地球物理综合观测揭示秦岭—桐柏—大别复合造山带地壳及上地幔结构

刘巍, 郭震, 陈永顺, 张安琪. 2021. 地球物理综合观测揭示秦岭—桐柏—大别复合造山带地壳及上地幔结构. 地球物理学报, 64(9): 3179-3193, doi: 10.6038/cjg2021O0406
引用本文: 刘巍, 郭震, 陈永顺, 张安琪. 2021. 地球物理综合观测揭示秦岭—桐柏—大别复合造山带地壳及上地幔结构. 地球物理学报, 64(9): 3179-3193, doi: 10.6038/cjg2021O0406
LIU Wei, GUO Zhen, CHEN YongShun, ZHANG AnQi. 2021. The crustal and uppermost mantle structure of the Qinling-Tongbai-Dabie orogenic belt from integrated geophysical observations. Chinese Journal of Geophysics (in Chinese), 64(9): 3179-3193, doi: 10.6038/cjg2021O0406
Citation: LIU Wei, GUO Zhen, CHEN YongShun, ZHANG AnQi. 2021. The crustal and uppermost mantle structure of the Qinling-Tongbai-Dabie orogenic belt from integrated geophysical observations. Chinese Journal of Geophysics (in Chinese), 64(9): 3179-3193, doi: 10.6038/cjg2021O0406

地球物理综合观测揭示秦岭—桐柏—大别复合造山带地壳及上地幔结构

  • 基金项目:

    国家自然科学基金委重点项目(41890814,U1901602),国土资源部行业调查项目子课题"秦岭及周边地区三维地壳和岩石圈结构探测"(1212011220261)和深圳市海外高层次人才创新创业专项资金团队资助项目(KQTD20170810111725321)资助

详细信息
    作者简介:

    刘巍, 男, 1990年生, 北京大学博士研究生, 主要研究方向为地球动力学、地震学成像.E-mail: 1701110588@pku.edu.cn

    通讯作者: 陈永顺, 男, 教授, 博士生导师, 主要从事全球板块构造、海洋地球物理学和地球动力学方面的研究.E-mail: johnyc@sustech.edu.cn
  • 中图分类号: P313

The crustal and uppermost mantle structure of the Qinling-Tongbai-Dabie orogenic belt from integrated geophysical observations

More Information
  • 秦岭—桐柏—大别复合造山带(以下称为秦岭大别造山带)属于中国中央造山带的一部分,由华北克拉通与扬子克拉通汇聚形成.对于秦岭大别造山带及其周缘地区的研究,可以为这一大陆碰撞造山带的形成与演化过程提供重要信息.本文整合研究区域的接收函数与背景噪声数据,采用H-κ叠加分析、接收函数与背景噪声联合反演、克希霍夫偏移成像等方法,得到了沿秦岭东西方向具有高分辨率的地壳及上地幔结构.研究结果显示:(1)莫霍面深度由西向东逐步抬升,由剖面西侧最深约55 km上升至剖面东侧最浅约30 km;莫霍面于东西秦岭之间起伏明显;桐柏以及东大别下方莫霍面局部加深.(2)西秦岭中下地壳观测到的高速异常阻隔了青藏高原东北缘地壳低速异常的向东扩张,反映了青藏高原东北缘的中下地壳流没有通过西秦岭继续向东流动.(3)西秦岭岩石圈地幔顶部高速异常延伸至100 km深度(剖面底部),桐柏—西大别岩石圈地幔顶部高速延伸至70 km深度,东大别、东秦岭岩石圈地幔顶部未见较大深度范围的高速异常.

  • 加载中
  • 图 1 

    秦岭—桐柏—大别(QD)及其周缘研究区域的台站分布图

    Figure 1. 

    Locations of seismic stations in Qinling-Tongbai-Dabie (QD) and surrounding areas

    图 2 

    研究区域接收函数的远震事件分布(震中距为30°~95°) 黑色三角为研究区域中心位置.

    Figure 2. 

    The distribution of teleseismic events for receiver functions used in this study (epicentral distance 30°~95°) Black triangle: The center of the study area.

    图 3 

    研究剖面附近54个台站的接收函数叠加图

    Figure 3. 

    Stacked receiver functions of 54 stations along the study profile

    图 4 

    H-κ叠加分析获得的地壳厚度与VP/VS平均值结果

    Figure 4. 

    Crustal thickness and average VP/VS ratio from H-κ stacking analysis

    图 5 

    四个构造区域代表性台站的接收函数和面波相速度频散的一维线性联合反演

    Figure 5. 

    1-D linear joint inversion results from receiver functions and surface-wave phase velocity dispersion data at four representative stations for different tectonic regions

    图 6 

    剖面线附近各构造单元地壳上地幔S波速度模型

    Figure 6. 

