西藏措勤麦嘎岩基的锆石U-Pb年代学、地球化学和锆石Hf同位素:对中部拉萨地块早白垩世花岗岩类岩石成因的约束

张晓倩, 朱弟成, 赵志丹, 隋清霖, 王青, 袁四化, 胡兆初, 莫宣学. 2012. 西藏措勤麦嘎岩基的锆石U-Pb年代学、地球化学和锆石Hf同位素:对中部拉萨地块早白垩世花岗岩类岩石成因的约束. 岩石学报, 28(5): 1615-1634.
引用本文: 张晓倩, 朱弟成, 赵志丹, 隋清霖, 王青, 袁四化, 胡兆初, 莫宣学. 2012. 西藏措勤麦嘎岩基的锆石U-Pb年代学、地球化学和锆石Hf同位素:对中部拉萨地块早白垩世花岗岩类岩石成因的约束. 岩石学报, 28(5): 1615-1634.
ZHANG XiaoQian, ZHU DiCheng, ZHAO ZhiDan, SUI QingLin, WANG Qing, YUAN SiHua, HU ZhaoChu, MO XuanXue. 2012. Geochemistry, zircon U-Pb geochronology and in-situ Hf isotope of the Maiga batholith in Coqen, Tibet: Constraints on the petrogenesis of the Early Cretaceous granitoids in the central Lhasa Terrane. Acta Petrologica Sinica, 28(5): 1615-1634.
Citation: ZHANG XiaoQian, ZHU DiCheng, ZHAO ZhiDan, SUI QingLin, WANG Qing, YUAN SiHua, HU ZhaoChu, MO XuanXue. 2012. Geochemistry, zircon U-Pb geochronology and in-situ Hf isotope of the Maiga batholith in Coqen, Tibet: Constraints on the petrogenesis of the Early Cretaceous granitoids in the central Lhasa Terrane. Acta Petrologica Sinica, 28(5): 1615-1634.

西藏措勤麦嘎岩基的锆石U-Pb年代学、地球化学和锆石Hf同位素:对中部拉萨地块早白垩世花岗岩类岩石成因的约束

  • 基金项目:

    本文受国家973项目(2009CB421002、2011CB403102)、中央高校基本科研业务费专项资金项目(2010ZD02)、教育部新世纪优秀人才项目(NCET-10-0711)、国家自然科学重点基金项目(40830317)、中国地质调查局工作项目(1212011121260、1212011121066)、深部探测技术与实验研究专项课题(Sinoprobe-04-02)及长江学者和创新团队发展计划(IRT1083)联合资助.

详细信息
    作者简介:

    张晓倩, 女, 1987年生, 硕士生, 矿物学、岩石学、矿床学专业, E-mail: lucky.qian0105@163.com

    通讯作者: 朱弟成, 男, 1972年生, 教授, 主要从事岩浆作用与特提斯演化研究, E-mail: dchengzhu@163.com
  • 中图分类号: P588.121;P588.122;P697.3

Geochemistry, zircon U-Pb geochronology and in-situ Hf isotope of the Maiga batholith in Coqen, Tibet: Constraints on the petrogenesis of the Early Cretaceous granitoids in the central Lhasa Terrane

