973项目(2011CB403102、2015CB452604)、国家自然科学基金项目(41273044、41225006)、中国地质调查局工作项目(1212011121260、1212011121066、12120113086400)及长江学者和创新团队发展计划(IRT1083)联合资助.

详细信息

Geochronology, geochemistry, and petrogenesis of the intermediate and acid dykes in Linzhou Basin, southern Tibet

More Information
  • 林子宗火山岩(也称林子宗群)出露在青藏高原拉萨地块南部,被认为是印度与欧亚大陆发生碰撞的岩浆作用响应。发育在拉萨东北林周盆地的林子宗火山岩剖面完整,是最初的命名地,在过去的20年来已经完成了较好的研究工作。本文对林周盆地林子宗火山岩地层中产出的中性(闪长玢岩)和酸性(花岗斑岩)脉岩开展了研究,新获得了5个样品的锆石U-Pb定年和Hf同位素数据和11套主量和微量元素地球化学数据。这些脉岩侵入到林子宗群的典中组和年波组地层中。所有样品均为亚碱性岩石,在钾质特征上属于钙碱性到高钾钙碱性系列岩石。样品均为过铝质(除了一个样品为铝质岩石,A/CNK=0.86)。一个闪长玢岩样品的年龄为62.4Ma,具有正的εHf(t)值(+5.1~+7.6),显示了与典中组安山岩相似的地球化学成分。其余的花岗斑岩侵入时代为55.1~61.1Ma,εHf(t)范围为-1.1~+10.4(仅有一个负值,其余全部为正值),它们与近于同时代的年波组流纹质火山岩具有相似的地球化学特征。林周盆地脉岩的主要特征可以归纳为:(1)岩石具有类似地幔的Hf同位素特征,总计86个Hf同位素中仅有一个负值,所有样品平均的εHf(t)为5.9;(2)每个样品具有变化范围很宽的εHf(t)值,4个花岗斑岩样品每个样品内部的εHf(t)值变化达到3.5~8.8个ε单位,显示了不均一的源区组成;(3)从主量元素的成分变化趋势(FeOT-MgO关系图)指示了岩浆混合作用的成分趋势。这些特征表明在冈底斯带南缘发生的古新世-始新世大规模幔源岩浆底侵作用和岩浆混合作用,也可以用来解释林周盆地脉岩的形成过程。这些脉岩作为浅成的侵入体,与其同时代的林子宗火山岩(典中组和年波组)一样,都是伴随着冈底斯带南缘从特提斯洋俯冲削减过渡到印度与欧亚大陆碰撞的构造转化过程中形成的。
  • 加载中
  • [1]

    Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79

    [2]

    Bao CH, Ding F, Wang Q, Liu SH, Xu F and He CX. 2014. Lithochemical, geochemical, characteristics and tectonic setting of the volcanic rocks in the Eocene Pana Formation, Linzizong Group, in the Xiongma area, Coqen County, Xizang (Tibet). Geological Review, 60(2): 275-284 (in Chinese with English abstract)

    [3]

    Boynton WV. 1984. Geochemistry of the rare earth elements: Meteorite Studies. In: Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam: Elsevier

    [4]

    Chen JS, Huang BC and Sun LS. 2010. New constraints to the onset of the India-Asia collision: Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics, 489(1-4): 189-209

    [5]

    Chen JS, Huang BC, Yi ZY, Yang LK and Chen LW. 2014. Paleomagnetic and 40Ar/39Ar geochronological results from the Linzizong Group, Linzhou Basin, Lhasa Terrane, Tibet: Implications to Paleogene paleolatitude and onset of the India-Asia collision. Journal of Asian Earth Sciences, 96: 162-177

    [6]

    Chiu HY, Chung SL, Wu FY, Liu DY, Liang YH, Lin YJ, Iizuka Y, Xie LW, Wang B and Chu MF. 2009. Zircon U-Pb and Hf isotope constraints from eastern Transhimalayan batholiths on the pre-collisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477(1-2): 3-19

    [7]

    Chu MF, Chung SL, Song B, Liu DY, O'Reilly SY, Pearson N, Ji J and Wen DJ. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9): 745-748

    [8]

    Chu MF, Chung SL, O'Reilly SY, Pearson NJ, Wu FY, Li XH, Liu DY, Ji JQ, Chu QH and Lee HY. 2011. India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth and Planetary Science Letters, 307(3-4): 479-486