    The crustal and uppermost mantle S wave velocity model of each tectonic regions near the profile line

    图 7 

    联合反演得到的剖面二维S波速度结构

    Figure 7. 

    2-D shear wave velocity structure along the study profile obtained from joint inversion

    图 8 

    剖面检测板测试速度模型1

    Figure 8. 

    No.1 Checkboard test of velocity structure along the study profile

    图 9 

    剖面检测板测试速度模型2

    Figure 9. 

    No.2 Checkboard test of velocity structure along the study profile

    图 10 

    剖面克希霍夫偏移成像结果

    Figure 10. 

    Kirchhoff migration images of the study profile

    图 11 

    剖面重力正演结果

    Figure 11. 

    Gravity forward modeling results along the study profile

  •  

    Afonso J C, Fernàndez M, Ranalli G, et al. 2008. Integrated geophysical-petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications. Geochemistry, Geophysics, Geosystems, 9(5): Q05008, doi:10.1029/2007GC001834.

     

    Bao X W, Sun X X, Xu M J, et al. 2015. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions. Earth and Planetary Science Letters, 415: 16-24. doi: 10.1016/j.epsl.2015.01.020

     

    Barmin M P, Ritzwoller M H, Levshin A L. 2001. A fast and reliable method for surface wave tomography. Pure and Applied Geophysics, 158(8): 1351-1375. doi: 10.1007/PL00001225

     

    Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3): 1239-1260. doi: 10.1111/j.1365-246X.2007.03374.x

     

    Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the earth's crust. Bulletin of the Seismological Society of America, 95(6): 2081-2092. doi: 10.1785/0120050077

     

    Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2

     

    Dellinger J A, Gray S H, Murphy G E, et al. 2000. Efficient 2.5-D true-amplitude migration. Geophysics, 65(3): 943-950. doi: 10.1190/1.1444790

     

    Dong Y P, Zhang G W, Neubauer F, et al. 2011. Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. doi: 10.1016/j.jseaes.2011.03.002

     

    Dong Y P, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1-40. doi: 10.1016/j.gr.2015.06.009

     

    Enkelmann E, Ratschbacher L, Jonckheere R, et al. 2006. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: is Tibetan lower crustal flow diverging around the Sichuan Basin? GSA Bulletin, 118(5-6): 651-671. doi: 10.1130/B25805.1

     

    Feng M, An M J, Dong S W. 2017. Tectonic history of the Ordos Block and Qinling Orogen inferred from crustal thickness. Geophysical Journal International, 210(1): 303-320. doi: 10.1093/gji/ggx163

     

    Guo Z, Tang Y C, Chen Y S, et al. 2012. A study on crustal and upper mantle structures in east part of North China Craton using receiver functions. Chinese Journal of Geophysics (in Chinese), 55(11): 3591-3600. http://www.researchgate.net/publication/285793498_A_study_on_crustal_and_upper_mantle_structures_in_east_part_of_North_China_Craton_using_receiver_functions

     

    Guo Z, Chen Y J, Ning J Y, et al. 2015. High resolution 3-D crustal structure beneath NE China from joint inversion of ambient noise and receiver functions using NECESSArray data. Earth and Planetary Science Letters, 416: 1-11. doi: 10.1016/j.epsl.2015.01.044

     

    Guo Z, Chen Y J. 2017. Mountain building at northeastern boundary of Tibetan Plateau and craton reworking at Ordos block from joint inversion of ambient noise tomography and receiver functions. Earth and Planetary Science Letters, 463: 232-242. doi: 10.1016/j.epsl.2017.01.026

     

    He R Z, Shang X F, Yu C Q, et al. 2014. A unified map of Moho depth andVp/Vs ratio of continental China by receiver function analysis. Geophysical Journal International, 199(3): 1910-1918. doi: 10.1093/gji/ggu365

     

    Hu F Y, Liu S W, Ducea M N, et al. 2017. The geochemical evolution of the granitoid rocks in the South Qinling Belt: insights from the Dongjiangkou and Zhashui intrusions, central China. Lithos, 278-281: 195-214. doi: 10.1016/j.lithos.2017.01.021

     

    Jiang M M, Ai Y S, Chen L, et al. 2013. Local modification of the lithosphere beneath the central and western North China craton: 3-D constraints from Rayleigh wave tomography. Gondwana Research, 24(3-4): 849-864. doi: 10.1016/j.gr.2012.06.018

     

    Julià J, Ammon C J, Herrmann R B, et al. 2000. Joint inversion of receiver function and surface wave dispersion observations. Geophysics Journal International, 143(1): 99-112. doi: 10.1046/j.1365-246x.2000.00217.x

