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ABSTRACT

Early and effective flood warning is essential for reducing loss of life and economic damage. Three global
ensemble weather prediction systems of the China Meteorological Administration (CMA), the European
Centre for Medium-Range Weather Forecasts (ECMWF), and the US National Centers for Environmental
Prediction (NCEP) in THORPEX (The Observing System Research and Predictability Experiment) In-
teractive Grand Global Ensemble (TIGGE) archive are used in this research to drive the Global/Regional
Assimilation and PrEdiction System (GRAPES) to produce 6-h lead time forecasts. The output (precipita-
tion, air temperature, humidity, and pressure) in turn drives a hydrological model XXT (the first X stands
for Xinanjiang, the second X stands for hybrid, and T stands for TOPMODEL), the hybrid model that
combines the TOPMODEL (a topography based hydrological model) and the Xinanjiang model, for a case
study of a flood event that lasted from 18 to 20 July 2007 in the Linyi watershed. The results show that
rainfall forecasts by GRAPES using TIGGE data from the three forecast centers all underestimate heavy
rainfall rates; the rainfall forecast by GRAPES using the data from the NCEP is the closest to the obser-
vation while that from the CMA performs the worst. Moreover, the ensemble is not better than individual
members for rainfall forecasts. In contrast to corresponding rainfall forecasts, runoff forecasts are much
better for all three forecast centers, especially for the NCEP. The results suggest that early flood warning
by the GRAPES/XXT model based on TIGGE data is feasible and this provides a new approach to raise
preparedness and thus to reduce the socio-economic impact of floods.
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1. Introduction

Early and effective flood warning is essential for
reducing loss of life and economic damage. The avail-
ability of several global ensemble weather prediction
systems through THORPEX (The Observing System
Research and Predictability Experiment) Interactive
Grand Global Ensemble (TIGGE) archive provides an
opportunity to explore new dimensions in early flood

forecasting and warning (Pappenberger et al., 2008).
As an important data supporting system, TIGGE has
made a great contribution to correction of system-
atic errors from different sources such as uncertainties
of observation, initial value problems, and imperfect
models. He et al. (2010) used the TIGGE data to
drive the Xinanjiang model to forecast discharges and
flood events in the upper Huai catchment. Their
results demonstrated satisfactory flood forecasting
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skills with clear signals of floods up to 10 days in
advance. Froude (2010) analyzed the prediction of
Northern Hemisphere extratropical cyclones by nine
different ensemble prediction systems (EPSs) archived
as part of the TIGGE project. He found that the Eu-
ropean Centre for Medium-Range Weather Forecasts
(ECMWF) ensemble mean and control have the high-
est level of skill for all cyclone properties. Moreover,
the TIGGE database has also been extensively used in
the studies by Yamaguchi and Majumdar (2010) and
Keller et al. (2011).

The Global/Regional Assimilation and PrEdic-
tion System (GRAPES) is an important operational
numerical weather prediction system in the China
Meteorological Administration (CMA). This model
adopts a structure of standardized and module-based
software in accordance with the strict requirements
of software engineering. A preliminary study (Wu
et al., 2005) shows that the application of GRAPES
meets the requirement for sustainable development of
the numerical prediction system of China. Nowadays,
GRAPES has been developed in various fields, such
as GRAPES-Meso for mesoscale weather prediction,
GRAPES-TCM for typhoon prediction, GRAPES-
SDM for sandstorm forecast, and GRAPES-SWIFT
for short-time weather forecast (Zhao and Li, 2006;
Zhu et al., 2007). Further development of the
GRAPES is undergoing. So far, however, the oper-
ational GRAPES in the CMA has not yet been able
to directly predict runoff and hence flood events.

Hydrological models have been widely used as
the significant tools to simulate the runoff process in
catchments of different dimensions for runoff forecast-
ing. The rainfall-runoff process is filled with extremely
complex physics. As conceptual models such as TOP-
MODEL (a topography based hydrological model),
SWAT (Soil and Water Assessment Tool), and SHE
(Système Hydrologique Européen) consider both hy-
drologic and climatologic variables, such as precipita-
tion, runoff, temperature, and evaporation, they have
always been widely used to transform rainfall into
runoff (Beven and Kirkby, 1979; Beven et al., 1984;
Zhang et al., 2006; Vazquez and Feyen, 2007; Demirel
et al., 2009). Aiming at more precise prediction re-

sults, some hybrid models have been developed, such
as the XXT (the first X denotes Xinanjiang, the sec-
ond X denotes hybrid, and T denotes TOPMODEL)
model proposed by Xu (2010) and Xu et al. (2010,
2012). Due to its simplicity in model structure and
efficient computation, it is suitable for use in the en-
semble prediction by GRAPES based on the TIGGE
data.