    [9]

    Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q and Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021-1024

    [10]

    Chung SL, Chu MF, Zhang YQ, Xie Y, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q and Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196

    [11]

    Condie KC. 2001. Mantle Plumes and Their Record in Earth History. London: Cambridge University Press

    [12]

    Ding L, Paul K, Zhong DL and Deng WM. 2003. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. Journal of Petrology, 44(10): 1833-1865

    [13]

    Ding LX, Kapp PA and Wan XQ. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south-central Tibet. Tectonics, 24(3): 1-18

    [14]

    Dong GC. 2002. Linzizong volcanic rocks in Linzhou volcanic basin, Tibet and implication for India-Eurasia collision process. Ph. D. Dissertation. Beijing: China University of Geosciences (in Chinese with English summary)

    [15]

    Dong GC, Mo XX, Zhao ZD, Guo TY, Wang LL and Chen T. 2005. Geochronologic constraints on the magmatic underplating of the Gangdisê Belt in the India-Eurasia collision: Evidence of SHRIMP II Zircon U-Pb Dating. Acta Geologica Sinica, 79(6): 787-794

    [16]

    Dong GC, Mo XX, Zhao ZD, Wang L and Zhou S. 2005. A new understanding of the stratigraphic successions of the Linzizong volcanic rocks in the Lhünzhub basin, northern Lhasa, Tibet, China. Geological Bulletin of China, 24(6): 549-557 (in Chinese with English abstract)

    [17]

    Dong GC, Mo XX, Zhao ZD, Zhu DC, Song YT and Wang L. 2008. Gabbros from southern Gangdese: Implication for mass exchange between mantle and crust. Acta Petrologica Sinica, 24(2): 203-210 (in Chinese with English abstract)

    [18]

    Flower MFJ, Russo RM, Tamaki K and Hoang N. 2001. Mantle contamination and the Izu-Bonin-Mariana (IBM)‘high-tide mark’: Evidence for mantle extrusion caused by Tethyan closure. Tectonophysics, 333(1-2): 9-34

    [19]

    Fu WC, Kang ZQ and Pan HB. 2014. Geochemistry, zircon U-Pb age and implications of the Linzizong Group volcanic rocks in Shiquan River area, western Gangdise belt, Tibet. Geological Bulletin of China, 33(6): 850-859 (in Chinese with English abstract)

    [20]

    Gao YF, Hou ZQ, Wei RH and Zhao RS. 2003. Post-collisional adakitic porphyries in Tibet: Geochemical and Sr-Nd-Pb isotopic constraints on partial melting of oceanic lithosphere and crust-mantle interaction. Acta Geologica Sinica, 77(2): 194-203

    [21]

    Guillot S and Le Fort P. 1995. Geochemical constraints on the bimodal origin of High Himalayan leucogranites. Lithos, 35(3-4): 221-234

    [22]

    Harris NBW, Pearce JB and Tindle AG. 1986. Geochemical characteristics of collision-zone magmatism. In: Coward MP and Ries AC (eds.). Collision Tectonics. Geological Society of London, Special Publications, 19: 67-81

    [23]

    He SD, Kapp P, DeCelles PC, Gehrels GE and Heizler M. 2007. Cretaceous-Tertiary geology of the Gangdese arc in the Linzhou area, southern Tibet. Tectonophysics, 433(1-4): 15-37

    [24]

    Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. In: Manchar JM and Hoskin PWO (eds.). Zircon. Reviews of Mineralogy and Geochemistry, 53(1): 27-62

    [25]

    Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155

    [26]

    Hou ZQ, Pan GT, Wang AJ, Mo XX, Tian SH, Sun XM, Ding L, Wang EQ, Gao YF, Xie YL, Zeng PS, Qin KZ, Xu JF, Qu XM, Yang ZM, Yang ZS, Fei HC, Meng XJ and Li ZQ. 2006. Metallogenesis in Tibetan collisional orogenic belt: Ⅱ. Mineralization in late-collisional transformation setting. Mineral Deposits, 25(4): 521-543 (in Chinese with English abstract)

    [27]

    Huang Y, Zhao ZD, Zhang FQ, Zhu DC, Dong GC, Zhou S and Mo XX. 2010. Geochemistry and implication of the Gangdese batholiths from Renbu and Lhasa areas in southern Gangdese, Tibet. Acta Petrologica Sinica, 26(10): 3131-3142 (in Chinese with English abstract)

