Citation: | Meiying DONG, Chunxiao JI, Feng CHEN, Yuqing WANG. 2019: Numerical Study of Boundary Layer Structure and Rainfall after Landfall of Typhoon Fitow (2013): Sensitivity to Planetary Boundary Layer Parameterization. Adv. Atmos. Sci, 36(4): 431-450., https://doi.org/10.1007/s00376-018-7281-9 |
Black, P. G.,
|
Bougeault P.,P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 1872, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2
|
Braun S. A.,W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941-3961, https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2
|
Cha D.-H.,Y. Q. Wang, 2013: A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF model. Mon. Wea. Rev., 141, 964-986, https://doi.org/10.1175/MWR-D-12-00077.1
|
Chen L.-S.,Y.-H. Ding, 1979: An Introduction to Typhoons in the Western Pacific. Science Press, Beijing, China, 179- 181. (in Chinese)
|
Chen F.,J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
|
Davis C.,L. F. Bosart, 2002: Numerical simulations of the genesis of Hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon. Wea. Rev., 130, 1100-1124, https://doi.org/10.1175/1520-0493(2002)130<1100:NSOTGO>2.0.CO;2
|
Deng G.,Y.-S. Zhou, and J.-T. Li, 2005: The experiments of the boundary layer schemes on simulated typhoon Part I. The effect on the structure of typhoon. Chinese Journal of Atmospheric Sciences, 29(
|
Dudhia J.,1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
|
Emanuel K. A.,1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
|
Emanuel K. A.,1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969-3976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2
|
Emanuel K. A.,1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 1014-1026, https://doi.org/10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2
|
Foster R. C.,2009: Boundary-layer similarity under an axisymmetric, gradient wind vortex. Bound.-Layer Meteor., 131, 321-344, https://doi.org/10.1007/s10546-009-9379-1
|
Gopalakrishnan S. G.,F. D. Marks Jr., J. A. Zhang, X. Zhang, J.-W. Bao, and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high resolution HWRF system. J. Atmos. Sci., 70, 524-541, https://doi.org/10.1175/JAS-D-11-0340.1
|
Hill K. A.,G. M. Lackmann, 2009: Analysis of idealized tropical cyclone simulations using the weather research and forecasting model: Sensitivity to turbulence parameterization and grid spacing. Mon. Wea. Rev., 137: 745-765, https://doi.org/10.1175/2008MWR2220.1
|
Holland, G. J., 1984: Tropical cyclone motion. A comparison of theory and observation. J. Atmos. Sci., 41, 68, https://doi.org/10.1175/1520-0469(1984)041<0068:TCMACO>2.0.CO;2
|
Hong S.-Y.,H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
|
Hong S.-Y.,J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132: 103-120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
|
Hong S.-Y.,Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, https://doi.org/10.1175/MWR3199.1
|
Hu X.-M.,J. W. Nielsen-Gammon, and F.-Q. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. Journal of Applied Meteorology and Climatology, 49, 1831-1844, https://doi.org/10.1175/2010JAMC2432.1
|
Ikeda, K.,
|
Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
|
Janjić, Z. I., 2000: Comments on "Development and evaluation of a convection scheme for use in climate models". J. Atmos. Sci., 57, 3686, https://doi.org/10.1175/1520-0469(2000)057<3686:CODAEO>2.0.CO;2
|
Janjić, Z. I., 2001: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note #437, 61 pp.