     

    Lei J S, Zhao D P. 2016. Teleseismic P-wave tomography and mantle dynamics beneath Eastern Tibet. Geochemistry, Geophysics, Geosystems, 17(5): 1861-1884. doi: 10.1002/2016GC006262

     

    Li S L, Guo Z, Chen Y J, et al. 2018. Lithospheric structure of the northern Ordos from ambient noise and teleseismic surface wave tomography. Journal of Geophysical Research: Solid Earth, 123(8): 6940-6957. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2017JB015256

     

    Ligorría J P, Ammon C J. 1999. Iterative deconvolution and receiver-function estimation. Bulletin of the Seismological Society of America, 89(5): 1395-1400. doi: 10.1785/BSSA0890051395

     

    Liu Q Y, Kind R, Chen J H, et al. 2005. The break-slip structure and low-speed body in crust at the boundary of crust-mantle in Dabie orogen. Science in China Series D: Earth Sciences (in Chinese), 35(4): 304-313. http://d.old.wanfangdata.com.cn/Periodical/zgkx-ed200507003

     

    Luo Y H, Xu Y X, Yang Y J. 2012. Crustal structure beneath the Dabie orogenic belt from ambient noise tomography. Earth and Planetary Science Letters, 313-314: 12-22. doi: 10.1016/j.epsl.2011.11.004

     

    Luo Y H, Zhao K F, Tang C C, et al. 2018. Seismic evidence for multiple-stage exhumation of high/ultrahigh pressure metamorphic rocks in the eastern Dabie orogenic belt. Geophysical Journal International, 2018, 214(2): 1379-1390. http://www.researchgate.net/publication/327539991_Seismic_evidence_for_multiple-stage_exhumation_of_highultrahigh_pressure_metamorphic_rocks_in_the_eastern_Dabie_orogenic_belt

     

    Meng Q R, Zhang G W. 1999. Timing of collision of the North and South China blocks: Controversy and reconciliation. Geology, 27(2): 123-126. doi: 10.1130/0091-7613(1999)027<0123:TOCOTN>2.3.CO;2

     

    Meng Q R, Zhang G W. 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323(3-4): 183-196. doi: 10.1016/S0040-1951(00)00106-2

     

    Meng Q R. 2017. Origin of the Qinling mountains. Scientia Sinica Terrae (in Chinese), 47(4): 412-420. doi: 10.1360/N072016-00422

     

    Shen W S, Ritzwoller M H, Kang D, et al. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophysical Journal International, 2016, 206(2): 954-79. http://smartsearch.nstl.gov.cn/paper_detail.html?id=d93a777f91c486d08716a41ff6618b28

     

    Song P H, Teng J W, Zhang X M, et al. 2018. Flyover crustal structures beneath the Qinling orogenic belt and its tectonic implications. Journal of Geophysical Research: Solid Earth, 123(8): 6703-6718. http://onlinelibrary.wiley.com/doi/10.1029/2017JB015401

     

    Wang C Y, Ding Z F, Song J L, et al. 1997a. Shear wave velocity structure in Dabieshan orogenic belt. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 40(3): 337-346. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199703005.htm

     

    Wang C Y, Zhang X K, Ding Z F, et al. 1997b. Finite-difference tomography of upper crustal structure in Dabieshan orogenic belt. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 40(4): 495-502. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199704006.htm

     

    Wang C Y, Sandvol E, Zhu L, et al. 2014. Lateral variation of crustal structure in the Ordos block and surrounding regions, North China, and its tectonic implications. Earth and Planetary Science Letters, 387: 198-211. doi: 10.1016/j.epsl.2013.11.033

     

    Wang X X, Wang T, Zhang C L. 2013. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process. Journal of Asian Earth Sciences, 72: 129-151. doi: 10.1016/j.jseaes.2012.11.037

     

    Watanabe T. 1993. Effects of water and melt on seismic velocities and their application to characterization of seismic reflectors. Geophysical Research Letters, 20(24): 2933-2936. doi: 10.1029/93GL03170

     

    Wilson D, Aster R. 2005. Seismic imaging of the crust and upper mantle using regularized joint receiver functions, frequency-wave number filtering, and multimode Kirchhoff migration. Journal of Geophysical Research: Solid Earth, 110(B5): B05305, doi:10.1029/2004JB003430.