    [28]

    Ji WQ, Wu FY, Chong SL, Li JX and Liu CZ. 2009a. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gandese batholith, southern Tibet. Chemical Geology, 262(3-4): 229-245

    [29]

    Ji WQ, Wu FY, Liu CZ and Chung SL. 2009b. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Science in China (Series D), 52(9): 1240-1261

    [30]

    Le Maitre RW. 2002. Igneous Rocks A Classification and Glossary of Terms. 2nd Edition. Cambridge: Cambridge University Press, 33-39

    [31]

    Lee HY, Chung SL, Lo CH, Ji JQ, Lee TY, Qian Q and Zhang Q. 2009. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics, 477(1-2): 20-35

    [32]

    Li HY, Chung SL, Wang YB, Zhu DC, Yang JH, Song B, Liu Y and Wu FY. 2007. Age, petrogenesis and geological significance of the Linzizong volcanic successions in the Linzhou basin, southern Tibet: Evidence from zircon U-Pb dates and Hf isotopes. Acta Petrologica Sinica, 23(2): 493-500 (in Chinese with English abstract)

    [33]

    Ludwig KR. 2001. Users Manual for Isoplot/Ex (rev. 2.49): A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication., No la: 1-55

    [34]

    McDermid IRC, Aitchison JC, Davis AM, Harrison TM and Grove M. 2002. The Zedong terrane: A Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chemical Geology, 187(3-4): 267-277

    [35]

    Miller C, Schuster R, Klötzli U, Frank W and Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9): 1399-1424

    [36]

    Mo XX, Zhao ZD, Zhou S, Dong GC, Guo TY and Wang LL. 2002. Evidence for timing of the initiation of India-Asia collision from igneous rocks in Tibet. EOS Trans. AGU, F1003, Fall Meeting Abstract. S62B-1201, San Francisco, 83: 47

    [37]

    Mo XX, Zhao ZD, Deng JF, Dong GC, Zhou S, Guo TY, Zhang SQ and Wang LL. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135-148(in Chinese with English abstract)

    [38]

    Mo XX, Dong GC, Zhao ZD, Guo TY, Wang LL and Chen T. 2005. Timing of the magma mixing in the Gangdisê magmatic belt during the India-Asia collision: Zircon SHRIMP U-Pb dating. Acta Geologica Sinica, 79(1): 66-76

    [39]

    Mo XX, Zhao ZD, Deng JF, Flower F, Yu XH, Luo ZH, Li YG, Zhou S, Dong GC, Zhu DC and Wang LL. 2006. Petrology and geochemistry of postcollisional volcanic rocks from the Tibetan Plateau: Implications for lithosphere heterogeneity and collision-induced asthenospheric mantle flow. Geological Society of America Special Papers, 409: 507-530

    [40]

    Mo XX and Pan GT. 2006. From the Tethys to the formation of the Tibetan Plateau: Constrained by tectono-magmatic events. Earth Science Frontiers, 13(6): 43-51 (in Chinese with English abstract)

    [41]

    Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD and Yang ZM. 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96(1): 225-242

    [42]

    Mo XX, Zhao ZD, Zhou S, Dong GC and Liao ZL. 2007. On the timing of India-Asia continental collision. Geological Bulletin of China, 26(10): 1240-1244 (in Chinese with English abstract)

    [43]

    Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S and Ke S. 2008. Contribution of syn-collisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology, 250(1-4): 49-67

    [44]

    Mo XX, Dong GC, Zhao ZD, Zhu DC and Zhou S. 2009. Mantle input to the crust in southern Gangdese, Tibet, during the Cenozoic: Zircon Hf isotopic evidence. Journal of Earth Science, 20(2): 241-249

    [45]

    Mo XX, Zhao ZD, Zhu DC, Yu XH, Dong GC and Zhou S. 2009. On the lithosphere of Indo-Asia collision zone in southern Tibet: Petrological and geochemical constraints. Earth Science, 34(1): 17-27 (in Chinese with English abstract)

    [46]

    Mo XX. 2011. Magmatism and evolution of the Tibetan Plateau. Geological Journal of China Universities, 17(3): 351-367 (in Chinese with English abstract)

    [47]

    Pan GT, Ding J, Yao DS and Wang LQ. 2004. Guidebook of 11500000 Geologic Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Areas. Chengdu: Cartographic Publishing House, Chengdu, 1-148 (in Chinese)