More Information
  • 西藏中部拉萨地块大规模早白垩世花岗岩类的岩浆源区和岩石成因迄今尚未得到很好约束,对这些问题的深入理解将有助于揭示拉萨地块白垩纪时期的岩浆作用过程及成矿背景。本文报道了中部拉萨地块代表性花岗岩基--措勤麦嘎岩基的锆石U-Pb年代学、全岩元素地球化学、Sr-Nd同位素和锆石Hf同位素数据。本文锆石U-Pb定年结果表明,麦嘎岩基花岗质岩主要侵位于122±1Ma和113±2Ma,闪长质包体与后者同期 (113±2Ma)。122±1Ma花岗质岩属I型弱过铝质高钾钙碱性系列,(87Sr/86Sr)i值高 (0.7147),全岩εNd(t)(-12.0) 和锆石εHf(t)(-15.7~-11.1) 为较大的负值,表明其很可能来源于古老下地壳物质的重熔。113±2Ma寄主花岗质岩为I型偏铝质-弱过铝质高钾钙碱性系列,相对于122±1Ma花岗质岩石,其 (87Sr/86Sr)i比值偏低 (0.7094~0.7156)、全岩εNd(t) 值 (-12.1~-7.3) 和锆石εHf(t) 值 (-11.1~0.1) 较高,很可能来源于古老下地壳物质的部分熔融,并含有更多幔源物质。闪长质包体 (113±2Ma) 为偏铝质中-高钾钙碱性系列,以变化范围大的 (87Sr/86Sr)i(0.7058~0.7105)、负的全岩εNd(t) 值 (-10.7~-9.8) 及负的锆石εHf(t) 值 (-14.0~-5.6) 为特征,可能是古老富集岩石圈地幔物质部分熔融的产物或亏损地幔物质经历强烈地壳混染作用的结果。在目前已有资料条件下 (缺乏同期基性岩石的相关数据),本文暂将麦嘎岩基113±2Ma寄主花岗质岩及同期闪长质包体解释为镁铁质岩浆与长英质岩浆发生不同程度岩浆混合作用的产物,这一解释可能对中部拉萨地块同期花岗类的岩石成因具普遍意义。麦嘎岩基及中部拉萨地块同期岩浆岩约113Ma幔源物质增加现象,可能是南向俯冲的班公湖-怒江洋壳岩石圈板片断离的结果。

  • 加载中
  • 图 1 

    西藏高原构造单元图及措勤麦嘎岩基地质图

    Figure 1. 

    Tectonic subdivision of the Tibetan Plateau and simplified geological map of the Maiga batholith, Coqen

    图 2 

    麦嘎岩基花岗质岩石及闪长质包体的野外及岩相学照片

    Figure 2. 

    Field and petrographical photos of granitoids and dioritic enclaves in the Maiga batholith

    图 3 

    麦嘎岩基定年样品中的锆石CL图像和谐和图

    Figure 3. 

    Cathodoluminescence (CL) images and concordia plots for zircons from the Maiga batholith

    图 4 

    麦嘎岩基 (填充) 和中部拉萨地块其它地区 (未填充) 花岗质岩石与闪长质包体的地球化学图解

    Figure 4. 

    Geochemical plots of granitoids and dioritic enclaves in the Maiga batholith (filled) and other areas of the central Lhasa Terrane (unfilled)

    图 5 

    麦嘎岩基 (填充) 和中部拉萨地块其它地区 (未填充) 花岗质岩石与闪长质包体的选择性地球化学散点图 (图 5fZorpi et al., 1991)

    Figure 5. 

    Selected geochemical plots of granitoids and dioritic enclaves in the Maiga batholith (filled) and other areas of the central Lhasa Terrane (unfilled) (Fig. 5f after Zorpi et al., 1991)

    图 6 

    麦嘎岩基花岗质岩石 (a) 和闪长质包体 (b) 的微量元素蜘蛛图 (阴影部分为中部拉萨地块其它地区样品)(原始地幔标准化值及元素排序据Sun and McDonough, 1989)

    Figure 6. 

    Trace elemental spidergrams of the analyzed samples from granitoids (a) and dioritic enclaves (b) in the Maiga batholith (other areas of the central Lhasa Terrane showing with shade) (Data for normalization and plotting order are after Sun and McDonough, 1989)

    图 7 

    麦嘎岩基 (填充) 和中部拉萨地块其它地区 (未填充) 花岗质岩石与闪长质包体的εNd(t)-(87Sr/86Sr)i

    Figure 7. 

