利用Sentinel-1卫星数据和地形数据分析法国Le Teil地震与采石活动关系

马升龙, 周宇, 沈旭章

马升龙, 周宇, 沈旭章. 利用Sentinel-1卫星数据和地形数据分析法国Le Teil地震与采石活动关系[J]. 武汉大学学报 ( 信息科学版), 2024, 49(7): 1190-1200. DOI: 10.13203/j.whugis20210248
引用本文: 马升龙, 周宇, 沈旭章. 利用Sentinel-1卫星数据和地形数据分析法国Le Teil地震与采石活动关系[J]. 武汉大学学报 ( 信息科学版), 2024, 49(7): 1190-1200. DOI: 10.13203/j.whugis20210248
MA Shenglong, ZHOU Yu, SHEN Xuzhang. Analysis of Le Teil Earthquake in France and Its Correlation with Le Teil Quarry Extraction Using Sentinel-1 and Topographic Data[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1190-1200. DOI: 10.13203/j.whugis20210248
Citation: MA Shenglong, ZHOU Yu, SHEN Xuzhang. Analysis of Le Teil Earthquake in France and Its Correlation with Le Teil Quarry Extraction Using Sentinel-1 and Topographic Data[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1190-1200. DOI: 10.13203/j.whugis20210248

利用Sentinel-1卫星数据和地形数据分析法国Le Teil地震与采石活动关系

基金项目: 

第二次青藏高原综合科学考察研究 2019QZKK0901

国家自然科学基金 41874020

广东省引进人才创新创业团队 2016ZT06N331

详细信息
    作者简介:

    马升龙,硕士,研究方向为地球物理学。mashlong@mail2.sysu.edu.cn

    通讯作者:

    周宇,博士,教授。zhouyu36@mail.sysu.edu.cn

Analysis of Le Teil Earthquake in France and Its Correlation with Le Teil Quarry Extraction Using Sentinel-1 and Topographic Data

  • 摘要:

    2019年11月11日的Mw 4.9 Le Teil地震是法国东南部罗纳河谷地区历史上破坏性最大的地震。基于哨兵1号卫星数据,利用GAMMA软件提取了该地震同震形变场。根据同震形变场,采用贝叶斯算法和最速下降法分别反演了断层几何参数和断层滑动分布。利用2000年和2006—2011年的两期数字高程模型数据估算了断层附近采石场开采量,并根据三维均匀弹性半空间的Boussinesq解求得由采石活动所造成的断层面上的库仑应力变化。结果表明,升降轨卫星视线向最大垂直位移分别为14.9 cm和8.6 cm。Le Teil地震是倾角72°、走向54°、平均滑动角约108°的高角度逆冲型地震;地震破裂到地表,破裂面积约3 413 m×1 358 m,最大破裂深度约为1.472 km;断层最大滑动量0.2 m,主滑动量(> 0.15 m)集中于0~0.75 km深度范围内;反演得到的矩震级为Mw 4.79。断层面上的库仑应力变化显示库仑应力在2000年以后的6~11年内增加了0.024 MPa。Le Teil采石场在1833—2019年被持续开采,且2007年以来,采石速率迅速增大。若考虑整个采石周期,则库仑应力变化可达0.1 MPa,远大于该地区的构造加载速率,表明2019年Le Teil地震与采石活动密切相关。

    Abstract:
    Objectives 

    The Mw 4.9 Le Teil earthquake that occurred on November 11, 2019 is the most destructive earthquake recorded in the Rhône River Valley of France.

    Methods 

    We first used Sentinel-1 data to calculate the coseismic displacement field of the Le Teil earthquake with the GAMMA software package. We then obtained fault geometric parameters and coseismic displacement fields based on Bayesian inversion and the steepest descent method (SDM). We last quantified the effects of quarry extraction activity on fault by using the digital elevation model (DEM) data acquired in 2000 and 2006—2011. We calculated the extraction volume and the Coulomb stress change on the fault plane based on the Boussinesq solution of three dimension homogeneous and elastic half-space.

    Results 

    The coseismic displacement field show that the largest displacements in the line of sight of the ascending and descending orbits are 14.9 cm and 8.6 cm, respectively. We find that the seismogenic fault has a southeast dip angle of 72°, a strike of 54° and an average rake of 108°; the earthquake rupture reached the surface, with a rupture area of about 3 413 m×1 358 m, and a depth of about 1.472 km. The slip is over 0.15 m and is concentrated at a depth of 0–0.75 km with a peak slip of 0.2 m. We calculated the geodetic magnitude to be Mw 4.79. The Coulomb stress change on the fault plane is 0.024 MPa in 6–11 years after 2000.