    [48]

    Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Zhao ZD, Geng QR and Liao ZL. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract)

    [49]

    Pearce JA, Harris BW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983

    [50]

    Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263

    [51]

    Rollison HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. London: Longman Group UK Ltd

    [52]

    Sun SS and McDonough WF. 1989. Chemical and isotope systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345

    [53]

    Sylvester JP. 1998. Post-collisional strongly peraluminous granites. Iathos, 45(1-4): 29-44

    [54]

    Wang LQ, Zhu DC, Geng QR, Liao ZL and Pan GT. 2006. The age and significance of the granite porphyry related to collision in Linzhou basin of Gangdese, Tibet. Chinese Science Bulletin, 51(16): 1920-1928 (in Chinese)

    [55]

    Wen DR, Chung SL, Song B, Iizuka Y, Yang HJ, Ji JQ, Liu DY and Gallet S. 2008a. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos, 105(1-2): 1-11

    [56]

    Wen DR, Liu DY, Chung SL, Chu MF, Ji JQ, Zhang Q, Song B, Lee TY, Yeh MW and Lo CH. 2008b. Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191-201

    [57]

    Williams HM, Turner SP, Kelley SP and Harris NBW. 2001. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339-342

    [58]

    Williams HM, Turner SP, Pearce JA, Kelley SP and Harris NBW. 2004. Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modelling. Journal of Petrology, 45(3): 555-607

    [59]

    Wilson M. 2001. Igneous Petrogenesis. London: Kluwer Academic Publishers

    [60]

    Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)

    [61]

    Xie BJ, Zhou S, Xie GG, Tian MZ and Liao ZL. 2013. Zircon SHRIMP U-Pb data and regional contrasts of geochemical characteristics of Linzizong volcanic rocks from Konglong and Dinrenle region, middle Gangdese belt. Acta Petrologica Sinica, 29(11): 3803-3814 (in Chinese with English abstract)

    [62]

    Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Ann. Rev. Earth Planet. Sci., 28(1): 211-280

    [63]

    Yu F, Li ZG, Zhao ZD, Xie GG, Dong GC, Zhou S, Zhu DC and Mo XX. 2010. Geochemistry and implication of the Linzizong volcanic succession in Cuomai area, central-western Gangdese, Tibet. Acta Petrologica Sinica, 26(7): 2217-2225 (in Chinese with English abstract)

    [64]

    Yue YH and Ding L. 2006. 40Ar/39Ar Geochronology, geochemical characteristics and genesis of the Linzhou dikes, Tibet. Acta Petrologica Sinica, 22(4): 855-866 (in Chinese with English abstract)

    [65]

    Zhang HF, Xu WC, Guo JQ, Zong KQ, Cai HM and Yuan HL. 2007. Zircon U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdese belt, Tibet: Evidence for Early Jurassic subduction of Neo-Tethyan oceanic slab. Acta Petrologica Sinica, 23(6): 1347-1353 (in Chinese with English abstract)

    [66]

    Zhang SQ, Mo XX, Zhao CG, Guo TY and Jiang W. 1997. Petrology and geochemistry variations of Mesozoic and Cenozoic volcanism of the Tibetan Plateau and its dynamical inferences for lithospheric evolution of the plateau. Proc. 30th Int'l Geol. Congr., VSP, Utrecht, the Netherlands, 6: 155-168

    [67]

    Zhao ZD, Mo XX, Zhang SQ, Guo TY, Zhou S, Dong GC and Wang Y. 2001. Post-collisional magmatism in Wuyu basin, central Tibet: Evidence for recycling of subducted Tethyan oceanic crust. Science in China (Series D), 44(1): 27-34

    [68]

    Zhao ZD, Mo XX, Nomade S, Renne PR, Zhou S, Wang LL, Zhu DC and Liao ZL. 2006. Post-collisional ultrapotassic rocks in Lhase Block, Tibetan Plateau: Spatial and temporal distribution and its' implications. Acta Petrologica Sinica, 22(4): 787-794(in Chinese with English abstract)

    [69]

    Zhao ZD, Mo XX, Dilek Y, Niu YL, DePaolo DJ, Robinson P, Zhu DC, Sun CG, Dong GC, Zhou S, Luo ZH and Hou ZQ. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113(1-2): 190-212

    [70]

