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ABSTRACT

According to the Anderson-Darling principle, a method for forecast of extremely heavy rainfall (abbre-
viated as extreme rainfall/precipitation) was developed based on the ensemble forecast data of the T213
global ensemble prediction system (EPS) of the China Meteorological Administration (CMA). Using the
T213 forecast precipitation data during 2007–2010 and the observed rainfall data in June–August of 2001–
2010, characteristics of the cumulative distribution functions (CDFs) of the observed and the T213 EPS
forecast precipitation were analyzed. Accordingly, in the light of the continuous differences of the CDFs
between model climate and EPS forecasts, a mathematical model of Extreme Precipitation Forecast Index
(EPFI) was established and applied to forecast experiments of several extreme rainfall events in China during
17–31 July 2011. The results show that the EPFI has taken advantage of the tail information of the model
climatic CDF and provided agreeable forecasts of extreme rainfalls. The EPFI based on the T213 EPS is
useful for issuing early warnings of extreme rainfalls 3–7 days in advance. With extension of the forecast
lead time, the EPFI becomes less skillful. The results also demonstrate that the rationality of the model
climate CDF was of vital importance to the skill of EPFI.
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1. Introduction

The past decades have witnessed the great im-

pacts of extreme weather and climate events on human

society and the environment. There are a number of

methods to define extreme events (Easterling et al.,

2000). Beniston et al. (2007) pointed out that the ex-

treme events can be divided into three types: (1) the

events that have a relatively larger or smaller intensity;

(2) the events that rarely take place; and (3) the events

that lead to serious social losses. In the third and

fourth Intergovernmental Panel on Climate Change

(IPCC) assessment reports (IPCC, 2001, 2007), the

above definition (2) was adopted to identify extreme

events, i.e., the small probability events that usually

occur only 10% or even less of such weather phenome-

na in a particular place at a certain time. This defini-

tion avoids the large differences induced by the abso-

lute intensity of an extreme event in different regions.

Extremely heavy precipitation (abbreviated as

extreme precipitation or extreme rainfall hereafter)

has been a subject of many studies. Most of these
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studies employed an extreme precipitation index to

analyze the features and variations of the extreme

events based on observations. Yamamoto and Saku-

rai (1999), Groisman et al. (1999), and Osborn et al.

(2000) investigated the long-term variations of precipi-

tation and heavy precipitation, and showed that there

is an increasing trend in occurrence of extreme pre-

cipitation events. Yan and Yang (2000) noted that

the drought in northern China reflects a significant

reduction in trace precipitation events. Huang et al.

(2003) detected that there is a continuous drought in

North China and an increasing trend in summer mon-

soon precipitation over the Yangtze and Huaihe River

basins since 1976. Zhai and Pan (2003), Qian and

Lin (2005), and Zhang and Wei (2009) studied the

variations of extreme precipitation in different areas

in China, and obtained similar results. They found

that the frequency of extreme precipitation events in-

creased in Southwest, northern Northwest, and East

China, but it decreased in North and Central China.

Li et al. (2008) showed that summer precipitation

in East China is mainly related to the intensity of

rainstorms which produce more than 60% of the to-

tal precipitation. They also found that the amount

and frequency of the rainfalls, the frequency of the

extreme precipitation events, and the intensity of the

rainstorms have increased in summer over the Yangtze

River basin. Wang et al. (2008) used a regional

coupled general circulation model (GCM) to simulate

the extreme precipitation events in summer in China.

Their results showed that the regional coupled GCM

was able to simulate the spatial distribution of the

mean threshold of the extreme precipitation. The

study from Lu et al. (2009) showed that the initial

moisture conditions had a great impact on the time

when the maximum precipitation occurred.

As we know, the atmosphere is a chaotic sys-

tem. Uncertainty of weather forecast is an inherent

property of the chaotic system (Ye et al., 2006). Ex-

treme precipitation is a small probability event that

occurs with a great deal of uncertainty. Prediction of

extreme precipitation is a difficult task. As a new

method of probabilistic forecasting, ensemble fore-

casting provides a new prospect for small probabil-

ity extreme events (Li and Chen, 2002; Chen et al.,

2005). Probability forecasting has been used in stud-

ies of extreme precipitation events for a long time.

Steven and Jun (2001) used the short-range ensem-

ble forecasting system of NCEP to simulate a snow-

storm in North Carolina on 25 July 2000. They found

that most ensemble members could successfully fore-

cast this snowstorm. Sobash et al. (2011) indicated

that the “neighborhood” (Theis et al., 2005) tech-

nique will be even more valuable in probabilistic fore-

casting of extreme events when implemented within a

convection-allowing ensemble forecasting system.

So far, little such work has been done in China.

