北京地区暴雨泥石流预警阈值研究

王海芝. 北京地区暴雨泥石流预警阈值研究[J]. 第四纪研究, 2020, 40(5): 1371-1380. doi: 10.11928/j.issn.1001-7410.2020.05.24
引用本文: 王海芝. 北京地区暴雨泥石流预警阈值研究[J]. 第四纪研究, 2020, 40(5): 1371-1380. doi: 10.11928/j.issn.1001-7410.2020.05.24
王海芝. 北京地区暴雨泥石流预警阈值研究[J]. 第四纪研究, 2020, 40(5): 1371-1380. doi: 10.11928/j.issn.1001-7410.2020.05.24 Wang Haizhi. Early warning thresholds of the rainfall-induced debris flows in Beijing[J]. Quaternary Sciences, 2020, 40(5): 1371-1380. doi: 10.11928/j.issn.1001-7410.2020.05.24
Citation: Wang Haizhi. Early warning thresholds of the rainfall-induced debris flows in Beijing[J]. Quaternary Sciences, 2020, 40(5): 1371-1380. doi: 10.11928/j.issn.1001-7410.2020.05.24

北京地区暴雨泥石流预警阈值研究

  • 基金项目:

    国家自然科学基金项目(批准号:41772182和41672181)、国家重点基础研究发展计划项目(批准号:2017YFA060340202)和中国科学院(B类)科技先导专项项目(批准号:XDB26020000)共同资助

详细信息
    作者简介:

    王海芝, 女, 45岁, 高级工程师, 地质环境调查评价及地质灾害预报预警, E-mail:418424101@qq.com

  • 中图分类号: P642.23;P694

Early warning thresholds of the rainfall-induced debris flows in Beijing

  • 泥石流是北京地区主要的地质灾害,强降雨是触发这一灾害的主控因子。因此,触发泥石流临界雨量的厘定成为实现高精度预报预警和防灾减灾的关键。但是,以前的研究多基于简单数据统计或定性分析层面,远不能满足地质灾害预警需要高精度定量数据的要求。文章对1949年以来北京地区发生的泥石流与其发生时期的降水数据进行了系统收集整理,对降雨强度-降雨持续时间和降雨量-降雨持续时间的泥石流触发临界值进行了高分辨的分析和厘定,首次建立了临界雨量的定量估算模型,分别为Ι=56.9×D-0.746与R=59.9×D0.253。通过与全球其他地区的临界阈值模式对比发现,在降雨持续时间较短时,北京地区的临界雨量高于全球性和一些区域性临界雨量,而随降雨时间的增加,全球范围内的临界雨量具有收敛趋势。这表明不同地区的临界雨量,特别是短时暴雨触发的泥石流,需根据区域特征来厘定。随降水时间的增加,区域地质地貌的影响会逐渐减小,而降水的控制作用会逐渐明显。北京地区泥石流发生时期降雨持续时间与降雨强度和总降雨量之间相互关系表明,泥石流的发生不仅需要较大的降雨强度,而且需要一定的降雨量。因此,北京地区地质灾害预警应综合利用两种临界雨量模式。

  • 加载中
  • 图 1 

    北京地区历史泥石流(灰色三角))分布简图(a)与泥石流发生的季节(黑三角)、发生时期的降雨量(红色圆圈)和降雨持续时间(蓝色十字) (b)

    Figure 1. 

    Distributions of the debris flows(grey triangles)occurred during the past 70 years (a), and the occurring seasons(black triangles), amounts(red cycles)and durations(blue crosses)of the precipitations cuasing deris flows (b)

    图 2 

    北京地区泥石流发生时期降雨强度与持续时间相关关系与临界降雨强度线(红色)

    Figure 2. 

    Rainfall intensity-duration(I-D)conditions of shallow landslides in Beijing. Blue and red lines are the experimental rainfall threshold and regression lines, respectively. Solid and hollow triangles are the individual average values of the maximum and minimum rainfall intensities in June, July and August during 1961~2010. The crosses are the data from Tu, et al. (2017)[35]

    图 3 

    北京地区泥石流发生时期降雨量与持续时间相关关系与临界雨量线

    Figure 3. 