     

    Windley B F, Maruyama S, Xiao W J. 2010. Delamination/thinning of sub-continental lithospheric mantle under Eastern China: the role of water and multiple subduction. American Journal of Science, 310(10): 1250-1293. doi: 10.2475/10.2010.03

     

    Wessel P, Smith W H F. 1998. New, improved version of the Generic Mapping Tools released. EOS Trans, AGU, 79: 579. doi: 10.1029/98EO00426

     

    Wu Q J, Li Y H, Zhang R Q, et al. 2007. A feasibility study of cloud base height remote sensing by simulating ground-based thermal infrared brightness temperature measurements. Chinese Journal of Geophysics (in Chinese), 50(2): 539-545. doi: 10.1002/cjg2.1064

     

    Wu Y B, Zheng Y F. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China. Gondwana Research, 23(4): 1402-1428. doi: 10.1016/j.gr.2012.09.007

     

    Xu Y X, Zhang S, Griffin W L, et al. 2016. How did the Dabie Orogen collapse? Insights from 3-D magnetotelluric imaging of profile data. Journal of Geophysical Research: Solid Earth, 121(7): 5169-5185. doi: 10.1002/2015JB012717

     

    Yu Y, Chen Y J. 2016. Seismic anisotropy beneath the southern Ordos block and the Qinling-Dabie orogen, China: Eastward Tibetan asthenospheric flow around the southern Ordos. Earth and Planetary Science Letters, 455: 1-6. doi: 10.1016/j.epsl.2016.08.026

     

    Zhai M G, Fan Q C, Zhang H F, et al. 2007. Lower crustal processes leading to Mesozoic lithospheric thinning beneath eastern North China: Underplating, replacement and delamination. Lithos, 96(1-2): 36-54. doi: 10.1016/j.lithos.2006.09.016

     

    Zhang A Q, Guo Z, Afonso J C, et al. 2020. The deep thermochemical structure of the Dabie orogenic belt from multiobservable probabilistic inversion. Tectonophysics, 787: 228478. doi: 10.1016/j.tecto.2020.228478

     

    Zhang F X, Wu Q J, Li Y H, et al. 2018. Seismic tomography of Eastern Tibet: implications for the Tibetan Plateau growth. Tectonics, 37(9): 2833-2847. doi: 10.1029/2018TC004977

     

    Zhao X X, Coe R S, Gilder S A, et al. 1996. Palaeomagnetic constraints on the palaeogeography of China: implications for Gondwanaland. Australian Journal of Earth Sciences, 43(6): 643-672. doi: 10.1080/08120099608728285

     

    Zheng Y, Yang Y J, Ritzwoller M H, et al. 2010. Crustal structure of the northeastern Tibetan plateau, the Ordos block and the Sichuan basin from ambient noise tomography. Earthquake Science, 23(5): 465-476. doi: 10.1007/s11589-010-0745-3

     

    Zhu L P, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2): 2969-2980. doi: 10.1029/1999JB900322

     

    Zhu R X, Yang Z Y, Wu H N, et al. 1998. Paleomagnetic constraints on the tectonic history of the major blocks of China during the Phanerozoic. Science in China Series D: Earth Sciences, 41(S2): 1-19. doi: 10.1007/BF02984508

     

    郭震, 唐有彩, 陈永顺等. 2012. 华北克拉通东部地壳和上地幔结构的接收函数研究. 地球物理学报, 55(11): 3591-3600, doi:10.6038/j.issn.0001-5733.2012.11.008. http://www.geophy.cn//CN/abstract/abstract9053.shtml

     

    刘启元, Kind R, 陈九辉等. 2005. 大别造山带壳幔界面的断错结构和壳内低速体. 中国科学D辑: 地球科学, 35(4): 304-313. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200504001.htm

     

    孟庆任. 2017. 秦岭的由来. 中国科学: 地球科学, 47(4): 412-420. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201704005.htm

     

    王椿镛, 丁志峰, 宋建立等. 1997a. 大别造山带地壳S波速度结构. 地球物理学报, 40(3): 337-346. http://www.geophy.cn//CN/abstract/abstract3992.shtml

     

    王椿镛, 张先康, 丁志峰等. 1997b. 大别造山带上部地壳结构的有限差分层析成像. 地球物理学报, 40(4): 495-502. http://www.geophy.cn//CN/abstract/abstract3999.shtml

     

    吴庆举, 李永华, 张瑞青等. 2007. 接收函数的克希霍夫2D偏移方法. 地球物理学报, 50(2): 539-545. doi: 10.3321/j.issn:0001-5733.2007.02.027 http://www.geophy.cn//CN/abstract/abstract1410.shtml

     

    朱日祥, 杨振宇, 马醒华等. 1998. 中国主要地块显生宙古地磁视极移曲线与地块运动. 中国科学(D辑), 28(S1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S1000.htm

  • 加载中

(11)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2020-10-27
修回日期:  2021-07-08
上线日期:  2021-09-10

目录