Although there is an increasing amount of litera-
ture on the use of TIGGE data in hydrological mod-
els for flood forecast, the use of a hydrological model
and GRAPES driven by TIGGE is rarely addressed.
The objective of the present work, therefore, is to pre-
dict runoff based on the simple but efficient hydrolog-
ical model XXT with GRAPES driven by the TIGGE
data.

2. Data description and methods

2.1 TIGGE data and the study area

In this paper, TIGGE data in July 2007 from
three numerical weather prediction (NWP) centers,
i.e., the CMA, the ECMWF, and the National Centers
for Environmental Prediction (NCEP), were obtained
from the CMA and were used to drive the operational
GRAPES. The outputs in turn drive the hydrological
model XXT.

The Linyi hydro-station gauged watershed at
the upstream of the Yishusi catchment in Shandong
Province, China was selected as the study watershed
for flood prediction in July 2007. The Linyi watershed
with a drainage area of 10040 km2 lies in the semi-arid
area of eastern China (Fig. 1).

2.2 The hydrological model XXT

TOPMODEL is a physically based watershed
model that simulates the stream flow generation
based on the variable-source-area concept (Beven and
Kirkby, 1979; Bouilloud et al., 2010; Liu et al., 2009;
Wolock, 1993). TOPMODEL has been widely used to
study a variety of research topics, including synthetic
flood-frequency derivation, model-parameter calibra-
tion, carbon budget simulation, and spatial scale ef-
fects of hydrologic processes. The Xinanjiang model
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Fig. 1. The study area: left for China and right for Yishusi catchment in which the area in red and blue represents the

Linyi watershed.

has been successfully applied in humid and semi-
humid regions in China since its development (Zhao et
al., 2011; Zhao, 1980, 1992). Gan et al. (1997) pointed
out that the Xinanjiang model did consistently better,
even in dry catchments, compared with the Pitman
model of South Africa, the Sacramento model of the
US, the NAM model of Europe, and the SMAR (Soil
Moisture Accounting and Routing) model of Ireland.
The Xinanjiang model uses a single parabolic curve
to represent the spatial distribution of soil moisture
storage capacity over a catchment, where the expo-
nent parameter b measures the non-uniformity of this
distribution (Jayawardena and Zhou, 2000).

Based on the soil moisture storage capacity dis-
tribution curve (SMSCC), the Xinanjiang model, to-
gether with the simple model structure of TOP-
MODEL, a new rainfall-runoff model named XXT was
developed (Xu, 2010; Xu et al., 2012). The vertical
structure of this newly developed model consists of
three parts: the interception zone (including vegeta-
tion layer and root zone of soil), the unsaturated zone,
and the saturated zone. In the XXT model, the wa-
ter table is incorporated into SMSCC and it connects
the surface runoff production with base flow produc-
tion. This improves the description of the dynamically
varying saturated areas that produce runoff and also
captures the physical underground water level. Xu et
al. (2010, 2012) demonstrated that XXT is a simple

and efficient hydrological model and performs better
than Xinanjiang, TOPMODEL, and SWAT in daily
runoff prediction and flood forecasting. In the present
work, it is therefore selected as the flood forecasting
model using rainfall data from GRAPES as the inputs.

3. Experiments and results

3.1 Rainfall forecast by GRAPES using

TIGGE data

Three global ensemble weather prediction systems
of the CMA, ECMWF, and NCEP in the THORPEX
TIGGE archive are used in this research to drive the
GRAPES model. Figures 2–4 show the observed rain-
fall versus forecasted rainfall by GRAPES using the
TIGGE data of CMA, ECMWF, and NCEP, respec-
tively, for 6-h rainfall forecasts from 0000 UTC 18 July
to 1200 UTC 20 July 2007 in the Linyi watershed.
From Fig. 2 to Fig. 4, it is easily seen that observed
rainfall starts from 1200 UTC 18 July and reaches the
maximum of around 40 mm at a mean speed of about
7 mm h−1 at 1800 UTC 18 July, and then decreases to
zero at 1200 UTC 19 July. In Fig. 2, the differences
among all the members of CMA are extremely large.
Furthermore, from 1200 UTC 18 to 1200 UTC 19 July,
all the members hold very low values close to 0, far less
than the observed one. In the end of the forecast pe-
riod, all members overestimate the observed rainfall.
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Fig. 2. Observed vs. forecasted rainfall by GRAPES using the TIGGE data from the CMA.

