首页 | 官方网站   微博 | 高级检索  
     


THE COULOMB STRESS CHANGES AND SEISMICITY ON SOME MAJOR FAULTS IN NORTH CHINA
Authors:ZHANG Qun-wei  ZHU Shou-biao
Affiliation:Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China
Abstract:In recent years, the Coulomb stress change induced by large earthquakes has attracted extensive attention in seismology. Many scientists at home and abroad have made remarkable achievements in the research on it. It is well known that North China is densely populated and industrially developed. More importantly, the Chinese capital city, Beijing, lies in the hinterland of North China. At the same time, there are abundant active faults and earthquakes in North China. The capital Beijing is China's political, economic, cultural, and transportation center. It is the center of all social activities and economic activities in the country, and is also a region where population, wealth, and information are highly concentrated. With the integration of Beijing-Tianjin-Hebei and the construction of Xiong'an New District, the consequences of big earthquake in Beijing and surrounding areas are unimaginable. Due to its special geographical location, frequent seismic activities in North China capture much attention. From the physical principle, the occurrence of earthquakes releases the accumulated stress, but the stress does not completely disappear. Some of the stresses are transmitted and transferred to other areas, resulting in stress concentration in some areas, which in turn affects the occurrence of earthquakes in the area. This is the idea of stress triggering of earthquakes. According to this hypothesis, the enhancement of Coulomb stress corresponds to the additional loading of the fault and promotes the occurrence of earthquakes; conversely, the weakening of the Coulomb stress in the stress shadow zone corresponds to partial unloading of the fault, which will delay the occurrence of the earthquake. In order to study the future seismic activity of North China, this paper estimates risks of future strong earthquakes in the region. To this end, we calculate the coseismic Coulomb stress changes and postseismic viscoelastic relaxation stresses of the events with MS ≥ 6.0 that occurred in the North China region since 1820, using elastic dislocation theory and hierarchical lithosphere model, respectively, in order to examine whether the cumulative Coulomb stress change can explain the spatiotemporal pattern of large earthquakes. Also we project the Coulomb stress change onto the specific active faults in North China and assign the present and future Coulomb stress change state to the faults to provide a dynamics reference for analyzing whether the areas will be hit by strong earthquakes in the future. The simulated results show that the effect caused by the effective friction coefficient changes is not significant on the spatial distribution of Coulomb stress changes induced by coseismic and postseismic viscoelastic relaxation effect of the medium of earthquakes in the North China region. Although the variation of the effective friction coefficient has an impact on the Coulomb stresses for some sections of faults, the general pattern of the spatial distribution of the Coulomb stress changes keeps unchanged. Consequently, 19 of the 24 earthquakes since the 1888 Bohai Bay earthquake have fallen in the positive region of Coulomb stress changes, with a triggering rate of 79%. In particular, considering the seismogeological data and the Coulomb stress calculation results, we assume that Luanxian-Yueting Fault, Panzhuangxi Fault, Dongming-Chengwu Fault, Yuncheng Fault, Longyao Fault of Ninghe-Xinxiang seismic belt, the Yingkou-Weifang Fault of Tanlu seismic belt, the Xiadian Fault, and the Huangzhuang-Gaoliying Fault in the Capital area have higher seismic risk and deserve in-depth study.
Keywords:Coulomb stress change  viscoelastic relaxation  seismic risk  North China  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号