Jiang et al. (2009) examined seven GCMs and five

ensemble forecast models that are referred to in the

fourth IPCC assessment. They pointed out that the

GCMs were able to simulate the spatial distribution of

the extreme precipitation index and to reflect its re-

gional linear tendency in China. They also found that

the skill of the ensemble forecast is better than that

of the single model. Based on the Bayesian method,

Chen et al. (2010) improved the heavy rainfall ensem-

ble prediction by using climatological rainstorm ob-

servations from 147 stations in Sichuan. They showed

that this method can eliminate the false prediction to

some extent. By adopting four multi-model ensemble

schemes to produce the probability density function

(PDF) prediction of summer rainfalls over East China

from 1960 to 2005, Li (2011) reported that the op-

timal ensemble scheme can well calibrate the original

deterministic prediction, and the ensemble predictions

are better or approximately equal to the climatologi-

cal prediction.

Lalaurette (2002) developed an extreme forecast

index (EFI) based on the ECMWF ensemble predic-

tion. The principle of the EFI is to compute the con-

tinuous probability differences of the cumulative distri-

bution function (CDF) between the model climate and

the ensemble prediction system. The results of Lalau-

rette (2002) indicated that EFI can be used to well

predict the extreme events even five days in advance.

Lalaurette (2003) revised the EFI formula by means of

the Anderson and Darling (1952) theory and improved

the sensitivity of EFI to extreme events. Ervin (2006)

regenerated the CDF with ERA40 reanalysis and im-

proved the EFI forecast skill.



172 ACTA METEOROLOGICA SINICA VOL.27

Research on the ensemble-based forecast of ex-

treme events is still at its preliminary stage in China.

Xia and Chen (2012) evaluated the ensemble forecast

method in predicting the extreme low temperature

event in January 2008 with the T213 ensemble fore-

cast product. They found that the EFI has a good

ability to identify the extreme cold events 3–5 days

in advance, and the forecast skill gradually decreased

with the increase of the forecast lead time. Nonethe-

less, the application of EFI to predictions of other

extreme events (e.g., extreme precipitation, extreme

strong winds, etc.) remains unattended. It is known

that precipitation is a non-continuous variable, which

is different from temperature. Does the EFI still work

for the prediction of extreme rainfalls?

In this paper, we propose a method for forecast

of extreme rainfalls using the precipitation product

from the China Meteorological Administration (CMA)

T213 global ensemble prediction system (EPS). We

will analyze the characteristics of the CDF derived

from the T213 EPS forecast precipitation data in

comparison with that from the observed precipita-

tion data. After that, we will establish a mathemati-

cal model of the extreme precipitation forecast index

(EPFI), and the skill of the index will be verified by

simulations of several extreme rainfall events that hap-

pened in China in July 2011.

2. Data

In this paper, daily 24-h cumulative rainfall obser-

vations at 2412 stations in China during June–August

of 2001–2011 were used (Fig. 1a). The data were

provided by the National Meteorological Information

Center of CMA. The precipitation product from the

T213 EPS includes the data in July 2007 and the data

in June–August of 2008–2011 at 24–168-h forecast lead

times on 0.5625◦×0.5625◦ grids (Fig. 1b).

Figure 1a shows the geographic location of the

observation stations. Figure 1b gives the grid map

of the T213 model over China. It can be seen that

the stations are unevenly distributed. They are in-

tensively distributed in the east and south of China

but sparsely distributed in the northwest, especially

in Xinjiang and the Tibetan Plateau. In this paper,

the Cressman method (Chen and Shi, 2010) was used

to interpolate the rainfall data at the 2412 stations

onto the T213 grid points (n = 3182), as shown in

Fig. 1b.

3. Comparison between the observed and the

ensemble forecast extreme precipitation

Prior to studying the method for ensemble-based

prediction of extreme rainfalls, we now compare the

features in the observed rainfall and the T213 EPS

forecast extreme precipitation. The differences in the

geographic distribution of extreme precipitation and

in the error distribution of the ensemble forecast ex-

treme precipitation are examined, based on which a

more reasonable prediction model and forecast index

can be established for extreme rainfalls in China. The

Fig. 1. Spatial distributions of (a) the 2412 rainfall observation stations and (b) the model grids. The stars in (b)

denote grid points that are representative for the eight sub-regions under study.
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Table 1. Geographic information on the eight sub-regions and their representative grid points

Grid number Sub-region Longitude Latitude

1 Northeast China 124.31 44.44

2 Western Northwest China 87.19 43.31

3 Eastern Northwest China 108.56 33.75

4 North China 115.88 39.38

5 Mid-lower Yangtze River valley 114.19 30.38

6 Southwest China 103.50 30.38

7 South China 112.50 22.50

8 Tibetan Plateau 90.56 29.25

CDFs of the extreme rainfalls are different in different

regions because of the topography in China. Thus,

eight different climatic sub-regions of China are de-

marcated (Fig. 1b and Table 1) (Chen and Shao,

1991). For simplicity, we select a representative grid

point in each sub-region, with its location denoted by

a star in Fig. 1b.

3.1 Definition of extreme precipitation and

characteristics of the ensemble forecast

extreme precipitation

The extreme precipitation is defined by the per-

centile method (Zhai and Pan, 2003). First, the ob-

served daily precipitation at each grid point during

June–August of 2001–2010 is arranged in an ascend-

ing order. Then, the 10-yr mean 99th percentile of the

precipitation observations is assigned as the threshold

of the extreme precipitation, which only occurs when

the daily precipitation exceeds the threshold.