    εNd(t)-(87Sr/86Sr)i diagram of granitoids and dioritic enclaves in the Maiga batholith (filled) and other areas of the central Lhasa Terrane (unfilled)

    图 8 

    麦嘎岩基锆石εHf(t) 值 (a)、锆石Hf同位素地壳模式年龄 (tDMC) 直方图 (b) 和εHf(t)-年龄图解 (c, 据Zhu et al., 2011a)

    Figure 8. 

    Histograms of zircon εHf(t) (a), zircon Hf isotope crust model age (tDMC) (b) and εHf(t)-age (Ma) (c, after Zhu et al., 2011a) diagram for the Maiga batholith

    图 9 

    麦嘎岩基 (填充) 和中部拉萨地块其它地区 (未填充) 花岗质岩石与闪长质包体的岩石成因判别图解

    Figure 9. 

    Distrimination diagrams of petrogenetic types for granitoids and dioritic enclaves in the Maiga batholith (filled) and other areas of the central Lhasa Terrane (unfilled)

    图 10 

    中部拉萨地块早白垩世时期构造岩浆演化示意图 (据Zhu et al., 2011a修改)

    Figure 10. 

    Schematic illustration of the tectonomagmatic evolution of the central Lhasa Terrane during the Early Cretaceous time (modified after Zhu et al., 2011a)

  •  

    Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192: 59-79

     

    Bouvier A, Vervoort JD and Patchett PJ. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273: 48-57

     

    Cao SH, Li DW, Yu ZZ, Yuan JY, Wu XL and Hu WZ. 2007. Metallogenic and geological characteristics of the Nixiong superlarge magnetite deposit in Gangdese, Tibet. Geotectonica et Metallogenia, 31(3): 328-335(in Chinese with English abstract)

     

    Chappell BW and Stephens WE. 1988. Origin of infracrustal (I-type) granite magmas. Trans. R. Soc. Edinburgh Earth Sci., 79(2-3): 71-86

     

    Chappell BW and White ARJ. 1991. Restite enclaves and the restite model. In: Didier J and Barbarin B (eds). Enclaves and Granite Petrology. Amsterdam: Elsevier, 375-381

     

    Chappell BW. 1999. Aluminium saturation in I- and S- type granites and the characterization of fractionated haplogranites. Lithos, 46: 535-551

     

    Chen WF, Chen PR, Huang HY, Ding X and Sun T. 2007. Chronological and geochemical studies of granite and enclave in Baimashan pluton, Hunan. Science in China (Series D), 50(11): 1606-1627

     

    Chiu HY, Chung SL, Wu FY, Liu DY, Liang YH, Lin YJ, Iizuka Y, Xie LW, Wang YB and Chu MF. 2009. Zircon U-Pb and Hf isotope constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477: 3-19

     

    Collins WJ and Richards SW. 2008. Geodynamic significance of S-type granites in circum-Pacific orogens. Geology, 36: 559-562

     

    Copeland P, Harrison TM, Pan Y, Kidd WSF, Roden M and Zhang YQ. 1995. Thermal evolution of the Gangdese batholith, southern Tibet: A history of episodic unroofing. Tectonics, 14: 223-236

     

    Coulon C, Maluski H, Bollinger C and Wang S. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters, 79: 281-302

     

    De La Roche H, Leterrier J, Grande Claude P and Marchal M. 1980. A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analysis: Its relationships and current nomenclature. Chemical Geology, 29: 183-210

     

    Deng J, Yang LQ and Wang CM. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 2501-2509(in Chinese with English abstract)

     

    Desouky MD, Feely M and Mortr P. 1996. Diorite-granite magma mingling and mixing along the axis of Galway Granite batholith, Ireland. Journal of the Society London, 153: 361-374

     

    Didier J. 1984. The Problem of Enclaves in Granitic Rocks: A Review of Recent Ideas on Their Origin. Beijing: Science Press, 137-144

     

