喀喇昆仑断裂带走滑过程中伴随的快速隆升作用:热年代学证据

李海兵,陈松永,许志琴,司家亮,邱祝礼. 喀喇昆仑断裂带走滑过程中伴随的快速隆升作用:热年代学证据[J]. 岩石学报, 2008, 24(7).
引用本文: 李海兵,陈松永,许志琴,司家亮,邱祝礼. 喀喇昆仑断裂带走滑过程中伴随的快速隆升作用:热年代学证据[J]. 岩石学报, 2008, 24(7).
VALLI Franck,ARNAUD Nicolas,TAPPONNIER Paul,LACASSIN Robin,LI HaiBing,VALLI Franck,ARNAUD Nicolas,CHEN SongYong,XU ZhiQin,TAPPONNIER Paul,LACASSIN Robin,SI JiaLiang,QIU ZhuLi. Rapid uplifting in the process of strike-slip along the Karakorum fault zone in western Tibet: Evidence from 40Ar/39Ar thermochronology[J]. Acta Petrologica Sinica, 2008, 24(7).
Citation: VALLI Franck,ARNAUD Nicolas,TAPPONNIER Paul,LACASSIN Robin,LI HaiBing,VALLI Franck,ARNAUD Nicolas,CHEN SongYong,XU ZhiQin,TAPPONNIER Paul,LACASSIN Robin,SI JiaLiang,QIU ZhuLi. Rapid uplifting in the process of strike-slip along the Karakorum fault zone in western Tibet: Evidence from 40Ar/39Ar thermochronology[J]. Acta Petrologica Sinica, 2008, 24(7).

喀喇昆仑断裂带走滑过程中伴随的快速隆升作用:热年代学证据

  • 基金项目:

    国家自然科学基金,中国地质调查局地质调查项目

Rapid uplifting in the process of strike-slip along the Karakorum fault zone in western Tibet: Evidence from 40Ar/39Ar thermochronology

  • 喀喇昆仑断裂带是青藏高原西部的一条大型右旋走滑断裂带,它是喜马拉雅山脉西段北侧重要的地质边界.本文在岩石学、变形构造的研究基础上,对喀喇昆仑断裂带东南段阿伊拉日居山-噶尔盆地地区的喀喇昆仑韧性剪切带中变质岩石的同构造矿物进行了40Ar/39Ar热年代学研究.显微构造研究表明,剪切带中的矿物记录了从高温(>600℃)到低温(<250℃)条件下的连续变形,表现为近水平的右旋剪切运动转变成斜向的右旋正滑,使绿片岩相的变形作用叠加在中-高温变形之上.暗示出走滑过程中存在隆升作用,热年代学结果显示其连续剪切变形作用从早中新世以来至少持续到4Ma,并且出现三个快速冷却阶段:第一个快速冷却阶段为从25~22Ma到21~18Ma期间,可能代表的是浅部高温剪切过程中变形局部停止或减慢的过程;第二个快速冷却时期为从15Ma到12~10Ma,是喀喇昆仑断裂带走滑过程中,阿伊拉日居山的快速隆升、噶尔盆地开始形成以及主要河流深切过程阶段;9Ma以来是第三个快速冷却过程,使阿伊拉日居山脉进一步快速隆升、噶尔盆地定形过程.根据不同年代地表地貌特征的右旋错位距离以及不同层次变形特征,估算出喀喇昆仑断裂带长期滑移速率为8~10mm/a,伴随的隆升速率为1mm/a.从显微构造和热年代学证据表明,晚第四纪以来该断裂经历了强烈的右旋走滑运动的同时伴随强烈的隆升作用.
  • 加载中
  • [1]

    Arnaud N, Tapponnier P, Roger F, Brunel M, Scharer U, Chen W and Xu ZQ. 2003. Evidence for Mesozoic shear along the western Kunlun and Altyn-Tagh fault, northern Tibet (China). J. Geophys. Res., 108 (B1), Art. No. 2053

    [2]

