大尺度地幔动力学研究的现状和展望

钟时杰. 2021. 大尺度地幔动力学研究的现状和展望. 地球物理学报, 64(10): 3478-3502, doi: 10.6038/cjg2021P0530
引用本文: 钟时杰. 2021. 大尺度地幔动力学研究的现状和展望. 地球物理学报, 64(10): 3478-3502, doi: 10.6038/cjg2021P0530
ZHONG ShiJie. 2021. Mantle dynamics on large spatial and temporal scales. Chinese Journal of Geophysics (in Chinese), 64(10): 3478-3502, doi: 10.6038/cjg2021P0530
Citation: ZHONG ShiJie. 2021. Mantle dynamics on large spatial and temporal scales. Chinese Journal of Geophysics (in Chinese), 64(10): 3478-3502, doi: 10.6038/cjg2021P0530

大尺度地幔动力学研究的现状和展望

详细信息
    作者简介:

    钟时杰, 美国科罗拉多大学物理系教授, 主要研究方向是地球和行星内部动力学.E-mail: shijie.zhong@colorado.edu

  • 中图分类号: P541

Mantle dynamics on large spatial and temporal scales

  • 这篇综述讨论大空间、大时间尺度的地幔动力学近几十年的发展和现状,着重讨论了相关的观测及其动力学意义.这些观测包括现在地球的板块运动的基本特性,中、长波重力异常及大地水准面异常,地震层析成像得到的地幔结构,以及过去10亿年超级大陆Pangea和Rodinia的形成、裂解和演化,及火山岩浆活动.关于地球动力学模型的讨论是围绕着这些相关的观测而进行的.涉及到的一些主要问题包括以下.第一,地幔动力学研究显示,地震层析成像得到的下地幔的二阶结构(比如核幔边界附近的LLSVP结构),和俯冲带的快速异常体,可以解释为过去1亿年左右的板块运动和地幔对流的结果;第二,地幔三维结构作为地幔对流的驱动力,是导致中、长波重力及大地水准面异常的直接原因;结合地幔动力学模拟,观测的大地水准面异常对地幔黏性结构提供了强有力的约束,很可靠的结果之一是下地幔的黏性比上地幔要高至少一个量级,并且最近的研究确定软流圈的存在;第三,过去10亿年大陆块体经历过的Rodinia和Pangea两期超级大陆的形成和破裂是地幔动力学在地表的反映.地幔结构在Pangea形成过程中是一阶结构(即一个半球是冷的下降流,而另一个半球是热的上涌流)主导的,而现在的二阶为主导的地幔结构是Pangea形成后,破裂前或破裂过程中才形成的;地幔动力学和其他研究支持地幔结构在一阶和二阶间转换的1-2-1模型;第四,板块构造在地球上的起源和动力机制依然是充满争议和不确定的课题,但是这些问题同时也是重要的地球动力学基本问题.

  • 加载中
  • 图 1 

    地震层析成像得到的地幔S波波速异常(Ritsema et al., 2011).1800 km(a)和2800 km(b)深度的结构,及随深度变化的归一化的频谱分布(c).非洲和太平洋下,核幔边界上(比如在图 1b,2800 km深度上)的低速异常是LLSVP.频谱图显示二阶地幔结构的主导性.

    Figure 1. 

    S-wave speed anomalies of the Earth′s mantle from seismic tomography (Ritsema et al., 2001) at depths of 1800 km (a) and 2800 km (b), and their normalized depth-dependent power spectra (c). Note that the slow wave speed anomalies under Africa and Pacific (e.g., in Fig. 1b) represent LLSVP. The power spectra show degree-2 dominant mantle structure throughout the mantle

    图 2 

    地幔S波波速异常

    Figure 2. 

    S-wave speed anomalies for different subduction zone depth cross sections

    图 3 

    观测的大地水平面异常:从2阶到12阶(a)和4阶到12阶(b).地幔对流模型计算得到的相应的大地水平面异常(c,d)(Mao and Zhong, 2021a)

    Figure 3. 

    The observed geoid anomalies of degrees 2 to 12 (a), and degrees 4 to 12 (b), and the corresponding geoid anomalies from mantle convection model (c, d) (Mao and Zhong, 2021a)

    图 4 

    热点火山、LIP分布和地幔S波波速异常(Becker and Boschi, 2002)(a),过去30亿年的岩浆活动随时间的变化(Ernst and Bleeker, 2010) (b), 及过去5亿年的LIP随时间的变化(Torsvik et al., 2008a)(c).图 4b标示了重要的地质构造事件,图 4c还标明了LIP的纬度,及非洲和太平洋LLSVP及Pangea的关系

    Figure 4. 

    Distributions of hotspot volcanism, LIP, and S-wave speed anomalies (Becker and Boschi, 2002) (a), temporal variations of magmatism for the last 3 billion years (Ernst and Bleeker, 2010) (b), and temporal dependence of LIP for the last 500 million years (Torsvik et al., 2008a) (c). Fig. 4b also shows major tectonic events, and Fig. 4c marks latitudes of LIP′s eruption sites and possible connection of Africa and Pacific LLSVPs with Pangea

    图 5 

    地幔对流的示意图

    Figure 5. 

    A schematic drawing of different mantle convection models

    图 6 

    现代地球的板块结构及板块运动速度.浅蓝色代表弱的板块边界,其他颜色代表深部(80 km左右深度)岩石圈的黏性(Mao and Zhong, 2021a)

    Figure 6. 

    Present-day plate configuration and plate motions (i.e., arrows), and a viscosity model at 80 km depth where the light blue color represents weak plate boundaries (Mao and Zhong, 2021a)

    图 7 

    地幔S波波速异常三维图(Ritsema et al., 2011):太平洋(a)和非洲(b)半球,含有过去1亿2千万年板块运动历史的地幔对流模型计算得到的现在地幔的热和化学结构:太平洋(c)和非洲(d)半球.修改自McNamara和Zhong (2005a)

    Figure 7. 

    3-D representation of S-wave speed anomalies of the mantle (Ritsema et al., 2011) viewed from Pacific (a) and African (b) hemispheres, and corresponding thermochemical structures (c, d) from mantle convection models using imposed plate motion history for the last 120 million years. Modified from McNamara and Zhong (2005a)

    图 8 

    超级大陆Pangea在1亿9千5百万年前(a)和Rodinia在7亿5千万年前(b)的示意图.修改自Zhong等(2007)

    Figure 8. 