    Zhao ZD, Zhu DC, Dong GC, Mo XX, Depaolo D, Jia LL, Hu ZC and Yuan HL. 2011. The ~54Ma gabbro-granite intrusive in southern Dangxung area, Tibet: Petrogenesis and implications. Acta Petrologica Sinica, 27(12): 3513-3524 (in Chinese with English abstract)

    [71]

    Zhou S, Mo XX, Dong GC, Zhao ZD, Qiu RZ, Guo TY and Wang LL. 2004. 40Ar-39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou Basin, Tibet, China, and their geological implications. Chinese Science Bulletin, 49(18): 1970-1979

    [72]

    Zhou S, Mo XX, Dong GC, Zhao ZD, Qiu RZ, Wang LL and Guo TY. 2004. The 40Ar/39Ar age framework of Linzizong volcanic in Linzhou basin, Tibet. Chinese Science Bulletin, 49(20): 2095-2103 (in Chinese)

    [73]

    Zhu DC, Pan GT, Mo XX, Wang LQ, Liao ZL, Zhao ZD, Dong GC and Zhou CY. 2006. Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese: New insights from volcanic rocks. Acta Petrologica Sinica, 22(3): 534-546 (in Chinese with English abstract)

    [74]

    Zhu DC, Pan GT, Wang LQ, Mo XX, Zhao ZD, Zhou CY, Liao ZL, Dong GC and Yuan SH. 2008a. Tempo-spatial variations of Mesozoic magmatic rocks in the Gangdise belt, Tibet, China, with a discussion of geodynamic setting-related issues. Geological Bulletin of China, 27(9): 1535-1550 (in Chinese with English abstract)

    [75]

    Zhu DC, Pan GT, Wang LQ, Mo XX, Zhao ZD, Zhou CY, Liao ZL, Dong GC and Yuan SH. 2008b. Spatial-temporal distribution and tectonic setting of Jurassic magmatism in the Gangdise belt, Tibet, China. Geological Bulletin of China, 27(4): 458-468 (in Chinese with English abstract)

    [76]

    Zhu DC, Mo XX, Wang LQ, Zhao ZD, Niu YL, Zhou CY and Yang YH. 2009. Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science in China (Series D), 52(9): 1223-1239

    [77]

    Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255

    [78]

    Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454

    [79]

    Zorpi MJ, Coulon C and Orsini JB. 1991. Hybridization between felsic and mafic magmas in calc-alkaline granitoids: A case-study in northern Sardinia, Italy. Chemical Geology, 92(1-3): 45-48

    [80]

    鲍春辉, 丁枫, 王乾, 刘寿航, 徐峰, 何朝鑫. 2014. 西藏措勤县雄玛地区始新统林子宗群帕那组火山岩地球化学特征及构造背景. 地质论评, 60(2): 275-284

    [81]

    董国臣, 莫宣学, 赵志丹, 王亮, 周肃. 2005. 拉萨北部林周盆地林子宗火山岩层序新议. 地质通报, 24(6): 549-557

    [82]

    董国臣, 莫宣学, 赵志丹, 朱弟成, 宋云涛, 王磊. 2008. 西藏冈底斯南带辉长岩及其所反映的壳幔作用信息. 岩石学报, 24(2): 203-210

    [83]

    董国臣. 2002. 西藏林子宗火山岩及其反演的板块碰撞过程研究. 博士学位论文. 北京: 中国地质大学

    [84]

    付文春, 康志强, 潘会彬. 2014. 西藏冈底斯带西段狮泉河地区林子宗群火山岩地球化学特征、锆石U-Pb 年龄及地质意义. 地质通报, 33(6): 850-859

    [85]

    侯增谦, 潘桂棠, 王安建, 莫宣学, 田世洪, 孙晓明, 丁林, 王二七, 高永丰, 谢玉玲, 曾普胜, 秦克章, 许继峰, 曲晓明, 杨志明, 杨竹森, 费红彩, 孟祥金, 李振清. 2006. 青藏高原碰撞造山带: II. 晚碰撞转换成矿作用. 矿床地质, 25(4): 521-543

    [86]

    黄玉, 赵志丹, 张凤琴, 朱弟成, 董国臣, 周肃, 莫宣学. 2010. 西藏冈底斯仁布-拉萨一带花岗岩基的地球化学及其意义. 岩石学报, 26(10): 3131-3142

    [87]