    Avouac JP and Tapponnier P. 1993. Kinematic model of active deformation in central Asia. Geophys. Res. Lett. , 20 (10) : 895 - 898

    [3]

    Banerjee P and Burgmann R. 2002. Convergence across the northwest Himalaya from GPS measurement. Geophys. Res. Lett. , 29, art. no. 1652

    [4]

    Brown ET, Bendick R, Bourl6s DL, Gaur V, Molnar P, Raisbeck GM and Yiou F. 2002. Slip rates on the Karakoram fault, Ladakh, India, determined using cosmic ray exposure dating of debris flows and moraines. J. Geophys. Res., 107:ESE7-1-ESE7-13

    [5]

    Brunel, M, Arnaud N, Tapponnier P, Pan Y and Wang Y. 1994. Kongur shan normal fault: Type example of mountain building assisted by extension ( karakoram fault, eastern Pamir). Geology, 22, 707 - 710

    [6]

    Chevalier ML, Ryerson FJ, Tapponnier P, Finkel RC, Van Der Woerd J and Li HB. 2005. Slip-rate measurements on the Karakorum fault may imply secular variations in fault motion. Science, 307:411 - 414

    [7]

    Farley KA. 2002. ( U-Th )/He dating : Techniques, calibrations, and applications, noble gases in geochemistry and cosmochemistry. Rev. Min. Geochem. , 47(4) : 819 -843

    [8]

    Gapais D. 1989. Shear structures within deformed granites: Mechanical and thermal indications. Geology, 17(12) : 1144 -1147

    [9]

    Gardien V, Thompson AB, Grujic D and Ulumer P. 1995. Experimental melting of biotite + plagioclase + quartz + muscovite assemblages and implications for crustal melting. J. Geophys. Res. , 100 (B8) : 15581 - 15591

    [10]

    Gates AE and Glover L. 1989. Alleghanian tectono-thermal evolution of the dextral transcurrent hylas zone, Virginia Piedmont, USA. J. Struct. Geol. , 11 : 407 -419

    [11]

    Gleadow AJW, Duddy IR, Green PF and Lovering JF. 1986. Confined fission track lengths in apatite : A diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology, 94:405 -415

    [12]

    Gower JW and Simpson C. 1992. Phase boundary mobility in naturally deformed, highgrade quartzofeldspathic rocks : Evidence for diffusional creep. J. Struct. Geol. , 14 (3) : 301 -313

    [13]

    Hames WE and Bowring SA. 1994. An empirical evaluation of the argon diffusion geometry in muscovite. Earth and Planetary Science Letters, 124 : 161 - 169

    [14]

    Harrison TM, Ducan I and Mcdougall I. 1985. Diffusion of ^40Ar in biotite-Temperature, pressure and compositional effects. Geochim Cosmochim Acta, 49 : 2461 - 2468

    [15]

    Jansen LN and Starkey J. 1985. Plagioclase microfabrics in a ductile shear zone from the Jotun Nappe, Norway. J. Struet. Geol. , 7 (5) : 527 - 539

    [16]

    Ji S and Mainpriee D. 1990. Recrystallization and fabric development in plagioclase. J. Geol. , 98 : 65 - 79

    [17]

    Ketcham RA, Donelick RA and Carlson WD. 1999. Variability of apatite fissiontrack annealing kinetics: Ⅲ. Extrapolation to geologic timescales. American Mineralogist, 84 : 1235 - 1255

    [18]

    Kirschner L, Cosca MA, Masson H and Hunziker JC. 1996. Staircase ^40Ar/^39Ar spectra of fine-gained white mica- Timing and duration of deformation and empirical constraints on argon diffusion. Geology, 24 (8) : 747 - 750

    [19]

    Lacassin R, Valli F, Amaud N, Leoup PH, Li HB, Tapponnier P, Paquette JL, Chevalier ML, Guillot S and Xu ZQ. 2004. Large-scale geometry, offset and kinematic evolution of the Karakorum fault, Tibet. Earth Planet Sci Lett, 219:255 -269