    Supercontinents Pangea at 195 million years ago (a) and Rodinia at 750 million years ago (b). Modified from Zhong et al. (2007)

    图 9 

    含有过去5亿8千万年板块运动历史的地幔对流模型计算得到的、在2750 km深度的地幔的温度分布:3亿3千万年前(即Pangea形成时)(a),1亿9千5百万年前(即Pangea裂解前)(b)和现在的(c).修改自Zhang等(2010)

    Figure 9. 

    Thermal structure at 2750 km depth from mantle convection model with plate motion history for the last 580 million years at 330 million years ago (i.e., when Pangea is assembled) (a), 195 million years ago (b), and the present-day (c). Modified from Zhang et al. (2010)

    图 10 

    含有动力边界条件的地幔对流模型计算得到的地幔温度结构(蓝色和黄色等值面分别代表冷的下涌流和热的上升流)

    Figure 10. 

    3-D thermal structure from different mantle convection models (blue and yellow isosurfaces represent cold downwellings and hot upwellings, respectively)

    图 11 

    含有动力边界条件的地幔对流模型得到的地幔结构主导波长和岩石圈平均黏性的关系

    Figure 11. 

    Dominant convective wavelengths versus averaged lithospheric viscosity from 3-D mantle convection models with dynamic boundary conditions (i.e., free-slip)

    图 12 

    基于颗粒破损理论的板块构造起源的模型(Bercovici and Ricard, 2014)

    Figure 12. 

    A model for plate tectonics generation based on damaging theory (Bercovici and Ricard, 2014)

  •  

    Allègre C J, Hofmann A, O'Nions K. 1996. The Argon constraints on mantle structure. Geophys. Res. Lett. , 23(24): 3555-3557, doi:10.1029/96GL03373.

     

    Anderson D L. 1982. Hotspots, polar wander, Mesozoic convection and the geoid. Nature, 297(5865): 391-393, doi:10.1038/297391a0.

     

    Arnould M, Coltice N, Flament N, et al. 2020. Plate tectonics and mantle controls on plume dynamics. Earth Planet. Sci. Lett. , 547: 116439, doi:10.1016/j.epsl.2020.116439.

     

    Ballmer M D, Houser C, Hernlund J W, et al. 2017. Persistence of strong silica-enriched domains in the Earth's lower mantle. Nature Geoscience, 10(3): 236-240. doi: 10.1038/ngeo2898

     

    Becker T W, Boschi L. 2002. A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst. , 3: 1003, doi:10.1029/2001GC000168.

     

    Becker T W. 2006. On the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation, and plate-driving forces. Geophys. J. Int. , 167(2): 943-957, doi:10.1111/j.1365-246X.2006.03172.x.

     

    Bellas A, Zhong S J. 2021. Seismic strain rate and flexure at the Hawaiian Islands constrain the fictional coefficient. Geochem. Geophys. Geosyst. , 22(4): e2020GC009547, doi:10.1029/2020GC009547.

     

    Belousova E A, Kostitsyn Y A, Griffin W L, et al. 2010. The growth of the continental crust: Constraints from zircon Hf isotope data. Lithos, 119(3-4): 457-466. doi: 10.1016/j.lithos.2010.07.024

     

    Bercovici D, Schubert G, Glatzmaier G A. 1989. Three-dimensional spherical models of convection in the Earth's mantle. Science, 244(4907): 950-955. doi: 10.1126/science.244.4907.950

     

    Bercovici D. 2003. The generation of plate tectonics from mantle convection. Earth Planet. Sci. Lett. , 205(3-4): 107-121, doi:10.1016/S0012-821X(02)01009-9.

     

    Bercovici D, Ricard Y. 2012. Mechanisms for the generation of plate tectonics by two-phase grain-damage and pinning. Phys. Earth Planet. Inter. , 202-203: 27-55, doi:10.1016/j.pepi.2012.05.003.

     

    Bercovici D, Ricard Y. 2014. Plate tectonics, damage and inheritance. Nature, 508(7497): 513-516, doi:10.1038/nature13072.

     

    Bono R K, Tarduno J A, Bunge H P. 2019. Hotspot motion caused the Hawaiian-Emperor Bend and LLSVPs are not fixed. Nat. Commun. , 10: 3370, doi:10.1038/s41467-019-11314-6.

     

    Bower D J, Gurnis M, Seton M. 2013. Lower mantle structure from paleogeographically constrained dynamic Earth models. Geochem. Geophys. Geosyst. , 14(1): 44-63, doi:10.1029/2012GC004267.

     

    Boyet M, Carlson R W. 2005. Nd-142 evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science, 309(5734): 576-581, doi:10.1126/science.1113634.

     

    Bull A L, McNamara A K, Ritsema J. 2009. Synthetic tomography of plume clusters and thermochemical piles. Earth Planet. Sci. Lett. , 278(3-4): 152-162. doi: 10.1016/j.epsl.2008.11.018

     

    Bunge H P, Richards M A, Baumgardner J R. 1996. Effect of depth-dependent viscosity on the planform of mantle convection. Nature, 379: 436-438, doi:10.1038/379436a0.

     

    Bunge H P, Richards M A, Lithgow-Bertelloni C, et al. 1998. Time scales and heterogeneous structure in geodynamic earth models. Science, 280(5360): 91-95, doi:10.1126/science.280.5360.91.

     

    Bunge H P, Grand S P. 2000. Mesozoic plate-motion history below the Northeast Pacific Ocean from seismic images of the subducted Farallon slab. Nature, 405(6784): 337-340, doi:10.1038/35012586.

     

    Byerlee J. 1978. Friction of rocks. Pure Appl. Geophys. , 116(4-5): 615-626. doi: 10.1007/BF00876528

     

    Capitanio F A, Morra G, Goes S. 2007. Dynamic models of downgoing plate-buoyancy driven subduction: subduction motions and energy dissipation. Earth Planet. Sci. Lett. , 262(1-2): 284-297. doi: 10.1016/j.epsl.2007.07.039

     

    Capitanio F A, Morra G, Goes S. 2009. Dynamics of plate bending at the trench and slab-plate coupling. Geochem. Geophys. Geosyst. , 10(4): Q04002, doi:10.1029/2008GC002348.

     

    Carlson R W, Garnero E, Harrison T M, et al. 2014. How did early Earth become our modern world?. Annu. Rev. Earth Planet. Sci. , 42(1): 151-178, doi:10.1146/annurev-earth-060313-055016.

     

    Chase C G. 1979. Subduction, the geoid, and lower mantle convection. Nature, 282(5738): 464-468, doi:10.1038/282464a0.