    Eyal M, Litvinovsky BA, Katzir Y and Zanvilevich AN. 2004. The Pan-African high-K calc-alkaline peraluminous Elat granite from southern Israel: Geology, geochemistry and petrogenesis. Journal of African Earth Sciences, 40: 115-136

     

    Fei GC, Wen CQ, Wang CS, Wu PY, Wen Q and Zhou X. 2010. Zircon SHRIMP U-Pb age and its geological significance in Dongzhongla allgovite, Mozhugongka area, eastern segment of Gangdise, Tibet, China. Geological Bulletin of China, 29(8): 1138-1142(in Chinese with English abstract)

     

    Gao S, Liu XM, Yuan HL, Hattendorf B, Gunther D, Chen L and Hu SH. 2002. Determination of forty-two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards Newsletter-Journal of Geostandards and Geoanalysis, 26: 191-196

     

    Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64: 133-147

     

    Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu X and Zhou X. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237-269

     

    Guan Q, Zhu DC, Zhao ZD, Dong GC, Zhang LL, Li XW, Liu M, Mo XX, Liu YS and Yuan HL. 2012. Crustal thickening prior to 38Ma in southern Tibet: Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research, 21: 88-99

     

    Harris NBW, Xu RH, Lewis CL, Hawkesworth CJ and Zhang YQ. 1988. Isotope geochemistry of the 1985 Tibet Geotraverse: Lhasa to Golmud. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 327, 1594, 263-285

     

    He ZH, Yang DM and Wang TW. 2006. The determination of Early Cretaceous post-collision granitoids in Sangba area of Gangdese tectonic belt and its tectonic significance. Acta Petrologica et Mineralogica, 25(3): 185-193(in Chinese with Einglish abstract)

     

    Holden P, Halliday AN and Stephens WE. 1987. Neodymium and strontium isotope content of microdiorite enclaves points to mantle input to granitoids production. Nature, 330: 53-56

     

    Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18: 423-439

     

    Hu DG, Wu ZH, Jiang W, Shi YR, Ye PS and Liu QS. 2005. SHRIMP zircon U-Pb age and Nd isotopic study on the Nyainqêntanglha Group in Tibet. Science in China, 48: 1377-1386

     

    Jackson SE, Pearson NJ, Griffin WL and Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211: 47-69

     

    Ji WQ, Wu FY, Chung SL, Li JX and Liu CZ. 2009. Zircon U-Pb chronology and Hf isotopic constraints on the petrogenesis of Gangdese batholiths, southern Tibet. Chemical Geology, 262: 229-245, doi:10.1016/j.chemgeo.2009.01.020

     

    Kang ZQ, Xu JF, Dong YH and Wang BQ. 2008. Cretaceous volcanic rocks of Zenong Group in north-middle Lhasa block: Products of southward subducting of the Slainajap ocean? Acta Petrologica Sinica, 24(2): 303-314(in Chinese with Einglish abstract)

     

    Kang ZQ, Xu JF, Wang BD and Chen JL. 2010. Qushenla Formation volcanic rocks in north Lhasa block: Products of Bangong Co-Nujiang Tethyp's southward subduction. Acta Petrologica Sinica, 26(10): 3106-3116(in Chinese with Einglish abstract)

     

    Kapp P, Yin A, Harrison TM and Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117: 865-878, doi: 10.1130/ B25595

     

    Kapp P, DeCelles PG, Gehrels GE, Heizler M and Ding L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. GSA Bulletin, 119: 917-932

     

    Karsli O, Chen B, Aydin F and Sen C. 2007. Geochemical and Sr-Nd-Pb isotopic compositions of the Eocene Dlek and Sariiek Plutons, Eastern Turkey: Implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting. Lithos, 98: 67-96

     

    Karsli O, Dokuz A, Uysal I, Aydin F, Chen B, Kandemir R and Wijbrans J. 2010. Relative contributions of crust and mantle to generation of Campanian high-K calc-alkaline I-type granitoids in a subduction setting, with special reference to the Harsit Pluton, Eastern Turkey. Contrib. Mineral. Petrol., 160: 467-487