    Conclusions 

    The rock extraction of the Le Teil quarry had been active during 1833—2019, and the extraction is even more intense after 2007. The Coulomb stress change on the fault plane could reach up to 0.1 MPa, which is much larger than the local tectonic loading rate, suggesting that the Le Teil earthquake is strongly related to rock extraction activities.

  • 感谢欧洲空间局提供的Sentinel‑1卫星数据(https://scihub.copernicus.eu/),法国国家地理和林业信息研究所提供的高精度地形数据(https://portal.opentopography.org/dataspace/dataset?opentopoID=OTDS.112019.32631.1),美国国家航空航天局提供的SRTM DEM下载(https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1N.003),日本航空航天局提供的AW3D30 DEM下载(https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm),德国地学研究中心汪荣江老师提供的SDM程序(ftp://ftp.gfz-potsdam.de/pub/home/turk/wang/),英国COMET提供的GBIS软件(https://comet.nerc.ac.uk/gbis/)。文中的图件大部分利用GMT软件绘制(http://www.soest.hawaii.edu/gmt/)。

    http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20210248

  • 图  1   Le Teil地震构造背景

    Figure  1.   Tectonic Background of the Le Teil Earthquake

    图  2   Le Teil地震InSAR同震形变场

    Figure  2.   Coseismic Displacement Fields of the Le Teil Earthquake

    图  3   均一滑动模型下的观测、模拟、残差图

    Figure  3.   Coseismic Displacement Field, Model Prediction and Residual from the Uniform Fault Model

    图  4   偏离度和粗糙度之间的折中曲线

    Figure  4.   Trade-off Curve Between Misfit and Roughness

    图  5   断层滑动分布

    Figure  5.   Fault Slip Distribution

    图  6   分布式模型下的观测-模拟-残差图

    Figure  6.   Coseismic Displacement Field, Model Prediction and Residual from the Nonuniform Fault Model

    图  7   6~11 a间的采石场高程变化

    Figure  7.   Elevation Differences of the Le Teil Quarry in 6-11 Years

    图  8   断层面上应力变化

    Figure  8.   Stress Changes on the Fault Plane

    表  1   Le Teil地震震源参数

    Table  1   Source Parameters for the Le Teil Earthquake

    研究来源长度/m宽度/m矩震级深度/km走向/(°)倾角/(°)滑动角/(°)最大滑动量/m备注
    USGS14.810535799
    LDG/CEA24.826259107
    Ritz等[2]4.91504589
    Novellis等[1]5 0001 9001.65062.3116.50.26单一断层
    3 5001 9001.443.252.2980.29断层F1
    1 6001 9001.525.462.093.40.21断层F2
    本文5 4001 6004.791.654721080.2
    注:USGS1https://earthquake.usgs.gov/earthquakes/eventpage/us60006a6i/executive;LDG/CEA2http://www-dase.cea.fr/actu/dossiers_scientifiques/2019-11-11/index.html
    下载: 导出CSV

    表  2   Le Teil地震干涉数据信息

    Table  2   InSAR Data for the Le Teil Earthquake

    传感器主影像从影像轨道类型垂直基线/m轨道
    Sentinel-12019110620191112升轨-15.2T59
    2019103120191112降轨-75.7T139
    下载: 导出CSV

    表  3   最优模型参数

    Table  3   Optimal Model Parameters

    名称断层长度/m断层宽度/m断层深度/m倾角/(°)走向角/(°)走滑量/m倾滑量/m
    下界3 0001 00003030-0.5-0.5
    上界5 5003 0003 00080700.50.5
    最优3 413.21 357.91 471.772.1353.93-0.106 70.109 8
    2.50%3 338.71 199.21 332.669.6353.58-0.120 60.102 7
    97.50%3 497.31 480.91 583.274.6854.16-0.094 10.118 7
    下载: 导出CSV

    表  4   采石体积与库仑应力变化

    Table  4   Rock Extraction Volume and Coulomb Stress Change

    时间段采石体积/m3平均开采量/(m3·a-1库仑应力变化/MPa单位体积的库仑应力变化/(10-9 MPa·m-3)来源
    1979—200718 511 103661 1110.115.942Novellis等[1]
    2007—20114 139 1201 034 7800.037.248Novellis等[1]
    1833—201142 276 334237 5080.194.494Novellis等[1]
    2000—(2006—2011)3 995 482.2363 226~665 9140.0246.007本文
    1946—20190.15Ampuero等[32]
    下载: 导出CSV
  • [1]

    De Novellis V, Convertito V, Valkaniotis S, et al. Author Correction: Coincident Locations of Rupture Nucleation During the 2019 Le Teil Earthquake, France and Maximum Stress Change from Local Cement Quarrying[J]. Communications Earth & Environment, 2021, 2(1): 1-6.