    Rainfall-duration(R-D)conditions of shallow landslides in Beijing. Blue solid circles are the data of debris flows in Beijing and black circles are the storms without causing debris flows occurred during the past 70 years. Solid and hollow triangles are the individual average values of the maximum and minimum rainfalls in June, July, and August during 1961~2010

    图 4 

    北京地区泥石流降雨强度-持续时间临界值与其他地区对比

    Figure 4. 

    Rainfall intensity-duration thresholds determined by this study(red one)and those of various studies. Thick lines(1~5)are global thresholds, others are regional thresholds. The codes and corresponding references are presented in Table 1

  • [1]

    桑凯.近60年中国滑坡灾害数据统计与分析[J].科技传播, 2013, 5(10):129-130. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjcb201310118

    Sang Kai. Statistics and analysis of landslide disaster data in China during recent 60 years[J]. Public Communication of Science & Technology, 2013, 5(10):129-130. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjcb201310118

    [2]

    王海芝.北京山区基于历史资料的泥石流临界雨量研究[J].城市地质, 2008, 3(1):18-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=csdz200801005

    Wang Haizhi. A study of critical rainfall volume for mudflows based on historical data in the mountain areas of Beijing[J]. Urban Geology, 2008, 3(1):18-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=csdz200801005

    [3]

    于德源.北京灾害史[M].北京:同心出版社, 2008:131.

    Yu Deyuan. Disaster History of Beijing[M]. Beijing:Tongxin Press, 2008:131.

    [4]

    段永侯.我国地质灾害的基本特征与发展趋势[J].第四纪研究, 1999, (3):208-216. http://www.dsjyj.com.cn/CN/abstract/abstract9545.shtml

    Duan Yonghou. Basic characters of geo-hazards and its development trend in China[J]. Quaternary Sciences, 1999, (3):208-216. http://www.dsjyj.com.cn/CN/abstract/abstract9545.shtml

    [5]

    董杏书.北京市密云区龙潭沟泥石流特征及防治工程设计[D].北京: 北京林业大学硕士学位论文, 2019: 1-12.

    Dong Xingshu. Debris Flow Characteristics and Control Engineering Design of Longtan Valley in Miyun, Beijing[D]. Beijing: The Master's Thesis of Beijing Forestry University, 2019: 1-12.

    [6]

    崔鹏, 韦方强, 谢洪, 等.中国西部泥石流及其减灾对策[J].第四纪研究, 2003, 23(2):142-150. http://www.dsjyj.com.cn/CN/abstract/abstract9203.shtml

    Cui Peng, Wei Fangqiang, Xie Hong, et al. Debris flow and disaster reduction strategies in Western China[J]. Quaternary Sciences, 2003, 23(2):142-151. http://www.dsjyj.com.cn/CN/abstract/abstract9203.shtml

    [7]

    宿星, 孟兴民, 王思源, 等.陇中黄土高原典型地区滑坡特征参数统计及发育演化机制研究——以天水市为例[J].第四纪研究, 2017, 37(2):319-330. http://www.dsjyj.com.cn/CN/abstract/abstract11314.shtml

    Su Xing, Meng Xingmin, Wang Siyuan, et al. Statistics of characteristic parameters and evolutionary mechanism of landslides in typical area of Longzhong Loess Plateau:A case study of Tianshui City[J]. Quaternary Sciences, 2017, 37(2):319-330. http://www.dsjyj.com.cn/CN/abstract/abstract11314.shtml

    [8]

    殷志强, 许强, 赵无忌, 等.黄河上游夏藏滩巨型滑坡演化过程及形成机制[J].第四纪研究, 2016, 36(2):474-483. http://www.dsjyj.com.cn/CN/abstract/abstract11186.shtml

    Yin Zhiqiang, Xu Qiang, Zhao Wuji, et al. Study on the developmental characteristic, evolution processes and forming mechanism of Xiazangtan super large scale landslide of the upper reaches of Yellow River[J]. Quaternary Sciences, 2016, 36(2):474-483. http://www.dsjyj.com.cn/CN/abstract/abstract11186.shtml

    [9]

    Innes J L. Debris flows[J]. Progress in Physical Geography, 1983, 7(4):469-501. doi: 10.1177/030913338300700401

    [10]

    Richard Iverson M. The physics of debris flows[J]. Reviews of Geophysics, 1997, 35(3):245-296. doi: 10.1029/97RG00426