     

    Christensen U R. 1984. Heat transport by variable viscosity convection and implications for the Earth's thermal evolution. Phys. Earth Planet. Inter. , 35(4): 264-282. doi: 10.1016/0031-9201(84)90021-9

     

    Christensen U R. 1985. Thermal evolution models for the earth. J. Geophys. Res. : Solid Earth, 90(B4): 2995-3007. doi: 10.1029/JB090iB04p02995

     

    Christensen U R. 1996. The influence of trench migration on slab penetration into the lower mantle. Earth Planet. Sci. Lett. , 140(1-4): 27-39. doi: 10.1016/0012-821X(96)00023-4

     

    Connerney J E P, Acuña M H, Wasilewski P J, et al. 1999. Magnetic lineations in the ancient crust of Mars. Science, 284(5415): 794-798, doi:10.1126/science.284.5415.794.

     

    Conrad C P, Hager B H. 1999a. Effects of plate bending and fault strength at subduction zones on plate dynamics. J. Geophys. Res. : Solid Earth, 104(B8): 17551-17571. doi: 10.1029/1999JB900149

     

    Conrad C P, Hager B H. 1999b. The thermal evolution of an earth with strong subduction zones. Geophys. Res. Lett. , 26(19): 3041-3044. doi: 10.1029/1999GL005397

     

    Cottaar S, Romanowicz B. 2013. Observations of changing anisotropy across the southern margin of the African LLSVP. Geophys. J. Int. , 195(2): 1184-1195, doi:10.1093/gji/ggt285.

     

    Courtillot V, Davaille A, Besse J, et al. 2003. Three distinct types of hotspots in the Earth's mantle. Earth Planet. Sci. Lett. , 205(3-4): 295-308, doi:10.1016/S0012-821X(02)01048-8.

     

    Dang Z, Zhang N, Li Z X, et al. 2020. Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up. Commun. Earth Environ. , 1(1): 51, doi:10.1038/s43247-020-00052-z.

     

    Davaille A. 1999. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature, 402(6763): 756-760, doi:10.1038/45461.

     

    Davaille A, Romanowicz B. 2020. Deflating the LLSVPs: bundles of mantle thermochemical plumes, rather than thick "stagnant" piles. Tectonics, 39(10): e2020TC006265, doi:10.1029/2020TC006265.

     

    Davies D R, Goes S, Davies J H, et al. 2012. Reconciling dynamic and seismic models of Earth's lower mantle: The dominant role of thermal heterogeneity. Earth Planet. Sci. Lett. , 353-354: 253-269, doi:10.1016/j.epsl.2012.08.016.

     

    Davies G F. 1993. Cooling the core and mantle by plume and plate flows. Geophys. J. Int. , 115(1): 132-146. doi: 10.1111/j.1365-246X.1993.tb05593.x

     

    Davies G F. 1999. Dynamic Earth: Plates, Plumes and Mantle Convection. Cambridge: Cambridge University Press.

     

    Davies G F. 2009. Effect of plate bending on the Urey ratio and the thermal evolution of the mantle. Earth Planet. Sci. Lett. , 287(3-4): 513-518, doi:10.1016/j.epsl.2009.08.038.

     

    Dhuime B, Wuestefeld A, Hawkesworth C J. 2015. Emergence of modern continental crust about 3 billion years ago. Nature Geoscience, 8(7): 552-555. doi: 10.1038/ngeo2466

     

    Doucet L S, Li Z X, El Dien H G, et al. 2020. Distinct formation history for deep-mantle domains reflected in geochemical differences. Nature Geoscience, 13(7): 511-515, doi:10.1038/s41561-020-0599-9.

     

    Dziewonski A M, Hager B H, O'Connell R J. 1977. Large-scale heterogeneities in the lower mantle. J. Geophys. Res. , 82(2): 239-255, doi:10.1029/JB082i002p00239.

     

    Dziewonski A M. 1984. Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order-6. J. Geophys. Res. : Solid Earth, 89(B7): 5929-5952. doi: 10.1029/JB089iB07p05929

     

    Dziewonski A M, Lekić V, Romanowicz B A. 2010. Mantle anchor structure: An argument for bottom up tectonics. Earth Planet. Sci. Lett. , 299(1-2): 69-79, doi:10.1016/J.epsl.2010.08013.

     

    England P. 2018. On shear stresses, temperatures, and the maximum magnitudes of earthquakes at convergent plate boundaries. J. Geophys. Res. : Solid Earth, 123(8): 7165-7202. http://onlinelibrary.wiley.com/doi/10.1029/2018JB015907

     

    Ernst R, Bleeker W. 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Can. J. Earth Sci. , 47(5): 695-739, doi:10.1139/E10-025.

     

    Evans D A D. 2003. True polar wander and supercontinents. Tectonophysics, 362(1-4): 303-320. doi: 10.1016/S0040-1951(02)000642-X

     

    Fei Y, Van Orman J, Li J, et al. 2004. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J. Geophys. Res. : Solid Earth, 109(B2): B02305, doi:10.1029/2003JB002562.

     

    Foley B J, Bercovici D, Elkins-Tanton L T. 2014. Initiation of plate tectonics from post-magma ocean thermochemical convection. J. Geophys. Res. : Solid Earth, 119(11): 8538-8561, doi:10.1002/2014JB011121.

     

    Fowler A C. 1985. Fast thermoviscous convection. Stud. Appl. Math. , 72(3): 189-219. doi: 10.1002/sapm1985723189

     

    French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature, 525(7567): 95-99. doi: 10.1038/nature14876

     

    Frey H V. 2006. Impact constraints on, and a chronology for, major events in early Mars history. J. Geophys. Res. : Planets, 111(E8): E08S91, doi:10.1029/2005JE002449.

     

    Fukao Y, Widiyantoro S, Obayashi M. 2001. Stagnant slabs in the upper and lower mantle transition region. Rev. Geophys. , 39(3): 291-323, doi:10.1029/1999RG000068.

     

    Fukao Y, Obayashi M. 2013. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. : Solid Earth, 118(11): 5920-5938, doi:10.1002/2013JB010466.

     

    Gao X, Wang K L. 2014. Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science, 345(6200): 1038-1041, doi:10.1126/science.1255487.

     

    Garnero E J, McNamara A K. 2008. Structure and dynamics of Earth's lower mantle. Science, 320(5876): 626-628, doi:10.1126/science.1148028.

