首页 | 本学科首页   官方微博 | 高级检索  
     

基于数据增广和CNN的地震随机噪声压制
引用本文:王钰清, 陆文凯, 刘金林, 张猛, 苗永康. 2019. 基于数据增广和CNN的地震随机噪声压制. 地球物理学报, 62(1): 421-433, doi: 10.6038/cjg2019M0385
作者姓名:王钰清  陆文凯  刘金林  张猛  苗永康
作者单位:1. 清华大学人工智能研究院, 北京 100084; 2. 智能技术与系统国家重点实验室, 北京 100084; 3. 北京信息科学与技术国家研究中心, 北京 100084; 4. 清华大学自动化系, 北京 100084; 5. 中国石化胜利油田物探研究院, 山东东营 257022
基金项目:国家自然科学基金项目(41674116)资助.
摘    要:

卷积神经网络(Convolutional Neural Network,CNN)是一种基于数据驱动的学习算法,简化了传统从特征提取到分类的两阶段式处理任务,被广泛应用于计算机科学的各个领域.在标注数据不足的地震数据去噪领域,CNN的推广应用受到限制.针对这一问题,本文提出了一种基于数据生成和增广的地震数据CNN去噪框架.对于合成数据,本文对无噪地震数据添加不同方差的高斯噪声,增广后构成训练集,实现基于小样本的CNN训练.对于实际地震数据,由于无法获得真实的干净数据和噪声来生成训练样本集,本文提出一种直接从无标签实际有噪数据生成标签数据集的方法.在所提出的方法中,我们利用目前已有的去噪方法从实际地震数据中分别获得估计干净数据和估计噪声,前者与未知的干净数据具有相似纹理,后者与实际噪声具有相似的概率分布.人工合成数据和实际数据实验结果表明,相较于F-X反褶积,BM3D和自适应频域滤波算法,本文方法能更好地压制随机噪声和保护有效信号.最后,本文采用神经网络可视化方法对去噪CNN的机理进行了探索,一定程度上解释了网络每一层的学习内容.



关 键 词:卷积神经网络   数据增广   地震噪声压制   神经网络可视化
收稿时间:2018-07-05
修稿时间:2018-12-03

Random seismic noise attenuation based on data augmentation and CNN
WANG YuQing, LU WenKai, LIU JinLin, ZHANG Meng, MIAO YongKang. 2019. Random seismic noise attenuation based on data augmentation and CNN. Chinese Journal of Geophysics (in Chinese), 62(1): 421-433, doi: 10.6038/cjg2019M0385
Authors:WANG YuQing  LU WenKai  LIU JinLin  ZHANG Meng  MIAO YongKang
Affiliation:1. Institute for Artificial Intelligence, Tsinghua University, Beijing 100084, China; 2. State Key Laboratory of Intelligent Technology and Systems, Tsinghua University, Beijing 100084, China; 3. Tsinghua University Beijing National Research Center for Information Science and Technology, Beijing 100084, China; 4. Department of Automation, Tsinghua University, Beijing 100084, China; 5. Shengli Oilfield Geophysical Research Institute of Sinopec, Dongying Shandong 257022, China
Abstract:Convolutional neural network (CNN) has been widely adopted in various research fields of computer science. Combining the process of feature extracting and classification, CNN greatly simplifies traditional data processing task. However, as a data-driven algorithm, the generalization ability of CNN is limited in the problem of seismic noise attenuation which lacks labeled data. To solve this problem, we propose a CNN training framework based on data generation and augmentation for seismic noise attenuation. When processing synthetic data, we add Gaussian noise with different variance levels to clean seismic data and further augment training datasets to increase the diversity of features. For real seismic data, the clean data and corresponding noise are hard to acquire, thus we propose a method to generate labeled datasets directly from unlabeled noisy seismic data. In the proposed method, we apply existing denoising method to obtain the estimated clean data and estimated noise from real seismic data. The estimated data retains similar texture characteristics with clean data and the estimated noise has similar probability distribution with real seismic noise. We compare our method with F-X deconvolution, BM3D and adaptive frequency domain filtering method. The experiment results demonstrate that our method can efficiently attenuate random noise while preserving signals. Finally, we adopt neural network visualization methods to our CNN model and the visualization results explain the texture patterns learned by each layer of our network to some extent.
Keywords:Convolutional neural network  Data augmentation  Seismic noise attenuation  Neural network visualization
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号