|
Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898-918, https://doi.org/10.1175/MWR-D-11-00056.1
|
Kepert J. D.,2012: Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Wea. Rev., 140(
|
Li X. L.,Z.-X. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136(
|
Liu J. J.,F. M. Zhang, and Z. X. Pu, 2017: Numerical simulation of the rapid intensification of Hurricane Katrina (2005): Sensitivity to boundary layer parameterization schemes. Adv. Atmos. Sci., 34(
|
Malkus J. S.,1958: On the structure and maintenance of the mature hurricane eye. J. Meteor., 15, 337, https://doi.org/10.1175/1520-0469(1958)015<0337:OTSAMO>2.0.CO;2
|
Malkus, J. S, H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12, 1-20, https://doi.org/10.1111/j.2153-3490.1960.tb01279.x
|
Mellor G. L.,T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851-875, https://doi.org/10.1029/RG020i004p00851
|
Ming J.,J. A. Zhang, 2016: Effects of surface flux parameterization on the numerically simulated intensity and structure of typhoon morakot (2009). Adv. Atmos. Sci., 33(
|
Mlawer E. J.,S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663-16 682, https://doi.org/10.1029/97JD00237
|
Nakanishi M.,H. Niino, 2004: An improved Mellor-Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 1-31, https://doi.org/10.1023/B:BOUN.0000020164.04146.98
|
Ooyama K.,1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2
|
Rosenthal S. L.,1971: The response of a tropical cyclone model to variations in boundary layer parameters, initial conditions, lateral boundary conditions, and domain size. Mon. Wea. Rev., 99, 767, https://doi.org/10.1175/1520-0493(1971)099<0767:TROATC>2.3.CO;2
|
Rotunno R.,K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2
|
Shin H. H.,S. Y. Hong, 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteor., 139(
|
Skamarock, W. C.,
|
Smith, R. K, G. L. Thomsen, 2010: Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model. Quart. J. Roy. Meteor. Soc., 136, 1671-1685, https://doi.org/10.1002/qj.687
|
Stull R. B.,1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 515-520, https://doi.org/10.1007/978-94-009-3027-8
|
Sukoriansky S.,B. Galperin, 2008: A Quasi-Normal Scale Elimination (QNSE) theory of turbulent flows with stable stratification and its application in weather forecast systems. Proc. 6th IASME/WSEAS International Conf. on Heat Transfer, Thermal Engineering and Environment (THE'08), Rhodes, Greece, WSEAS Press, 376- 380.
|
Sukoriansky S.,B. Galperin, and V. Perov, 2005: `Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice'. Bound.-Layer Meteor., 117, 231-257, https://doi.org/10.1007/s10546-004-6848-4
|
Wang C.-X.,2013: Experiments of influence of planetary boundary layer parameterization on Muifa typhoon prediction. Advances in Earth Science, 28(
|
Wang H.,Y. Q. Wang, and H.-M. Xu, 2013: Improving simulation of a tropical cyclone using dynamical initialization and large-scale spectral nudging: A case study of Typhoon Megi (2010). Acta Meteorologica Sinica, 27, 455-475, https://doi.org/10.1007/s13351-013-0418-y
|
Wang Y. Q.,2012: Recent research progress on tropical cyclone structure and intensity. Tropical Cyclone Research and Review, 1, 254-275, https://doi.org/10.6057/2012TCRR02.05
|
Wang Y. Q.,J. D. Kepert, and G. J. Holland, 2001: The effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity. Mon. Wea. Rev., 129, 2481-2500, https://doi.org/10.1175/1520-0493(2001)129<2481:TEOSSE>2.0.CO;2
|
Xu H.-Y.,Y. Zhu, R. Liu, H.-F. Shen, D.-H. Wang, and G.-Q. Zhai, 2013: Simulation experiments with different planetary boundary layer schemes in the lower reaches of the Yangtze River. Chinese Journal of Atmospheric Sciences, 37(
|
Ying M.,W. Zhang, H. Yu, X. Q. Lu, J. X. Feng, Y. X. Fan, Y. T. Zhu, and D. Q. Chen, 2014: An overview of the China meteorological administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287-301, https://doi.org/10.1175/JTECH-D-12-00119.1
|
Yu Z.,Y. Wang and H. Xu, 2015: Observed rainfall asymmetry in tropical cyclones making landfall over China. J. Appl. Meteor. Climatol., 54(
|
Zhang C.-X.,Y. Q. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the Southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 3489-3513, https://doi.org/10.1175/MWR-D-10-05091.1
|
Zhang D.-L.,W. Z. Zheng, 2004: Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J. Appl. Meteor., 43, 157, https://doi.org/10.1175/1520-0450(2004)043<0157:DCOSWA>2.0.CO;2
|
Zhang F. M.,Z. X. Pu, 2017: Effects of vertical eddy diffusivity parameterization on the evolution of landfalling hurricanes. J. Atmos. Sci., 74(
|
Zhang F. M.,Z. X. Pu, and C. H. Wang, 2017: Effects of boundary layer vertical mixing on the evolution of hurricanes over land. Mon. Wea. Rev., 145(
|
Zhang J. A.,D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 3136-3155, https://doi.org/10.1175/MWR-D-14-00339.1
|
Zhu P.,K. Menelaou, and Z. D. Zhu, 2014: Impact of subgrid-scale vertical turbulent mixing on eyewall asymmetric structures and mesovortices of hurricanes. Quart. J. Roy. Meteor. Soc., 140, 416-438, https://doi.org/10.1002/qj.2147
|
Zhu Q.-G.,J. H. Lin, S.-W. Shou, and D.-S. Tang. 2000: Principles and Methods of Synoptic Meteorology. China Meteorological Press, Beijing, China, 320- 321.
|