Fig. 3. As in Fig. 2, but for the ECMWF.

Fig. 4. As in Fig. 2, but for the NCEP.
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Figures 2–4 also demonstrate that the rainfall curve
forecasted by the CMA has one peak similar to that by
NCEP. Figure 2 shows that the CMA forecasted pre-
cipitation peak lags 30 h behind the observation, while
Fig. 4 shows that NCEP lags 12 h. The ECMWF
forecasted precipitation curve has two peaks appear-
ing around 30 and 54 h respectively from the predic-
tion starting time, lagging 18 and 36 h behind the
observed one. Although NCEP has an advantage over
the other two EPSs for forecast of the precipitation
peak, the rainfall forecast by any of the single EPS
has missed the actual rainfall peak time almost en-
tirely. The reason for this may be that the ability of
the GRAPES model itself to forecast precipitation is
not good enough. In addition, vertical and horizon-
tal resolutions, and all kinds of physical process pa-
rameterizations have great effects on the performance
of NWP models. Hence, applying the model of un-
changeable resolution into different dimensions may
result in some errors.

In general, it can be seen from Figs. 2–4 that
there is high variability in the hydrograph of the rain-
fall forecasts by each member of the three global EPSs.
They all have seriously underestimated the peak rain-
fall intensity. Trends of the time series of rainfall
forecasts for different members of the same ensemble
forecasting center are similar to each other. However,
there is a large dispersion in forecasted rainfall values
among the members. This indicates that the GRAPES
model’s ability to predict the precipitation intensity is
relatively weak. Rainfall forecasts by GRAPES using
the data from the NCEP forecast center are the closest
to the observation while those from the CMA are the
worst.

3.2 Runoff forecast by XXT using the output

of GRAPES

The forecasted rainfall data by GRAPES using
the three global EPSs were input into the XXT model
respectively in order to obtain runoff forecast for the
Linyi watershed. The observed runoff (stream flow)
and simulated runoff by XXT are shown in Figs. 5–7.
Firstly, it is clearly seen from the three figures that be-
fore 1800 UTC 18 July, the observed discharge is very

stable and below 100 m3 s−1. Afterwards, it reaches
above 400 m3 s−1 at 1200 UTC 19 July, then decreases
a little but still between 350 and 400 m3 s−1. To be
specific, from 1800 UTC 18 to 0600 UTC 19 July, the
growth rate of observed runoff is about 10 m3 s−1 h−1

and it is nearly 33 m3 s−1 h−1 from 0600 to 1200
UTC 19 July. In other words, flood peak occurs at
1200 UTC 19 July and the high flood process above
350 m3 s−1 lasts for the following hours. As a whole,
the tendency of the forecasted runoff in Figs. 5–7 is
generally consistent with that of the observed rainfall
in Figs. 2–4. As for the XXT modeling results, fore-
casted runoff amounts derived from different datasets
are significantly different.

In Fig. 5, all 11 members of the ensemble fore-
cast cannot capture the runoff peak, not even the
changing tendency of runoff. To go further, the runoff
curves forecasted by members of CMA07, CMA08, and
CMA10 hardly change with time. Before the runoff be-
gins to increase rapidly, CMA03 and CMA09 overesti-
mate the runoff while underestimate it during the pe-
riod when the runoff is very large. And other members
also perform unsatisfactorily. Nevertheless, CMA02,
CMA06, and CMA09 successfully catch the flood at
0000 UTC 20 July. Generally speaking, forecasted
runoff by XXT using the outputs of GRAPES driven
by the CMA data hardly precisely agrees with the ob-
served one.

In Fig. 6, almost all members have the similar
trend to the observed one. None of the members of
ECMWF precisely captures the peak either, just like
the members of CMA in Fig. 5. However, before 0600
UTC 19 July, most members of ECMWF perform bet-
ter than those of CMA. What is more, ECMWF03,
ECMWF04, ECMWF05, ECMWF06, and ECMWF11
are also close to the observed one at 0000 UTC 20 July.

In Fig. 7, forecasted runoff by XXT using the out-
puts of GRAPES driven by the NCEP data is not very
discouraging. As shown in Fig. 7, almost all members
have the similar trend with the gauged runoff, and
most members are able to model the runoff successfully
before 0600 UTC 19 July. Among them, five members
including NCEP05, NCEP06, NCEP07, NCEP10, and
NCEP11 have relatively accurately depicted the runoff
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Fig. 5. Observed vs. forecasted runoff by XXT using the output of GRAPES driven by the CMA data.

Fig. 6. As in Fig. 5, but for the ECMWF data.