    [11]

    张宗祜.环境地质与地质灾害[J].第四纪研究, 2005, 25(1):1-5. http://www.dsjyj.com.cn/CN/abstract/abstract8973.shtml

    Zhang Zonghu. Environmental geology and geological hazard[J]. Quaternary Sciences, 2005, 25(1):1-5. http://www.dsjyj.com.cn/CN/abstract/abstract8973.shtml

    [12]

    张春山, 张业成, 胡景江, 等.中国地质灾害时空分布特征与形成条件[J].第四纪研究, 2000, 20(6):559-566. http://www.dsjyj.com.cn/CN/abstract/abstract9494.shtml

    Zhang Chunshan, Zhang Yecheng, Hu Jingjiang, et al. Spatial and temporal distribution characteristics and forming conditions of Chinese geological disasters[J]. Quaternary Sciences, 2000, 20(6):559-566. http://www.dsjyj.com.cn/CN/abstract/abstract9494.shtml

    [13]

    黄润秋.中国西部地区典型岩质滑坡机理研究[J].第四纪研究, 2003, 23(6):640-647. http://www.dsjyj.com.cn/CN/abstract/abstract9231.shtml

    Huang Runqiu. Mechanism of large scale landslides in Western China[J]. Quaternary Sciences, 2003, 23(6):640-647. http://www.dsjyj.com.cn/CN/abstract/abstract9231.shtml

    [14]

    Baum R L, Godt J W. Early warning of rainfall-induced shallow landslides and debris flows in the USA[J]. Landslides, 2010, 7(3):259-272. doi: 10.1007/s10346-009-0177-0

    [15]

    Caine N. The rainfall intensity:Duration control of shallow landslides and debris flows[J]. Geografiska Annaler:Series A, Physical Geography, 1982, 62(1/2):23-27. http://d.wanfangdata.com.cn/periodical_10.2307-520449.aspx

    [16]

    Guzzetti F, Peruccacci S, Rossi M, et al. The rainfall intensity-duration control of shallow landslides and debris flows:An update[J]. Landslides, 2008, 5(1):3-17. doi: 10.1007/s10346-007-0112-1

    [17]

    Rossi M, Luciani S, Valigi D, et al. Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data[J]. Geomorphology, 2017, 285:16-27. https://doi.org/10.1016/j.geomorph.2017.02.001. doi: 10.1016/j.geomorph.2017.02.001

    [18]

    Guzzetti F, Peruccacci S, Rossi M, et al. Rainfall thresholds for the initiation of landslides in Central and Southern Europe[J]. Meteorology and Atmospheric Physics, 2007, 98(3):239-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d9b068ebc58548f220f82cb61daf152e

    [19]

    霍亚贞, 杨作民, 孟德政.北京自然地理[M].北京:北京师范学院出版社, 1989:64-68.

    Huo Yazhen, Yang Zuomin, Meng Dezheng. Physical Geography of Beijing[M]. Beijing:Beijing Normal University Press, 1989:64-68.

    [20]

    钟敦伦, 谢洪, 王士革.北京山区泥石流[M].北京:商务印书馆, 2004:87-107.

    Zhong Dunlun, Xie Hong, Wang Shige. Debris Flows in Mountain Areas of Beijing[M]. Beijing:The Commercial Press, 2004:87-107.

    [21]

    刘海涛, 杨洁. 1951-2015年北京极端降水变化研究[J].中国农学通报, 2018, 34(1):109-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201801020

    Liu Haitao, Yang Jie. Extreme precipitation variation in Beijing during 1951-2015[J]. Chinese Agricultural Science Bulletin, 2018, 34(1):109-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201801020

    [22]

    Clarizia M, Gullà G, Sorbino G, et al. Sui meccanismi di innescodei soil slip[C]. International Conference Prevention of Hydrogeological Hazards: The Role of Scientific Research. Italy: 1996, Volume 1: 585-597.

    [23]

    Crosta G B, Frattini P. Rainfall thresholds for triggering soil slips and debris flow[C]. Proceeding of 2nd EGS Plinius Conference on Mediterranean Storms. Siena: 2001, Volume 1: 463-487.