     

    Kaygusuz A and Aydincakir K. 2009. Mineralogy, whole-rock and Sr-Nd isotope geochemistry of mafic microgranular enclaves in Cretaceous Dagbasi granitoids, Eastern Pontides, NE Turkey: Evidence of magma mixing, mingling and chemical equilibration. Chemie der Erde, 69: 247-277

     

    Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM and Whitehouse MJ. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 16: 980-983

     

    Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei GJ and Qi CS. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos, 96: 186-204

     

    Li XH, Li WX, Wang XC, Li QL, Liu Y and Tang GQ. 2009. Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China: In situ zircon Hf-O isotopic constraints. Science in China (Series D), 39(7): 872-887(in Chinese)

     

    Liu MH. 2011. Geochronology and geochemistry of the Samba granitoids in north Gangdese. Master Degree Thesis. Beijing: China University of Geosciences (in Chinese with English summary)

     

    Liu W, Li FQ, Yuan SH, Zhang WP, Zhuo JW, Wang BD and Tang WQ. 2010. Volcanic rocks source of Zenong Group in the Coqen area of Tibet: Geochemistry and Sr-Nd isotopic limitation. Acta Petrologica et Mineralogica, 29(4): 367-376(in Chinese with English abstract)

     

    Liu YS, Gao S, Yuan HL, Zhou L, Liu XM, Wang XC, Hu ZC and Wang LS. 2004. U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: Insights on evolution of lower continental crust. Chemical Geology, 211: 87-109

     

    Liu YS, Gao S, Gao CG, Zong KQ, Hu ZC and Ling WL. 2010. Garnet-rich granulite xenoliths from the Hannuoba basalts, North China: Petrogenesis and implications for the Mesozoic crust-mantle interaction. Journal of Earth Science, 21(5): 669-691

     

    Ludwig KR. 2003. Isoplot v. 3.0: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center. Special Publication, 4: 1-70

     

    Mo XX, Luo ZH, Deng JF, Yu XH, Liu DC, Chen HW, Yuan WM and Liu YH. 2007. Granitoids and crustal growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414(in Chinese with English abstract)

     

    Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S and Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology, 250: 49-68

     

    Neves SP and Vauchez A. 1995. Successive mixing and mingling of magmas in a plutonic complex of Northeast Brazil. Lithos, 34: 275-299

     

    Oyarzun R, Oyarzun J, Menard JJ and Lillo J. 2003. The Cretaceous iron belt of northern Chile role of oceanic plates, a superplume event, and a major shear zone. Mineralium Deposita, 38: 640-646

     

    Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Zhao ZD, Geng QR and Liao ZL. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521-533(in Chinese with English abstract)

     

    Pearce JA and Mei HJ. 1988. Volcanic rocks of the 1985 Tibet Geotraverse: Lhasa to Golmud. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 327: 169-201

     

    Pitcher WS. 1997. The Nature and Origin of Granite. London: Chapman and Hall

     

    Qin F, Xu XX and Luo ZH. 2006. Mixing and mingling in petrogenesis of the Fangshan intrusion, Beijing. Acta Petrologica Sinica, 22(12): 2957-2970(in Chinese with English abstract)

     

    Ravikant V, Wu FY and Ji WQ. 2011. U-Pb age and Hf isotopic constraints of detrital zircons from the Himalayan foreland Subathu sub-basin on the Tertiary palaeogeography of the Himalaya. Earth and Planetary Science Letters, 304: 356-368

     

    Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: Longman Group UK Ltd., 1-352

     

    Silva MMVG, Neiva AMR and Whitehouse MJ. 2000. Geochemistry of enclaves and host granites from the Nelas area, central Portugal. Lithos, 50: 153-170

     

    Soderlund U, Patchett PJ, Vervoort JD and Isachsen CE. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219: 311-324

     