    [2]

    Ritz J F, Baize S, Ferry M, et al. Surface Rupture and Shallow Fault Reactivation During the 2019 Mw 4.9 Le Teil Earthquake, France[J]. Communications Earth & Environment, 2020, 1(1): 1-11.

    [3]

    Causse M, Cornou C, Maufroy E, et al. Exceptional Ground Motion During the Shallow Mw 4.9 2019 Le Teil Earthquake, France[J]. Communications Earth & Environment, 2021, 2(1): 1-9.

    [4]

    Sibson R H. Fault Zone Models, Heat Flow, and the Depth Distribution of Earthquakes in the Continental Crust of the United States[J]. Bulletin of the Seismological Society of America, 1982, 72(1): 151-163.

    [5] 张国民, 李丽. 地壳介质的流变性与孕震模型[J]. 地震地质, 2003, 25(1): 1-10.

    Zhang Guomin, Li Li. Rheology of Crustal Media and a Related Seismogenic Model[J]. Seismology and Geology, 2003, 25(1): 1-10.

    [6] 郑勇, 谢祖军. 地震震源深度定位研究的现状与展望[J]. 地震研究, 2017, 40(2): 167-175.

    Zheng Yong, Xie Zujun. Present Status and Prospect of Earthquake Focal Depth Locating[J]. Journal of Seismological Research, 2017, 40(2): 167-175.

    [7]

    Klose C D, Seeber L. Shallow Seismicity in Stable Continental Regions[J]. Seismological Research Letters, 2007, 78(5): 554-562.

    [8] 温扬茂, 许才军. 基于敏感度的迭代拟合法反演玛尼Ms 7.9级地震滑动分布[J]. 武汉大学学报(信息科学版), 2009, 34(6): 732-735.

    Wen Yangmao, Xu Caijun. Ms 7.9 Manyi Earthquake Slip Distribution Inversion by a Sensitivity-Based Iterative Fitting Method[J]. Geomatics and Information Science of Wuhan University, 2009, 34(6): 732-735.

    [9] 李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下的2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022,47(6): 887-897.

    Li Zhenhong, Han Bingquan, Liu Zhenjiang, et al. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan,Qinghai Earthquakes Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2022,47(6): 887-897.

    [10] 张国民, 李丽, 马宏生, 等. 中国大陆地震震源深度及其构造含义[J]. 科学通报, 2002(9): 969-974.

    Zhang Guomin, Li Li, Ma Hongsheng, et al. Focal Depth Research of Earthquakes in Mainland China: Implication for Tectonics[J]. Chinese Science Bulletin, 2002(9): 969-974.

    [11]

    Foulger G R, Wilson M P, Gluyas J G, et al. Global Review of Human-Induced Earthquakes [J]. Earth-Science Reviews, 2018, 178: 438-514.

    [12] 许才军, 汪建军, 熊维. 地震应力触发回顾与展望[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2085-2092.

    Xu Caijun,Wang Jianjun, Xiong Wei. Retrospection and Perspective for Earthquake Stress Triggering[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2085-2092.

    [13]

    Grigoli F, Cesca S, Rinaldi A P, et al. The November 2017 Mw 5.5 Pohang Earthquake: A Possible Case of Induced Seismicity in the Republic Korea[J]. Science, 2018, 360(6392): 1003-1006.

    [14]

    Emanov A F, Emanov A A, Fateev A V, et al. Mining-Induced Seismicity at Open Pit Mines in Kuzbass (Bachatsky Earthquake on June 18, 2013)[J]. Journal of Mining Science, 2014, 50(2): 224-228.

    [15]

    Yakovlev D V, Lazarevich T I. Natural and Induced Seismic Activity in Kuzbass[J]. Journal of Mining Science, 2013, 49(6): 862-872.

    [16] 何登发, 鲁人齐, 黄涵宇, 等. 长宁页岩气开发区地震的构造地质背景[J]. 石油勘探与开发, 2019, 46(5): 993-1006.

    He Dengfa, Lu Renqi, Huang Hanyu, et al. Tectonic and Geological Background of the Earthquake Hazards in Changning Shale Gas Development Zone, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(5): 993-1006.

    [17]

    Lei X, Huang D, Su J, et al. Fault Reactivation and Earthquakes with Magnitudes of up to Mw 4.7 Induced by Shale-Gas Hydraulic Fracturing in Sichuan Basin, China[J]. Scientific Reports, 2017, 7(1): 1-12.

    [18]

    Lei X, Wang Z, Su J. The December 2018 ML 5.7 and January 2019 ML 5.3 Earthquakes in South Sichuan Basin Induced by Shale Gas Hydraulic Fracturing[J]. Seismological Research Letters, 2019, 90(3): 1099-1110.