     

    Gerya T V, Stern R J, Baes M, et al. 2015. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527(7577): 221-225, doi:10.1038/nature15752

     

    Goes S, Agrusta R, Van Hunen J, et al. 2017. Subduction-transition zone interaction: A review. Geosphere, 13(3): 644-664. doi: 10.1130/GES01476.1

     

    Grand S P, van der Hilst R D, Widiyantoro S. 1997. Global seismic tomography: A snapshot of convection in the Earth. GSA Today, 7(4): 1-7. http://geosociety.org/gsatoday/archive/7/4/pdf/i1052-5173-7-4-1.pdf

     

    Grand S P. 2002. Mantle shear-wave tomography and the fate of subducted slabs. Philos. Trans. Roy. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. , 360(1800): 2475-2491, doi:10.1098/rsta.2002.1077.

     

    Gurnis M. 1988. Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature, 332(6166): 695-699. doi: 10.1038/332695a0

     

    Gurnis M. 1989. A reassessment of the heat transport by variable viscosity convection with plates and lids. Geophys. Res. Lett. , 16(2): 179-182. doi: 10.1029/GL016i002p00179

     

    Gurnis M, Zhong S J, Toth J. 2000. On the competing roles of fault reactivation and brittle failure in generating plate tectonics from mantle convection. //The History and Dynamics of Global Plate Motions, Volume 121. Geophysical Monograph Series. Washington, DC: American Geophysical Union, 73-94.

     

    Hager B H, O'Connell R J. 1979. Kinematic models of large-scale flow in the Earth's mantle. J. Geophys. Res. : Solid Earth, 84(B3): 1031-1048. doi: 10.1029/JB084iB03p01031

     

    Hager B H. 1984. Subducted slabs and the geoid: Constraints on mantle rheology and flow. J. Geophys. Res. : Solid Earth, 89(B7): 6003-6015. doi: 10.1029/JB089iB07p06003

     

    Hager B H, Clayton R W, Richards M A, et al. 1985. Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 313(6003): 541-545. doi: 10.1038/313541a0

     

    Hager B H, Richards M A. 1989. Long-wavelength variations in Earth's geoid: physical models and dynamical implications. Philos. Trans. Roy. Soc. Lond. Ser. A: Math. Phys. Sci. , 328(1599): 309-327. http://sas2.elte.hu/tg/msc_gravi/NEW_Hager_Richards_1989_PhilTransRSL.pdf

     

    Hall C E, Gurnis M, Sdrolias M, et al. 2003. Catastrophic initiation of subduction following forced convergence across fracture zones. Earth Planet. Sci. Lett. , 212(1-2): 15-30, doi:10.1016/S0012-821X(03)00242-5.

     

    Hansen L N, Kumamoto K M, Thom C A, et al. 2019. Low-temperature plasticity in olivine: Grain size, strain hardening, and the strength of the lithosphere. J. Geophys. Res. : Solid Earth, 124(6): 5427-5449, doi:10.1029/2018JB016736.

     

    Hassan R, Müller R D, Gurnis M, et al. 2016. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature, 533(7602): 239-242. doi: 10.1038/nature17422

     

    He Y M, Wen L X. 2009. Structural features and shear-velocity structure of the "Pacific Anomaly". J. Geophys. Res. : Solid Earth, 114(B2): B02309, doi:10.1029/2008JB005814.

     

    He Y M, Wen L X. 2012. Geographic boundary of the "Pacific Anomaly" and its geometry and transitional structure in the north. J. Geophys. Res. : Solid Earth, 117(B9): B09308, doi:10.1029/2012JB009436.

     

    Hernlund J W, McNamara A K. 2015. The core-mantle boundary region. //Schubert G ed. Treatise on Geophysics. 2nd ed. Oxford: Elsevier, 7: 461-519.

     

    Herzberg C, Condie K, Korenaga J. 2010. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. , 292(1-2): 79-88. doi: 10.1016/j.epsl.2010.01.022

     

    Hirth G, Kohlstedt D. 2003. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. //Eiler J ed. Inside the Subduction Factory, Volume 138, Geophysical Monograph Series. Washington, D.C. : AGU, 83-105.

     

    Hoffman P F. 1991. Did the breakout of Laurentia turn Gondwanaland inside-out?. Science, 252(5011): 1409-1412. doi: 10.1126/science.252.5011.1409

     

    Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385(6613): 219-229. doi: 10.1038/385219a0

     

    Holmes A. 1944. Principles of Physical Geology. Edinburgh, U.K. : Thomas Nelson & Sons.

     

    Houser C, Masters G, Shearer P, et al. 2008. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys. J. Int. , 174(1): 195-212. doi: 10.1111/j.1365-246X.2008.03763.x

     

    Hu J S, Liu L J. 2016. Abnormal seismological and magmatic processes controlled by the tearing South American flat slabs. Earth Planet. Sci. Lett. , 450: 40-51. doi: 10.1016/j.epsl.2016.06.019

     

    Huang C, Zhang N, Li Z X, et al. 2019. Modeling the inception of supercontinent breakup: Stress state and the importance of orogens. Geochem. Geophys. Geosyst. , 20(11): 4830-4848, doi:10.1029/2019GC008538.

     

    Huang J S, Zhong S J, van Hunen J. 2003. Controls on sub-lithospheric small-scale convection. J. Geophys. Res. : Solid Earth, 108(B8): 2405, doi:10.1029/2003JB002456.

     

    Jacoby W R, Schmeling H. 1982. On the effects of the lithosphere on mantle convection and evolution. Phys. Earth Planet. Inter. , 29(3-4): 305-319. doi: 10.1016/0031-9201(82)90019-X

     

    Jaupart C, Parsons B. 1985. Convective instabilities in a variable viscosity fluid cooled from above. Phys. Earth Planet. Inter. , 39(1): 14-32. doi: 10.1016/0031-9201(85)90112-8

     

    Jeffreys H. 1930. The instability of a compressible fluid heated below. Math. Proc. Camb. Phil. Soc. , 26(2): 170-172. doi: 10.1017/S0305004100015413

     

    Jeffreys H. 1970. The Earth: Its Origin, History and Physical Constitution. 5th ed. Cambridge, U.K. : Cambridge University Press.

     

    Kanamori H. 1980. The state of stress in the Earth's lithosphere. //Dziewonski A, Boschi E eds. Physics of the Earth's Interior. Amsterdam, The Netherlands: North Holland Publishing Co., 531-554.

     

    Karato S I. 2008. Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth. Cambridge, U.K. : Cambridge University Press.

     

    King S D, Gable C W, Weinstein S A. 1992. Models of convection-driven tectonic plates: a comparison of methods and results. Geophys. J. Int. , 109(3): 481-487. doi: 10.1111/j.1365-246X.1992.tb00111.x

     

    Koelemeijer P, Deuss A, Ritsema J. 2017. Density structure of Earth's lowermost mantle from Stoneley mode splitting observations. Nat. Commun. , 8: 15241, doi:10.1038/ncomms15241.