    Sun JF, Yang JH, Wu FY, Li XH, Yang YH, Xie LW and Wilde SA. 2010. Magma mixing controlling the origin of the Early Cretaceous Fangshan granitic pluton, North China Craton: In situ U-Pb age and Sr-, Nd-, Hf- and O-isotope evidence. Lithos, 120: 421-438

     

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocena Basins. Geological Society Special Publication, 42: 313-345

     

    Sylvester PJ. 1989. Post-collisional alkaline granites. J. Geol., 97: 261-280

     

    Vernon RH. 1990. Crystallization and hybridism in microgranitoid enclave magmas: Microstructural evidence. J. Geophys. Res., 95: 17849-17859

     

    Wang CS, Li XH, Hu XM and Jansa LF. 2002. Latest marine horizon north of Qomolangma (Mt. Everest): Implications for closure of Tethys seaway and collision tectonics. Terra Nova, 14(2): 114-120

     

    Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407-419

     

    Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC and Sun DY. 2003. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis. Lithos, 66: 241-273

     

    Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238(in Chinese with English abstract)

     

    Wu FY, Ji WQ, Liu CZ and Chung SL. 2010. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraintson Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 271: 13-25

     

    Xu RH, Schrer U and Allègre CJ. 1985. Magmatism and metamorphism in the Lhasa block (Tibet): A geochronological study. Journal of Geology, 93: 41-57

     

    Yang JH, Wu FY, Chung SL, Wilde SA and Chu MF. 2004. Multiple sources for the origin of granites: Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, northeast China. Geochimica et Cosmochimica Acta, 68: 4469-4483

     

    Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280

     

    Yuan HL, Gao S, Dai MN, Zong CL, Günther D, Fontaine GH, Liu XM and Diwu CR. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 247: 100-118

     

    Yuan JY, Cao SH, Luo XC and Hu WZ. 2008. Discovery, characteristics and significance of the Nyixung skarn iron-copper field in Coqen County, Tibet. Geology in China, 35(1): 88-94 (in Chinese with English abstract)

     

    Zhang HF, Parrish R, Zhang L, Xu WC, Yuan HL, Gao S and Crowley QG. 2007. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination. Lithos, 97: 323-335

     

    Zhang KJ, Xia BD, Wang GM, Li YT and Ye HF. 2004. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China, Geological Society of America Bulletin, 116: 1202-1222

     

    Zhang LL, Zhu DC, Zhao ZD, Liao ZL, Wang LQ and Mo XX. 2011. Early Cretaceous granitoids in Xainza, Tibet: Evidence of slab break-off. Acta Petrologica Sinica, 27(7): 1938-1948(in Chinese with English abstract)

     

    Zhang Q, Wang Y, Pan GQ, Li CD and Jin WJ. 2008. Sources of granites: Some crucial questions on granite study (4). Acta Petrologica Sinica, 24(6): 1193-1204(in Chinese with English abstract)

     

    Zhang XQ, Zhu DC, Zhao ZD, Wang LQ, Hang JC and Mo XX. 2010. Petrogenesis of the Nixiong pluton in Coqen, Tibet and its potential significance for the Nixiong Fe-rich mineralization. Acta Petrologica Sinica, 26(6): 1793-1804(in Chinese with English abstract)

     

    Zhang ZC, Dong SY, Huang H, Ma LT, Zhang DY, Zhang S and Xue CJ. 2009. Geology and geochemistry of the Permian intermediate-acid intrusions in the south western Tianshan, Xinjiang, China: Implications for petrogenesis and tectonice. Geological Bulletin of China, 28(12): 1827-1839(in Chinese with English abstract)

     

    Zhou CY, Zhu DC, Zhao ZD, Xu JF, Wang LQ, Chen HH, Xie LW, Dong GC and Zhou S. 2008. Petrogenesis of Daxiong pluton in western Gangdese, Tibet: Zircon U-Pb dating and Hf isotopic constraints. Acta Petrologica Sinica, 24(2): 348-358(in Chinese with English abstract)