    [20]

    Le Pichon X, Foumier M and Jolivet L. 1992. Kinematics, topography and extrusion in the India-Eurasia collision. Tectonics, 11 : 1085 - 1098

    [21]

    Leloup PH, Arnaud N, Lacassin R, Kienast JR, Harrison TM,Trinh PT, Replumaz A and Tapponnier P. 2001. New constraints on the structure, thermochronology and timing of the Ailao Shan - Red River shear zone. J. Geophys. Res., 106(B4): 6657-6671

    [22]

    Leloup PH, Lacassin R, Tapponnier P, Scharer U, Zhong DL, Liu XH, Zhang LS, Ji SC and Phan TT. 1995. The Ailao Shan-Red River shear zone (Yunnan, China ), Tertiary transform boundary of Indoehina. Teetonophysies, 251 : 3 - 84

    [23]

    Leloup PH, Ricard Y, Battaglia j and Lacassin R. 1999. Shear heating in continental strike-slip shear zones: Model and field examples. Geophys. J. Int. 136:19-40

    [24]

    Li HB, Valli F, Liu DY, Xu ZQ, Yang JS, Arnaud N, Tapponnier P, Lacassin R, Chen SY and Qi XX. 2007. Initial movement of the Karakorum Fault in western Tibet: Constraints from SHRIMP U-Pb dating of zircons. Chinese Science Bulletin, 52 ( 8 ) : 1089 - 1100

    [25]

    Li HB, Valli F, Xu ZQ, Yang JS, Tapponnier P, Lacassin R, Chen SY, Qi XX and Chevalier ML. 2006. Deformation and tectonic evolution of the Karakorum fault, western Tibet. Geol. China (in Chinese with English abstract), 33 (2) : 239 - 255

    [26]

    Q. 1993. Paleoclimats et contraintes chronologiques sur les mouvements recents dans l\\'ouest du Tibet: Failles du Karakorum et de Longmu Co-Gozha Co, laes en pull-apart de Longmu Co et de Sumxi Co. , PhD, Universite Paris 7

    [27]

    Matte P, Tapponnier N, Arnaud L, Bourjot JP, Avouac P, Vidal QQ, Liu YP and Wang Y. 1996. Tectonics of Western Tibet, between the Tarim and the Indus. Earth Planet Sci. Lett. , 142:311 -330

    [28]

    Molnar P and Houseman GA. 2004. The effects of buoyant crust on the gravitational instability of thickened mantle lithosphere at zones of intracontinental convergence. Geophys. J. Int., 158:1134-1150

    [29]

    Molnar P and Tapponnier P. 1978. Active tectonics of Tibet. J. Geophys. Res. , 83:5361 -5375

    [30]

    Molnar P and Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189 : 419 - 426

    [31]

    Murphy MA, Yin A, Kapp P, Harrison TM, Ding L and Guo J. 2000. Southward propagation of the Karakoram fault system, southwest Tibet : Timing and magnitude of slip. Geology, 28 : 451 - 454

    [32]

    Murphy MA, Yin A, Kapp P, Harrison TM, Manning CE, Ryerson FJ, Ding L and Guo J. 2002. Structural evolution of the Gurla Mandatha detachment system, southwest Tibet: Implications for the eastward extent of the Karakoram fault system. Geol. Soc. Am. Bull., 114: 428 - 447

    [33]

    Olesen NO. 1987. Plagioclase fabric development in a high-grade shear zone, Jotunheimen, Norway. Teetonophysies, 142 : 291 - 308

    [34]

    Passchier CW and Trouw RAJ. 1996. Microtectonics. Berlin: Springer- Verlag, 1-289

    [35]

    Passchier CW. 1982. Mylonitic deformation in the Saint Barthelemy Massif, French Pyrenees, with emphasis on the genetic relationship between ultramylonite and pseudotachylyte. GUA Pap. Geol. Ser. , 1(16): 1-173

    [36]

    Patriat P and Achache J. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311:615-62

    [37]