     

    Korenaga J. 2003. Energetics of mantle convection and the fate of fossil heat. Geophys. Res. Lett. , 30(8): 1437, doi:10.1029/2003GL016982.

     

    Korenaga J. 2006. Archean geodynamics and the thermal evolution of Earth. //Benn K, Mareschal J C, Condie K C eds. Archean Geodynamics and Environments, Volume 164, Geophysical Monograph Series. Washington D.C. : AGU, 7-32.

     

    Korenaga J. 2018. Crustal evolution and mantle dynamics through Earth history. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. , 376(2132): 20170408, doi:10.1098/rsta.2017.0408.

     

    Lachenbruch A H, Sass J H. 1988. The stress heat-flow paradox and thermal results from Cajon Pass. Geophys. Res. Lett. , 15(9): 981-984. doi: 10.1029/GL015i009p00981

     

    Lenardic A, Richards M A, Busse F H. 2006. Depth-dependent rheology and the horizontal length scale of mantle convection. J. Geophys. Res. : Solid Earth, 111 (B7): B07404, doi:10.1029/2005JB003639.

     

    Leng W, Zhong S J. 2010. Constraints on viscous dissipation of plate bending from compressible mantle convection. Earth Planet. Sci. Lett. , 297(1-2): 154-164, doi:10.1016/j.epsl.2010.06.016.

     

    Leng W, Gurnis M. 2011. Dynamics of subduction initiation with different evolutionary pathways. Geochem. Geophys. Geosyst. , 12(12): Q12018, doi:10.1029/2011GC003877.

     

    Leng W, Gurnis M. 2015. Subduction initiation at relic arcs. Geophys. Res. Lett. , 42(17): 7014-7021, doi:10.1002/2015GL064985.

     

    Le Pichon X, Şengör A M C, Īmren C. 2019. Pangea and the lower mantle. Tectonics, 38(10): 3479-3504, doi:10.1029/2018TC005445.

     

    Li M M, McNamara A K, Garnero E J. 2014. Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs. Nature Geoscience, 7(5): 366-370. doi: 10.1038/ngeo2120

     

    Li M M, Zhong S J. 2017. The source location of mantle plumes from 3D spherical models of mantle convection. Earth Planet. Sci. Lett. , 478: 47-57, doi:10.1016/j.epsl.2017.08.033.

     

    Li M M, Zhong S J, Olson P. 2018. Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation. Phys. Earth Planet. Inter. , 277: 10-29, doi:10.1016/j.pepi.2018.01.010.

     

    Li M M, Zhong S J. 2019. Lateral motion of mantle plumes in 3-D geodynamic models. Geophys. Res. Lett. , 46(9): 4685-4693, doi:10.1029/2018GL081404.

     

    Li M M. 2020. The formation of hot thermal anomalies in cold subduction-influenced regions of Earth's lowermost mantle. J. Geophys. Res. : Solid Earth, 125(6): e2019JB019312, doi:10.1029/2019JB019312.

     

    Li X D, Romanowicz B. 1996. Global mantle shear velocity model developed using nonlinear asymptotic coupling theory. J. Geophys. Res. : Solid Earth, 101(B10): 22245-22272, doi:10.1029/96JB01306.

     

    Li Y, Deschamps F, Yang J F, et al. 2019a. Effects of the compositional viscosity ratio on the long-term evolution of thermochemical reservoirs in the deep mantle. Geophys. Res. Lett. , 46(16): 9591-9601. doi: 10.1029/2019GL083668

     

    Li Z H, Liu M, Gerya T. 2016. Lithosphere delamination in continental collisional orogens: A systematic numerical study. J. Geophys. Res. : Solid Earth, 121(7): 5186-5211. doi: 10.1002/2016JB013106

     

    Li Z H, Gerya T, Connolly J A D. 2019b. Variability of subducting slab morphologies in the mantle transition zone: Insight from petrological-thermomechanical modeling. Earth-Science Reviews, 196: 102874, doi:10.1016/j.earscirev.2019.05.018.

     

    Li Z X, Bogdanova S V, Collins A S, et al. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160(1-2): 179-210. doi: 10.1016/j.precamres.2007.04.021

     

    Li Z X, Zhong S J. 2009. Supercontinent-superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics. Phys. Earth Planet. Inter. , 176(3-4): 143-156, doi:10.1016/j.pepi.2009.05.004.

     

    Litasov K D, Ohtani E, Sano A, et al. 2005. Wet subduction versus cold subduction. Geophys. Res. Lett. , 32(13): L13312, doi:10.1029/2005GL022921.

     

    Lithgow-Bertelloni C, Richards M A. 1998. The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys. , 36(1): 27-78, doi:10.1029/97RG02282.

     

    Liu L J, Spasojević S, Gurnis M. 2008. Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science, 322(5903): 934-938. doi: 10.1126/science.1162921

     

    Liu L J, Stegman D R. 2012. Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature, 482(7385): 386-389. doi: 10.1038/nature10749

     

    Long M D, Becker T W. 2010. Mantle dynamics and seismic anisotropy. Earth Planet. Sci. Lett. , 297(3-4): 341-354. doi: 10.1016/j.epsl.2010.06.036

     

    Lourenço D L, Rudolph M L. 2020. Shallow lower mantle viscosity modulates the pattern of mantle structure. Geochem. Geophys. Geosyst. , 21(8): e2020GC008934, doi:10.1029/2020GC008934.

     

    Lowman J P, Jarvis G T. 1996. Continental collisions in wide aspect ratio and high Rayleigh number two-dimensional mantle convection models. J. Geophys. Res. : Solid Earth, 101(B11): 25485-25497. doi: 10.1029/96JB02568

     

    Lynner C, Long M D. 2014. Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP. Geophys. Res. Lett. , 41 (10): 3447-3454, doi:10.1002/2014GL059875.

     

    Mao W, Zhong S J. 2018. Slab stagnation due to a reduced viscosity layer beneath the mantle transition zone. Nature Geoscience, 11(11): 876-881. doi: 10.1038/s41561-018-0225-2

     

    Mao W, Zhong S J. 2019. Controls on global mantle convective structures and their comparison with seismic models. J. Geophys. Res. : Solid Earth, 124(8): 9345-9372. doi: 10.1029/2019JB017918

     

    Mao W, Zhong S J. 2021a. Constraints on mantle viscosity from intermediate-wavelength geoid anomalies in mantle convection models with plate motion history. J. Geophys. Res. : Solid Earth, 126(4): e2020JB021561, doi:10.1029/2020JB021561.