    [24]

    Cannon S H, Gartner J E. Debris-flow Hazards and Related Phenomena:Wildfire-related Debris Flow from a Hazards Perspective[M]. Berlin:Springer Berlin Heidelberg, 2005:363-385.

    [25]

    Jibson R W. Landslide Processes of the Eastern United States and Puerto Rico:Debris flows[M]. Colorado:Geological Society of America Special Paper, Inc. 1989, 236:29-55.

    [26]

    Peruccacci S B, Maria T G, Stefano L G, et al. Rainfall thresholds for possible landslide occurrence in Italy[J]. Geomorphology, 2017, 290:39-57. https://doi.org/10.1016/j.geomorph.2017.03.031. doi: 10.1016/j.geomorph.2017.03.031

    [27]

    Saito H, Nakayama D, Matsuyama H. Relationship between the initiation of a shallow landslide and rainfall intensity-duration thresholds in Japan[J]. Geomorphology, 2010, 118(1):167-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4b23d3d6d7a176b15be67ed0ff5d2aa2

    [28]

    Glade T M, Crozier P S. Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical "Antecedent Daily Rainfall Model"[J]. Pure and Applied Geophysics, 2000, 157(6-8):1059-1079. doi: 10.1007/s000240050017

    [29]

    Crozier M J. Prediction of rainfall-triggered landslides:A test of the antecedent water status model[J]. Earth Surface Processes and Landforms:The Journal of the British Geomorphological Research Group, 1999, 24(9):825-833. doi: 10.1002/(SICI)1096-9837(199908)24:9<825::AID-ESP14>3.0.CO;2-M

    [30]

    Aleotti P. A warning system for rainfall-induced shallow failures[J]. Engineering Geology, 2004, 73(3-4):247-265. doi: 10.1016/j.enggeo.2004.01.007

    [31]

    Terlien M T. The determination of statistical and deterministic hydrological landslide-triggering thresholds[J]. Environmental Geology, 1998, 35(2-3):124-130. doi: 10.1007/s002540050299

    [32]

    Chleborad A F. Preliminary evaluation of a precipitation threshold for anticipating the occurrence of landslides in the Seattle, Washington area[J]. US Geological Survey Open-File Report, 2003, 3(463):39. http://www.researchgate.net/publication/309309353_Preliminary_evaluation_of_a_precipitation_threshold_for_anticipating_the_occurrence_of_landslides_in_the_Seattle_Washington

    [33]

    Jakob M, Weatherly H. A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia[J]. Geomorphology, 2003, 54(3-4):137-156. doi: 10.1016/S0169-555X(02)00339-2

    [34]

    Reichenbach P, Cardinali M, De Vita P, et al. Regional hydrological thresholds for landslides and floods in the Tiber River Basin(Central Italy)[J]. Environmental Geology, 1998, 35(2-3):146-159. doi: 10.1007/s002540050301

    [35]

    涂剑, 马超, 杨海龙.北京山区暴雨泥石流激发雨量条件[J].中国水土保持科学, 2017, 15(5):103-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgstbckx201705013

    Tu Jian, Ma Chao, Yang Hailong. Rainfall condition of triggering debris flows in Beijing mountain regions[J]. Science of Soil and Water Conservation, 2017, 15(5):103-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgstbckx201705013

    [36]

    Johnson K, Sitar N. Hydrologic conditions leading to debris-flow initiation[J]. Canadian Geotechnical Journal, 1990, 27(6):789-801. doi: 10.1139/t90-092

    [37]

    刘中港, 刘晓丽, 王恩志, 等.含水量对泥石流物源流变特性影响试验研究[J].岩石力学与工程学报, 2015, 34(3):3830-3836. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2015S2025.htm

    Liu Zhonggang, Liu Xiaoli, Wang Enzhi, et al. Study of rheological characteristics affected by water content with shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3):3830-3836. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2015S2025.htm

    [38]

    Chleborad A F, Baum R L, Godt J W. Rainfall thresholds for forecasting landslides in the Seattle, Washington, Area: Exceedance and probability[R]. US Geological Survey Open-File Report, 2006-1064: 1-17.