     

    Zhu DC, Pan GT, Mo XX, Wang LQ, Liao ZL, Zhao ZD, Dong GC and Zhou CY. 2006. Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese: New insights from volcanic rocks. Acta Petrologica Sinica, 22(3): 534-546(in Chinese with English abstract)

     

    Zhu DC, Pan GT, Chung SL, Liao ZL, Wang LQ and Li GM. 2008a. SHRIMP zircon age and geochemical constraints on the origin of Early Jurassic volcanic rocks from the Yeba Formation, southern Gangdese in south Tibet. International Geology Review, 50(5): 442-471

     

    Zhu DC, Pan GT, Wang LQ, Mo XX, Zhao ZD, Zhou CY, Liao ZL, Dong GC and Yuan SH. 2008b. Tempo-spatial variations of Mesozoic magmatic rocks in the Gangdise belt, Tibet, China, with a discussion of geodynamic setting-related issues. Geological Bulletin of China, 27(9): 1535-1550(in Chinese with English abstract)

     

    Zhu DC, Mo XX, Zhao ZD, Xu JF, Zhou CY, Sun CG, Wang LQ, Chen HH, Dong GC and Zhou S. 2008c. Zircon U-Pb geochronology of Zenong Group volcanic rocks in Coqen area of the Gangdese, Tibet and tectonic significance. Acta Petrologica Sinica, 24(3): 401-412(in Chinese with Einglish abstract)

     

    Zhu DC, Pan GT, Zhao ZD, Lee HY, Kang ZQ, Liao ZL, Wang LQ, Li GM, Dong GC and Liu B. 2009a. Early Cretaceous subduction-related adakite-like rocks in the Gangdese, south Tibet: Products of slab melting and subsequent melt-peridotite interaction? Journal of Asian Earth Sciences, 34: 298-309

     

    Zhu DC, Mo XX, Niu YL, Zhao ZD, Wang LQ, Liu YS and Wu FY. 2009b. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 268: 298-312

     

    Zhu DC, Mo XX, Zhao ZD, Niu YL, Pan GT, Wang LQ and Liao ZL. 2009c. Permian and Early Cretaceous tectonomagmatism in southern Tibet and Tethyan evolution: New perspective. Earth Science Frontiers, 16(2): 1-20(in Chinese with English abstract)

     

    Zhu DC, Mo XX, Wang LQ, Zhao ZD, Niu YL, Zhou CY and Yang YH. 2009d. Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science in China (Series D), 52(9): 1223-1239

     

    Zhu DC, Mo XX, Zhao ZD, Niu YL, Wang LQ, Chu QH, Pan GT, Xu JF and Zhou CY. 2010. Presence of Permian extension- and arc-type magmatism in southern Tibet: Paleogeographic implications. GSA Bull., 122: 979-993

     

    Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011a. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301: 241-255

     

    Zhu DC, Zhao ZD, Niu YL, Dilek Y and Mo XX. 2011b. Lhasa Terrane in southern Tibet came from Australia. Geology, 39: 727-730

     

    Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2012. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, doi:10.1016/j.gr.2012.02.002

     

    Zhu JC, Zhang PH, Xie CF, Zhang H and Yang C. 2006. Magma mixing origin of the mafic enclaves in Lisong Granite, NE Guangxi, western Nanling Mountains. Geochimica, 35(5): 506-516(in Chinese with English abstract)

     

    Zorpi MJ, Coulon C and Orisini JB. 1991. Hybridization between felsic and mafic magma in calk-alkaline granitoids: A case study in northern Sardinia, Italy. Chemical Geology, 92: 45-86

  • 加载中

(10)

计量
  • 文章访问数:  9739
  • PDF下载数:  6539
  • 施引文献:  0
出版历程
收稿日期:  2012-01-07
修回日期:  2012-04-16
刊出日期:  2012-05-01

目录