     

    Mao W, Zhong S J. 2021b. Formation of horizontally deflected slabs in the mantle transition zone caused by spinel-to-post-spinel phase transition, its associated grainsize reduction effects, and trench retreat. Geophys. Res. Lett. , 48(15): e2021GL093679, doi:10.1029/2021GL093679.

     

    Masters G, Laske G, Bolton H, et al. 2000. The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure. //Karato S I, Forte A, Liebermann R, et al eds. Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale. Washington, DC: American Geophysical Union, 63-87.

     

    McKenzie D P, Parker R L. 1967. The North Pacific: an example of tectonics on a sphere. Nature, 216(5122): 1276-1280. doi: 10.1038/2161276a0

     

    McKenzie D P, Roberts J M, Weiss N O. 1974. Convection in the Earth's mantle: towards a numerical simulation. J. Fluid Mech. , 62(3): 465-538. doi: 10.1017/S0022112074000784

     

    McNamara A K, van Keken P E. 2000. Cooling of the Earth: A parameterized convection study of whole versus layered models. Geochem. Geophys. Geosyst. , 1(11): 1027, doi:10.1029/2000GC000045.

     

    McNamara A K, Zhong S J. 2004. Thermochemical structures within a spherical mantle: Superplumes or piles?. J. Geophys. Res. : Solid Earth, 109(B7): B07402, doi:10.1029/2003JB002847.

     

    McNamara A K, Zhong S J. 2005a. Thermochemical structures beneath Africa and the Pacific Ocean. Nature, 437(7062): 1136-1139. doi: 10.1038/nature04066

     

    McNamara A K, Zhong S J. 2005b. Degree-one mantle convection: Dependence on internal heating and temperature-dependent rheology. Geophys. Res. Lett. , 32(1): L01301, doi:10.1029/2004GL021082.

     

    McNamara A K. 2019. A review of large low shear velocity provinces and ultra low velocity zones. Tectonophysics, 760: 199-220. doi: 10.1016/j.tecto.2018.04.015

     

    Mei S, Suzuki A M, Kohlstedt D L, et al. 2010. Experimental constraints on the strength of the lithospheric mantle. J. Geophys. Res. : Solid Earth, 115(B8): B08204, doi:10.1029/2009JB006873.

     

    Minster J B, Jordan T H. 1978. Present-day plate motions. J. Geophys. Res. : Solid Earth, 83(B11): 5331-5354. doi: 10.1029/JB083iB11p05331

     

    Molnar P, Stock J. 1987. Relative motions of hotspots in the Pacific, Atlantic and Indian Oceans since Late Cretaceous time. Nature, 327(6123): 587-591, doi:10.1038/327587a0.

     

    Montelli R, Nolet G, Dahlen F A, et al. 2004. Finite frequency tomography reveals a variety of plumes in the mantle. Science, 303(5656): 338-343. doi: 10.1126/science.1092485

     

    Moresi L, Solomatov V. 1998. Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophys. J. Int., 133: 669-682, doi:10.1046/j.1365-246X.1998.00521.x.

     

    Moresi L N, Solomatov V S. 1995. Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids, 7(9): 2154-2162. doi: 10.1063/1.868465

     

    Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230(5288): 42-43. doi: 10.1038/230042a0

     

    Mulyukova E, Bercovici D. 2019. The generation of plate tectonics from grains to global scales: A brief review. Tectonics, 38(12): 4058-4076, doi:10.1029/2018TC005447

     

    Ni S D, Tan E, Gurnis M, et al. 2002. Sharp sides to the African superplume. Science, 296(5574): 1850-1852, doi:10.1126/science.1070698.

     

    Noack L, Breuer D. 2014. Plate tectonics on rocky exoplanets: Influence of initial conditions and mantle rheology. Planetary and Space Science, 98: 41-49. doi: 10.1016/j.pss.2013.06.020

     

    Olson P, Deguen R, Rudolph M L, et al. 2015. Core evolution driven by mantle global circulation. Phys. Earth Planet. Inter. , 243: 44-55. doi: 10.1016/j.pepi.2015.03.002

     

    O'Neill C, Jellinek A M, Lenardic A. 2007. Conditions for the onset of plate tectonics on terrestrial planets and moons. Earth Planet. Sci. Lett. , 261(1-2): 20-32. doi: 10.1016/j.epsl.2007.05.038

     

    Panasyuk S V, Hager B H. 1998. A model of transformational superplasticity in the upper mantle. Geophys. J. Int. , 133(3): 741-755. doi: 10.1046/j.1365-246X.1998.00539.x

     

    Panning M, Romanowicz B. 2006. A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys. J. Int. , 167(1): 361-379, doi:10.1111/j.1365-246X.2006.03100.x

     

    Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48. doi: 10.1016/j.lithos.2007.06.016

     

    Ratcliff J T, Tackley P J, Schubert G, et al. 1997. Transitions in thermal convection with strongly variable viscosity. Phys. Earth Planet. Inter. , 102 (3-4): 201-212, doi:10.1016/S0031-9201(97)00013-7.

     

    Ricard Y, Richards M, Lithgow-Bertelloni C, et al. 1993. A geodynamic model of mantle density heterogeneity. J. Geophys. Res. : Solid Earth, 98(B12): 21895-21909. doi: 10.1029/93JB02216

     

    Richards M A, Yang W S, Baumgardner J R, et al. 2001. Role of a low-viscosity zone in stabilizing plate tectonics: Implications for comparative terrestrial planetology. Geochem. Geophys. Geosyst. , 2(8): 2000GC000115, doi:10.1029/2000GC000115.

     

    Ritsema J, van Heijst H J, Woodhouse J H. 1999. Complex shear wave velocity structure imaged beneath Africa and Iceland. Science, 286(5446): 1925-1928, doi:10.1126/science.286.5446.1925.

     

    Ritsema J, Deuss A, van Heijst H J, et al. 2011. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. , 184(3): 1223-1236, doi:10.1111/j.1365-246X.2010.04884.x.

     

    Rudolph M L, Lekić V, Lithgow-Bertelloni C. 2015. Viscosity jump in Earth's mid-mantle. Science, 350(6266): 1349-1352. doi: 10.1126/science.aad1929

     

    Rudolph M L, Moulik P, Lekić V. 2020. Bayesian inference of mantle viscosity from whole-mantle density models. Geochem. Geophys. Geosyst. , 21(11): e2020GC009335, doi:10.1029/2020GC009335.