    [39]

    王海芝, 任凯珍, 冒建.北京地区Logistic临界雨量模型的建立[J].城市地质, 2015, 10(3):59-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=csdz201503013

    Wang Haizhi, Ren Kaizhen, Mao Jian. The Logistic critical rainfall model establishment of Beijing area[J]. Urban Geology, 2015, 10(3):59-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=csdz201503013

    [40]

    白利平, 孙佳丽, 南赟.北京地区泥石流灾害临界雨量阈值分析[J].地质通报, 2008, 27(5):674-680. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200805013

    Bai Liping, Sun Jiali, Nan Yun. Analysis of the critical rainfall thresholds for mudflow in Beijing, China[J]. Geological Bulletin of China, 2008, 27(5):674-680. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200805013

    [41]

    吴正华.北京泥石流灾害及其降水触发条件[J].水土保持研究, 2001, 8(1):67-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj200101014

    Wu Zhenghua. The mud-rock flow disaster and their touch off condition by rainfall in Beijing area[J]. Research of Soil and Water Conservation, 2001, 8(1):67-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj200101014

    [42]

    Zimmermann M. Murganggefahr und Klimaänderung-ein GIS-basierterAnsatz[M]. Zürick:vdf Hochschulverlag AG., 1997:47-77.

    [43]

    Larsen M C, Simon A. A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico[J]. Geografiska Annaler:Series A, Physical Geography, 1993, 75(1-2):13-23. doi: 10.1080/04353676.1993.11880379

    [44]

    Chien Yuan, Chen Tien-Chien, Chen Fan-Chieh, et al. Rainfall duration and debris-flow initiated studies for real-time monitoring[J]. Environmental Geology, 2005, 47(5):715-724. doi: 10.1007/s00254-004-1203-0

    [45]

    Cannon Susan H, Gartner Joseph E, Wilson, Raymond C, et al. Storm rainfall conditions for floods and debris flows from recently burned areas in Southwestern Colorado and Southern California[J]. Geomorphology, 2008, 96(3-4):250-269. doi: 10.1016/j.geomorph.2007.03.019

    [46]

    Dahal R K, Hasegawa S. Representative rainfall thresholds for landslides in the Nepal Himalaya[J]. Geomorphology, 2008, 100(3):429-443. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=383832f69931f88fda6c14729ba7efd2

    [47]

    Hong Yong, Hiura Hiromasa, Shino Kazuo, et al. The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island, Japan[J]. Landslides, 2005, 2(2):97-105. doi: 10.1007/s10346-004-0043-z

    [48]

    Paronuzzi P, Coccolo A, Garlatti G. Eventi meteorici critici e debris flows nei bacini montanidel Friuli[M]. La Acqua:Sezione I-Memorie, 1998:39-50.

    [49]

    Tang C, van Asch T W J, Chang M, et al. Catastrophic debris flows on 13 August 2010 in the Qingping area, Southwestern China:The combined effects of a strong earthquake and subsequent rainstorms[J]. Geomorphology, 2012, 139:559-576. https://doi.org/10.1016/j.geomorph.2011.12.021. doi: 10.1016/j.geomorph.2011.12.021

    [50]

    Ma Chao, Wang Yujie, Hu Kaiheng, et al. Rainfall intensity-duration threshold and erosion competence of debris flows in four areas affected by the 2008 Wenchuan earthquake[J]. Geomorphology, 2017, 282:85-95. https://doi.org/10.1016/j.geomorph.2017.01.012. doi: 10.1016/j.geomorph.2017.01.012

    [51]

    Wieczorek G, Morgan B, Campbell R. Debris-flow hazards in the Blue Ridge of central Virginia[J]. Environmental and Engineering Geoscience, 2000, 6(1):3-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c0e7a240fa45e5fdcef412b8200b38e

    [52]

    Zêzere J, Trigo R M, Trigo I F. Shallow and deep landslides induced by rainfall in the Lisbon region(Portugal):Assessment of relationships with the North Atlantic Oscillation[J]. Natural Hazards and Earth System Sciences, 2005, 5(3):331-344. doi: 10.5194/nhess-5-331-2005

    [53]

    Guadagno F. Debris flows in the Campanian volcanic clastic soils[C]//Chandler R. J. Proceedings of the International Conference on Slope Stability: Slope Stability Engineering: Developments and Applications. London: Thomas Telford Publishing, 1991: 125-130.

  • 加载中

(4)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2020-03-21
修回日期:  2020-06-06
刊出日期:  2020-09-30

目录