    Phillips R J, Parrish RR and Searle MP. 2004. Age constraints on ductile deformation and long-term slip rates along the Karakoram fault zone, Ladakh. Earth Planet. Sci. Lett., 226:305-319

    [38]

    Ratschbacher L, Frisch W, Herrman U and Strecker M. 1994. Distributed deformation in southern and western Tibet during and after the India-Asia collision: An experimental approach. J. Geophys. Res. , 99 : 19917 - 19945

    [39]

    Rolland Y. 2002. From intra-oceanic convergence to post-coUisional evolution, example of the India-Asia convergence in NW Himalaya, from Cretaceous to present. Journal of the Virtual Explorer, 8:185 - 208

    [40]

    Rolland Y and Pecher A. 2001. The Pangong granulites of the Karakoram Fault (Western Tibet) : Vertical extrusion within a lithosphere-scale fault ?C. R. Acad. Sci. , 332:363 -370

    [41]

    Scholz CH. 1988. The brittle-plastic transition and the depth of seismic faulting. Geologische Rundschau, 77 : 319 - 328

    [42]

    Searle MP, Weinberg RF and Dunlap WJ. 1998. Transpressional tectonics along the Karakoram fault zone, northern Ladakh: Constraints on Tibetan extrusion. In: Holdsworth RE, Strachan RA and Dewey JF ( eds. ). Continental Transpressional and Transtensional Tectonics, Geol. Soc. London Spec. Pub., 135: 307 - 326

    [43]

    Searle MP. 1996. Geological evidence against large-scale pre-Holocene offsets along the Karakoram fault: Implications for the limited extrusion of the Tibetan Plateau. Tectonics, 15 : 171 - 186

    [44]

    Simpson C and Wintsch RP. 1989. Evidence for deformation-induced K-feldspar replacement by myemekite. J. Metam. Geol. , 7:261 - 275

    [45]

    Stesky RM. 1978. Mechanisms of high temperature frictional sliding in Westerly granite. Can. J. Earth Sci., 15:361-375

    [46]

    Tapponnier P, Xu ZQ, Roger F, Meyer B, Arnaud N, Wittlinger G and Yang JS. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294:1671 - 1677

    [47]

    Tsurumi J, Hosonuma H and Kanagawa K. 2003. Strain localization due to a positive feedback of deformation and myrmekite-forming reaction in granite and aplite mylonites along the Hatagawa Shear Zone of NE Japan. J. Struct. Geol., 25:557-574

    [48]

    Tullis YE and Yund RA. 1987. Transition from cataclastic flow to dislocation creep of feldspar: Mechanisms and microstructures. Geology, 15 : 606 - 609

    [49]

    Valli F. 2005. Decrochements lithospheriques dans l\\' Ouest du plateau du Tibet: Geometrie, age, decalages cumules et vitesse de glissement long-terme sur la Faille du Karakorum. PhD thesis, Universite Paris 7

    [50]

    Wright TJ, Parsons BE, England PC and Fielding EJ. 2004. InSAR observations of low slip rates on the major faults of Western Tibet. Science, 305 : 236 - 239

    [51]

    Yin JX and Bian QT. 1995. Geological Map of the Karakorum Mountain-West Kunlun Mountain and Adjacent Areas. Beijing: Science Press ( in Chinese)

    [52]

    Zhou Y, Xu RH, Yan YH, Pan YS, Tsanyao FY, Wei L and Wu CM. 2001. Dating of the Karakorum Strike-slip Fault. Acta. Geol. Sin. , 75(1): 10-18

    [53]

    李海兵 ValliF 刘敦一 许志琴 杨经绥 AmaudN TapponnierP LacassinR 陈松永 戚学祥.喀喇昆仑断裂的形成时代:锆石SHRIMP U-Pb年龄的制约[J].科学通报,2007,52(4):438-447.

  • 加载中
计量
  • 文章访问数:  7394
  • PDF下载数:  6142
  • 施引文献:  0
出版历程
刊出日期:  2008-07-31

目录