     

    Schellart W P. 2009. Evolution of the slab bending radius and the bending dissipation in three-dimensional subduction models with a variable slab to upper mantle viscosity ratio. Earth Planet. Sci. Lett. , 288(1-2): 309-319, doi:10.1016/j.epsl.2009.09.034.

     

    Schubert G, Turcotte D L, Olson P. 2001. Mantle Convection in the Earth and Planets. Cambridge: Cambridge University Press.

     

    Schuberth B S A, Bunge H P, Ritsema J. 2009. Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone?. Geochem. Geophys. Geosyst. , 10(5): Q05W03, doi:10.1029/2009GC002401.

     

    Scotese C R. 1997. Continental Drift. 7th ed. PALEOMAP Project, Arlington, Texas.

     

    Seton M, Müller R D, Zahirovic S, et al. 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Reviews, 113(3-4): 212-270. doi: 10.1016/j.earscirev.2012.03.002

     

    Shirey S B, Richardson S H. 2011. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science, 333(6041): 434-436. doi: 10.1126/science.1206275

     

    Sleep N H. 1994. Martian plate tectonics. J. Geophys. Res. : Planets, 99(E3): 5639-5655, doi:10.1029/94JE00216.

     

    Smith A G, Hurley A M, Briden J C. 1981. Phanerozoic Paleocontinental World Maps. Cambridge: Cambridge University Press.

     

    Solomatov V S. 2004. Initiation of subduction by small-scale convection. J. Geophys. Res. : Solid Earth, 109(B1): B01412, doi:10.1029/2003JB002628.

     

    Solomatov V S. 2007. Magma oceans and primordial mantle differentiation. //Schubert G ed. Treatise on Geophysics. Elsevier, 9: 91-119.

     

    Solomatov V S, Reese C C. 2008. Grain size variations in the Earth's mantle and the evolution of primordial chemical heterogeneities. J. Geophys. Res. : Solid Earth, 113(B7): B07408, doi:10.1029/2007JB005319.

     

    Steinberger B, Sutherland R, O'Connell R J. 2004. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature, 430(6996): 167-173, doi:10.1038/nature02660.

     

    Stern R J. 2020. The mesoproterozoic single-lid tectonic episode: prelude to modern plate tectonics. GSA Today, 30: 4-10, https://doi.org/10.1130/GSATG480A.1. doi: 10.1130/GSATG480A.1

     

    Su W J, Woodward R L, Dziewonski A M. 1994. Degree 12 model of shear velocity heterogeneity in the mantle. J. Geophys. Res. : Solid Earth, 99(B4): 6945-6980, doi:10.1029/93JB03408.

     

    Su W J, Dziewonski A M. 1997. Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys. Earth Planet. Inter. , 100(1-4): 135-156. doi: 10.1016/S0031-9201(96)03236-0

     

    Tackley P J. 1993. Effects of strongly temperature-dependent viscosity on time-dependent, three-dimensional models of mantle convection. Geophys. Res. Lett. , 20(20): 2187-2190, doi:10.1029/93GL02317.

     

    Tackley P J, Stevenson D J, Glatzmaier G A, et al. 1993. Effects of an Endothermic phase-transition at 670 Km depth in a spherical model of convection in the Earth's mantle. Nature, 361(6414): 699-704, doi:10.1038/361699a0.

     

    Tackley P J. 1996. On the ability of phase transitions and viscosity layering to induce long wavelength heterogeneity in the mantle. Geophys. Res. Lett. , 23(15): 1985-1988, doi:10.1029/96GL01980.

     

    Tackley P J. 1998. Three-dimensional simulations of mantle convection with a thermo-chemical basal boundary layer. //Gurnis M, Wysession M E, Knittle E, et al eds. Core-Mantle Boundary Region, Volume 28. Washington: AGU, 231-253.

     

    Tackley P J. 2000. Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 2. Strain weakening and asthenosphere. Geochem. Geophys. Geosyst. , 1(8): 1026, doi:10.1029/2000GC000043.

     

    Tackley P J. 2002. Strong heterogeneity caused by deep mantle layering. Geochem. Geophys. Geosyst. , 3(4): 1024, doi:10.1029/2001GC000167.

     

    Tan E, Leng W, Zhong S J, et al. 2011. On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3-D compressible mantle. Geochem. Geophys. Geosyst. , 12(7): Q07005, doi:10.1029/2011GC003665.

     

    Tarduno J A, Cottrell R D, Davis W J, et al. 2015. A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science, 349(6247): 521-524, doi:10.1126/science.aaa9114.

     

    Thorne M S, Garnero E J, Grand S P. 2004. Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Phys. Earth Planet. Inter. , 146(1-2): 47-63, doi:10.1016/j.pepi.2003.09.026.

     

    Torsvik T H. 2003. The Rodinia jigsaw puzzle. Science, 300(5624): 1379-1381, doi:10.1126/science.1083469.

     

    Torsvik T H, Smethurst M A, Burke K, et al. 2006. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys. J. Int. , 167(3): 1447-1460, doi:10.1111/j.1365-246X.2006.03158.x.

     

    Torsvik T H, Steinberger B, Cocks L R M, et al. 2008a. Longitude: Linking Earth's ancient surface to its deep interior. Earth Planet. Sci. Lett. , 276(3-4): 273-282. doi: 10.1016/j.epsl.2008.09.026

     

    Torsvik T H, Smethurst M A, Burke K, et al. 2008b. Long term stability in deep mantle structure: evidence from the ~300 Ma Skagerrak-Centered Large Igneous Province (the SCLIP). Earth Planet. Sci. Lett. , 267(3-4): 444-452. doi: 10.1016/j.epsl.2007.12.004

     

    Torsvik T H, Burke K, Steinberger B, et al. 2010. Diamonds sampled by plumes from the core-mantle boundary. Nature, 466(7304): 352-355. doi: 10.1038/nature09216

     

    Torsvik T H, van der Voo R, Doubrovine P V, et al. 2014. Deep mantle structure as a reference frame for movements in and on the Earth. Proc. Natl. Acad. Sci. USA, 111(24): 8735-8740, doi:10.1073/pnas.1318135111.

     

    Trim S J, Lowman J P. 2016. Interaction between the supercontinent cycle and the evolution of intrinsically dense provinces in the deep mantle. J. Geophys. Res. : Solid Earth, 121(12): 8941-8969, doi: 10.1002/2016JB013285.

     

    Turcotte D L, Schubert G. 2002. Geodynamics. 2nd ed. Cambridge: Cambridge University Press.

     

    Tusch J, Münker C, Hasenstab E, et al. 2021. Convective isolation of Hadean mantle reservoirs through Archean time. Proc. Natl. Acad. Sci. USA, 118(2): e2012626118, doi:10.1073/pnas.2012626118.