Fig. 7. As in Fig. 5, but for the NCEP data.
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process in the whole case. The others underestimate
it to some degree in the following two days, especially
NCEP01, NCEP02, NCEP04, NCEP08, and NCEP09,
which range between 150 and 250 m3 s−1 while the ob-
served runoff fluctuates from 350 to 400 m3 s−1. Gen-
erally, forecasted runoff by XXT using the outputs of
GRAPES driven by NCEP is relatively satisfactory
compared with those by CMA and ECMWF.

For each TIGGE center, 11 members produce a
runoff forecast spread, which almost covers the ob-
served runoff at a lead time of 6 h from 18 to 20 July
2007 and thus are suitable for predicting this flood
event within the spread. The results are in agreement
with some other studies (Xuan et al., 2009; Bao et
al., 2011; He et al., 2010). Xuan et al. (2009) uti-
lized the outputs of the fifth-generation Pennsylvania
State University-National Center for Atmospheric Re-
search Mesoscale Model (PSU-NCAR MM5) to drive
a grid-based distributed hydrological model for ensem-
ble runoff forecast. Their work shows that ensemble
hydrological forecasting driven by ensemble rainfall
forecasts can produce comparable results with obser-
vations and the bias due to common underestimates of
rainfall at fine scale can result in unrealistic low river
flow forecasts. This is a possible reason for underesti-
mates in the present study as well.

It can be seen from Figs. 2–7 that the fore-
casted runoff peaks greatly lag behind the observed
one, partly because of the time lags of the forecasted
rainfall peaks. Since the forecasted values driven by
the TIGGE archive exhibit some spread, more weight
should be given to the maximum curve when consider-
ing the flood peaks. Figure 5 illustrates that the XXT
forecasted runoff peak is delayed for about 24 h, which
may be due to the lagged temporal trend of rainfall
forecasted by CMA. Therefore, if utilizing CMA data
as the input into GRAPES for early flood warning,
there would be a large bias. The runoff prediction re-
sults using the data from ECMWF contain two flood
peaks, whose change tendency generally agrees with
the forecasted precipitation. The flood peak forecasted
by NCEP data is the closest to the observed one com-
pared to those by the other two centers. Thus, the
flood forecast based on the NCEP data is more usable

in practice.
In general, the degrees of variation in Figs. 6 and

7 are both greater, especially in Fig. 7 whose curves
of the simulated runoff are the closest to the observed
one. In contrast to rainfall forecasts, the runoff fore-
casts are much better for all the three forecast cen-
ters, especially the NCEP. The reason is that the ac-
curacy of hydrological model prediction depends on
many factors, including precipitation and the model
parameters. Runoff prediction is determined by pre-
vious precipitation in the watershed, previous runoff,
previous evaporation, soil moisture storage capacity,
and other information in the training period. The
information is stored in the model parameters and
model state variables. The hydrological model could
perform better even though the input precipitation
data are not accurate. In terms of early flood warn-
ing, the missed rainfall intensity peak will have more
weight because missed events cause late preparation
and can lead to doubts over the short-term forecast
results when false alarms and hits are identified as the
events draw nearer, hence reducing preparedness even
more (Pappenberger et al., 2008). However, in this
case it is suggested that early flood warning by the
GRAPES/XXT model using the TIGGE data is fea-
sible. Meanwhile, it provides a new method to raise
preparedness and thus to reduce the socio-economic
impact of floods.

4. Conclusions

In this paper, we utilize the operational NWP
model GRAPES in the CMA together with the hydro-
logical model XXT based on the TIGGE data from
the CMA, ECMWF, and NCEP to predict a flood
event. The results illustrate that rainfall forecasts by
GRAPES using TIGGE data from the three forecast
centers all underestimate heavy rainfalls, and rainfall
forecast by GRAPES using the data from the NCEP
forecast center is the closest to the observation while
that from the CMA is the worst. Moreover, the ensem-
ble is not better than individual member for rainfall
forecasts. In contrast to rainfall forecasts, runoff fore-
casts are much better for all the three forecast centers,
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especially for NCEP.
TIGGE data have provided a good basis for prob-

abilistic precipitation prediction, which facilitates the
establishment of the hydrological ensemble prediction
experiment. However, there could be some problems
with this approach. For instance, the total num-
ber of members of TIGGE is large and excessive,
and the operational systems involved may change any
time. These may lead to unsatisfactory results if using
TIGGE data as inputs to drive GRAPES. Therefore,
special attention and effort must be paid in the future
work in order to find a better way to combine ensem-
bles from multiple centers.
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