    [19] 雷兴林, 苏金蓉, 王志伟. 四川盆地南部持续增长的地震活动及其与工业注水活动的关联[J]. 中国科学:地球科学, 2020, 50(11): 1505-1532.

    Lei Xinglin, Su Jinrong, Wang Zhiwei. Growing Seismicity in the Sichuan Basin and Its Association with Industrial Activities[J]. Science China Earth Sciences, 2020, 50(11): 1505-1532.

    [20]

    Meng L, McGarr A, Zhou L, et al. An Investigation of Seismicity Induced by Hydraulic Fracturing in the Sichuan Basin of China Based on Data from a Temporary Seismic Networkan Investigation of Seismicity Induced by Hydraulic Fracturing in the Sichuan Basin[J]. Bulletin of the Seismological Society of America, 2019, 109(1): 348-357.

    [21] 易桂喜, 龙锋, 梁明剑, 等. 四川盆地荣县-威远-资中地区发震构造几何结构与构造变形特征:基于震源机制解的认识和启示[J]. 地球物理学报, 2020, 63(9): 3275-3291.

    Yi Guixi, Long Feng, Liang Mingjian, et al. Geometry and Tectonic Deformation of Seismogenic Structures in the Rongxian-Weiyuan-Zizhong Region,Sichuan Basin:Insights from Focal Mechanism Solutions[J]. Chinese Journal of Geophysics, 2020, 63(9): 3275-3291.

    [22]

    Kondas S M. Crustal Unloading as a Source of Induced Seismicity in Plainfield, Connecticut[D]. Boston:Boston College, 2020.

    [23]

    Qian Y, Chen X, Luo H, et al. An Extremely Shallow Mw 4.1 Thrust Earthquake in the Eastern Sichuan Basin (China) Likely Triggered by Unloading During Infrastructure Construction[J]. Geophysical Research Letters, 2019, 46(23): 13775-13784.

    [24]

    Wegnüller U, Werner C, Strozzi T, et al. Sentinel-1 Support in the Gamma Software[J]. Procedia Computer Science, 2016, 100: 1305-1312.

    [25] 屠泓为, 汪荣江, 刁法启, 等. 运用SDM方法研究2001年昆仑山口西MS8.1地震破裂分布:GPS和InSAR联合反演的结果[J].地球物理学报,2016,59(6): 2103-2112.

    Tu Hongwei, Wang Rongjiang, Diao Faqi, et al. Slip Model of the 2001 Kunlun Mountain Ms 8.1 Earthquake by SDM: Joint Inversion from GPS and InSAR Data[J]. Chinese Journal of Geophysics, 2016, 59(6): 2103-2112.

    [26]

    Hetnarski R B, Ignaczak J. Mathematical Theory of Elasticity[M]. Boca Raton, FL:CRC Press Taylor & Francis Group, 2016.

    [27]

    Okada Y. Surface Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1135-1154.

    [28]

    He P, Wen Y, Ding K, et al. Normal Faulting in the 2020 Mw 6.2 Yutian Event: Implications for Ongoing E-W Thinning in Northern Tibet[J]. Remote Sensing, 2020, 12(18): 3012.

    [29]

    He P, Wang Q, Ding K, et al. Source Model of the 2015 Mw 6.4 Pishan Earthquake Constrained by Interferometric Synthetic Aperture Radar and GPS: Insight into Blind Rupture in the Western Kunlun Shan[J]. Geophysical Research Letters, 2016, 43(4): 1511-1519.

    [30]

    Jónsson S, Zebker H, Segall P, et al. Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1377-1389.

    [31]

    Bagnardi M, Hooper A. Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2194-2211.

    [32]

    Ampuero J P, Billant J, Brenguier F, et al.The November 11 2019 Le Teil, France M 5 Earthquake: A Triggered Event in Nuclear Country[C]//EGU General Assembly Conference, Online, 2020.

    [33]

    McGarr A, Simpson D, Seeber L. 40 Case Histories of Induced and Triggered Seismicity[J]. International Geophysics, 2002, 81(A): 647-661.

    [34]

    Perfettini H, Stein R S, Simpson R, et al. Stress Transfer by the 1988—1989 M=5.3 and 5.4 Lake Elsman Foreshocks to the Loma Prieta Fault: Unclamping at the Site of Peak Mainshock Slip[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B9): 20169-20182.

    [35]

    Reasenberg P A, Simpson R W. Response of Regional Seismicity to the Static Stress Change Produced by the Loma Prieta Earthquake[J]. Science, 1992, 255(5052): 1687-1690.

图(8)  /  表(4)
计量
  • 文章访问数:  699
  • HTML全文浏览量:  114
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 网络出版日期:  2022-07-21
  • 刊出日期:  2024-07-04

目录

    /

    返回文章
    返回