     

    Van der Hilst R D, Widiyantoro S, Engdahl E R. 1997. Evidence for deep mantle circulation from global tomography. Nature, 386(6625): 578-584, doi:10.1038/386578a0.

     

    Van der Hist R, Engdahl R, Spakman W, et al. 1991. Tomographic imaging of subducted lithosphere below northwest Pacific Island arcs. Nature, 353(6339): 37-43, doi:10.1038/353037a0.

     

    Wang Y M, Huang J S, Zhong S J, et al. 2016. Heat flux and topography constraints on thermochemical structure below North China Craton regions and implications for evolution of cratonic lithosphere. J. Geophys. Res. : Solid Earth, 121(4): 3081-3098, doi:10.1002/2015JB012540.

     

    Wang Y M, Li M M. 2020. Constraining mantle viscosity structure from a statistical analysis of slab stagnation events. Geochem. Geophys. Geosyst. , 21(11): e2020GC009286, doi:10.1029/2020GC009286.

     

    Wen L X, Silver P, James D, et al. 2001. Seismic evidence for a thermo-chemical boundary at the base of the Earth's mantle. Earth Planet. Sci. Lett. , 189(3-4): 141-153, doi:10.1016/S0012-821X(01)00365-X.

     

    Wilson J T. 1965. A new class of faults and their bearing on continental drift. Nature, 207(4995): 343-347. doi: 10.1038/207343a0

     

    Woodhouse J H, Dziewonski A M. 1984. Mapping the upper mantle: three-dimensional modeling of earth structure by inversion of seismic waveforms. J. Geophys. Res. : Solid Earth, 89(B7): 5953-5986, doi: 10.1029/JB089iB07p05953.

     

    Yang T, Moresi L, Zhao D P, et al. 2018. Cenozoic lithospheric deformation in Northeast Asia and the rapidly-aging Pacific Plate. Earth Planet. Sci. Lett. , 492: 1-11. doi: 10.1016/j.epsl.2018.03.057

     

    Yin A. 2012. Structural analysis of the Valles Marineris fault zone: Possible evidence for large-scale strike-slip faulting on Mars. Lithosphere, 4(4): 286-330, doi:10.1130/L192.1.

     

    Zhang N, Zhong S J, McNarmara A K. 2009. Supercontinent formation from stochastic collision and mantle convection models. Gondwana Research, 15(3-4): 267-275, doi:10.1016/j.gr.2008.10.002.

     

    Zhang N, Zhong S J, Leng W, et al. 2010. A model for the evolution of the Earth's mantle structure since the Early Paleozoic. J. Geophys. Res. : Solid Earth, 115(B6): B06401, doi:10.1029/2009JB006896.

     

    Zhao D P. 2004. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys. Earth Planet. Inter. , 146(1-2): 3-34. doi: 10.1016/j.pepi.2003.07.032

     

    Zhong S J, Gurnis M. 1993. Dynamic feedback between an non-subducting raft and thermal convection. J. Geophys. Res. , 98: 12219-12232. doi: 10.1029/93JB00193

     

    Zhong S J, Gurnis M. 1994. Controls on trench topography from dynamic models of subducted slabs. J. Geophys. Res. : Solid Earth, 99(B8): 15683-15695. doi: 10.1029/94JB00809

     

    Zhong S J, Gurnis M. 1995. Mantle convection with plates and mobile, faulted plate margins. Science, 267(5199): 838-843. doi: 10.1126/science.267.5199.838

     

    Zhong S J, Gurnis M. 1996. Incorporation of fault-bound plates in three-dimensional models of mantle flow. Nature, 383: 245-247. doi: 10.1038/383245a0

     

    Zhong S J, Gurnis M, Moresi L. 1998. Role of faults, nonlinear rheology, and viscosity structure in generating plates from instantaneous mantle flow models. J. Geophys. Res. : Solid Earth, 103(B7): 15255-15268. doi: 10.1029/98JB00605

     

    Zhong S J, Zuber M T, Moresi L, et al. 2000a. Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res. : Solid Earth, 105(B5): 11063-11082, doi: 10.1029/2000JB900003.

     

    Zhong S J, Parmentier E M, Zuber M T. 2000b. A dynamic origin for the global asymmetry of lunar mare basalts. Earth Planet. Sci. Lett. , 177(3-4): 131-140, doi:10.1016/S0012-821X(00)00041-8.

     

    Zhong S J. 2001. Role of ocean-continent contrast and continental keels on plate motion, net rotation of lithosphere, and the geoid. J. Geophys. Res. : Solid Earth, 106(B1): 703-712. doi: 10.1029/2000JB900364

     

    Zhong S J, Zuber M T. 2001. Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet. Sci. Lett. , 189(1-2): 75-84. doi: 10.1016/S0012-821X(01)00345-4

     

    Zhong S J. 2005. Dynamics of thermal plumes in three-dimensional isoviscous thermal convection. Geophys. J. Int. , 162(1): 289-300, doi:10.1111/j.1365-246X.2005.02633.x

     

    Zhong S J, Yuen D A, Moresi L N. 2007. Numerical methods for mantle convection. //Schubert G ed. Treatise on Geophysics. Elsevier, 7: 227-252.

     

    Zhong S J, McNamara A, Tan E, et al. 2008. A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochem. Geophys. Geosyst. , 9(10): Q10017, doi:10.1029/2008GC002048.

     

    Zhong S J, Watts A B. 2013. Lithospheric deformation induced by loading of the Hawaiian Islands and its implications for mantle rheology. J. Geophys. Res. : Solid Earth, 118: 6025-6048, doi:10.1002/2013JB010408.

     

    Zhong S J, Rudolph M L. 2015. On the temporal evolution of long-wavelength mantle structure of the Earth since the Early Paleozoic. Geochem. Geophys. Geosyst. , 16(5): 1599-1615, doi:10.1002/2015GC005782.

     

    Zhong S J, Liu X. 2016. The long-wavelength mantle structure and dynamics and implications for large-scale tectonics and volcanism in the Phanerozoic. Gondwana Research, 29(1): 83-104, doi:10.1016/j.gr.2015.07.007.

     

    Zindler A, Hart S. 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. , 14(1): 493-571, doi:10.1146/annurev.ea.14.050186.002425.

     

    Zoback M D, Townend J. 2001. Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere. Tectonophysics, 336(1-4): 19-30. doi: 10.1016/S0040-1951(01)00091-9

  • 加载中

(12)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2021-07-26
修回日期:  2021-08-24
上线日期:  2021-10-10

目录