    李皓揚, 鐘孙霖, 王彦斌, 朱弟成, 杨进辉, 宋彪, 刘敦一, 吴福元. 2007. 藏南林周盆地林子宗火山岩的时代、成因及其地质意义: 锆石U-Pb年龄和Hf同位素证据. 岩石学报, 23(2): 493-500

    [88]

    莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148

    [89]

    莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13(6): 43-5

    [90]

    莫宣学, 赵志丹, 周肃, 董国臣, 廖忠礼. 2007. 印度-亚洲大陆碰撞的时限. 地质通报, 26(10): 1240-1244

    [91]

    莫宣学, 赵志丹, 朱弟成, 喻学惠, 董国臣, 周肃. 2009. 西藏南部印度-亚洲碰撞带岩石圈: 岩石学-地球化学约束. 地球科学, 34(1): 17-27

    [92]

    莫宣学. 2011. 岩浆作用与青藏高原演化. 高校地质学报, 17(3): 351-367

    [93]

    潘桂棠, 丁俊, 王立全. 2004. 11500000青藏高原及邻区地质图及说明书. 成都: 成都地图出版社, 1-148

    [94]

    潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533

    [95]

    王立全, 朱弟成, 耿全如, 廖忠礼, 潘桂棠. 2006. 西藏冈底斯带林周盆地与碰撞过程相关花岗斑岩的形成时代及其意义. 科学通报, 51(16): 1920-1928

    [96]

    吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220

    [97]

    谢冰晶, 周肃, 谢国刚, 田明中, 廖忠礼. 2013. 西藏冈底斯中段孔隆至丁仁勒地区林子宗群火山岩锆石SHRIMP 年龄和地球化学特征的区域对比. 岩石学报, 29(11): 3803-3814

    [98]

    于枫, 李志国, 赵志丹, 谢国刚, 董国臣, 周肃, 朱弟成, 莫宣学. 2010. 西藏冈底斯带中西部措麦地区林子宗火山岩地球化学特征及意义. 岩石学报, 26(7): 2217-2225

    [99]

    岳雅慧, 丁林. 2006. 西藏林周基性岩脉的40Ar/39Ar年代学、地球化学及其成因. 岩石学报, 22(4): 856-866

    [100]

    张宏飞, 徐旺春, 郭建秋, 宗克清, 蔡宏明, 袁洪林. 2007. 冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成: 新特提斯洋早侏罗世俯冲作用的证据. 岩石学报, 23(6): 1347-1353

    [101]

    赵志丹, 莫宣学, Nomade S, Renne PR, 周肃, 董国臣, 王亮亮, 朱弟成, 廖忠礼. 2006. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义. 岩石学报, 22(4): 787-794

    [102]

    赵志丹, 朱弟成, 董国臣, 莫宣学, Depaolo D, 贾黎黎, 胡兆初, 袁洪林. 2011. 西藏当雄南部约54Ma辉长岩-花岗岩杂岩的岩石成因及意义. 岩石学报, 27(12): 3513-3524

    [103]

    周肃, 莫宣学, 董国臣, 赵志丹, 邱瑞照, 王亮亮, 郭铁鹰. 2004. 西藏林周盆地林子宗火山岩40Ar/39Ar年代格架. 科学通报, 49(20): 2095-2103

    [104]

    朱弟成, 潘桂棠, 莫宣学, 王立全, 廖忠礼, 赵志丹, 董国臣, 周长勇. 2006. 冈底斯中北部晚侏罗世-早白垩世地球动力学环境火山岩约束. 岩石学报, 22(3): 534-546

    [105]

    朱弟成, 潘桂棠, 王立全, 莫宣学, 赵志丹, 周长勇, 廖忠礼, 董国臣, 袁四化. 2008a. 西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论. 地质通报, 27(9): 1535-1550

    [106]

    朱弟成, 潘桂棠, 王立全, 莫宣学, 赵志丹, 周长勇, 廖忠礼, 董国臣, 袁四化. 2008b. 西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境. 地质通报, 27(4): 458-468

    [107]

    朱弟成, 莫宣学, 王立全, 赵志丹, 牛耀玲, 周长勇, 杨岳衡. 2009. 西藏冈底斯东部察隅高分异I型花岗岩的成因: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束. 中国科学(D辑), 39(7): 833-848

  • 加载中
计量
  • 文章访问数:  5869
  • PDF下载数:  5667
  • 施引文献:  0
出版历程
收稿日期:  2014-05-28
修回日期:  2015-02-01
刊出日期:  2015-05-31

目录