The model precipitation serial is derived from the

ensemble forecast product. It covers the period from

June to August of 2008–2010. The length of this data

serial is 4140, and the threshold is the 99th percentile

of the model climatic precipitation.

The Γ distribution is used to fit the model pre-

cipitation distribution (Liu and Wu, 2005) according

to the skewed probability distribution of the daily

observed summer precipitation. Figure 2 shows the

precipitation probability distribution of the ensemble

forecast at the eight points at 24–168-h forecast lead

times. It can be seen that the probability density dis-

tribution of the 24–168-h precipitation forecast at dif-

ferent grid points shows a consistent trend. But the

probability density distribution for different effective

forecast times is slightly different. Overall, the differ-

ences in the probability density distribution of differ-

ent forecast lead times are obvious when precipitation

amounts to 10–40 mm. The probability density dis-

tribution of 24 h is the largest. As the forecast lead

time increases to 144 h, the probability density of the

model climate precipitation gradually decreases. The

probability density of 168-h forecast precipitation is

improved when compared with the probability density

of 144 h. The probability density of the precipitation

greater than 40 mm gradually decreases and tends to

approach zero when the forecast time increases. It is

worth noticing that the precipitation probability den-

sity of the 168-h forecast precipitation is substantially

constant. This means that the frequencies of heavy

and moderate rains gradually decrease and the fre-

quency of light rain increases when the forecast lead

time increases. The probability density of 168-h fore-

cast precipitation of different intensity scales tends to

stabilize.

3.2 Comparison between the observed and the

ensemble forecast precipitation

The observed and the ensemble forecast precipi-

tation data during June–August of 2008–2010 are used

to compare the characteristics of the observed and the

model extreme precipitation. The spatial distributions

of the observed and the model extreme precipitation

are obtained according to the definition in Section 3.1.

Figure 3a shows the observation and Figs. 3b–3d give

the model results at 24–168-h forecast lead times, re-

spectively.

It can be seen that the horizontal distribution of

the forecast extreme precipitation is in general con-

sistent with that of the observation. The precipita-

tion gradually decreases from Southeast to Northwest
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Fig. 2. Precipitation probability distribution of the ensemble forecast system at the representative grid points of the

eight sub-regions (a–h).
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Fig. 3. Spatial distributions of (a) observed and (b) 24-, (c) 96-, and (d) 168-h ensemble forecast extreme precipitation.

China. The maximum rainfall centers in the model

forecasts deviate from those in the observation. There

are five centers in the observed extreme precipitation,

located in the adjacent area of Sichuan and Shanxi,

Hubei and Hunan, the Dabie Mountain, Guangdong,

and other coastal areas. But the locations of the model

forecast precipitation centers are different, with the

maximum rainfall appearing in the southeast of the

Tibetan Plateau and overestimated by model fore-

casts, and the maximum rainfall in the coastal areas

in observation now near Jiangsu, Zhejiang, and Fujian

provinces in the ensemble forecasts. The other large

centers of the model extreme precipitation are in ac-

cordance with those of the observation. Figure 3 also

shows that the model extreme precipitation is obvi-

ously less than the observed, especially in East China,

and it decreases with the increase of the forecast lead

time.

4. Methodology of ensemble-based extreme

rainfall forecast

4.1 Theory

The ensemble forecast of extreme rainfalls is

based on the continuous differences of CDF between

the historical model climate and the ensemble mem-

bers, which could imply whether the extremes occur.

We now take the CDFs of 48- and 96-h forecasts as

well as the CDF of the model climate as examples to

explain this theory. Figure 4 shows a schematic di-

agram of ensemble-based extreme precipitation fore-

cast. In Fig. 4, solid lines represent the model climate

CDF curves, dashed lines represent the CDFs of the

ensemble forecasts; green lines are for 48-h and black



176 ACTA METEOROLOGICA SINICA VOL.27

Fig. 4. Schematic diagrams of ensemble-based extreme precipitation forecast. (a) Vertical axis represents cumulative

probability; lateral axis represents precipitation. Solid line represents the CDF curve of the model climate; dashed line

represents the CDF curve of the ensemble forecasts (green line for 48 h and black line for 96 h). (b) Vertical axis

represents probability density; lateral axis represents precipitation. Solid line represents the PDF curve of the model

climate; dashed line represents the PDF curve of the ensemble forecasts (green line for 48 h and black line for 96 h).

lines for 96-h ensemble forecasts. Figure 4b shows the

corresponding probability density distribution. The

historical model climate at 48 and 96 h is separately

collected by 48- and 96-h forecast precipitation of each

T213 ensemble member in July of 2007–2010, and the

serial length is 1860 (4 yr × 31 days × 15 ensemble

members). The 48- and 96-h precipitation forecasts

by the T213 EPS on 20 July 2011 are chosen as the

ensemble forecast distribution serials, each of which is

composed of 15 ensemble forecast members.

As seen in Fig. 4a, the model climate CDF at

96 h is CDF1, and the CDF of the ensemble forecasts

is CDF2 when precipitation is Pr. The difference be-

tween CDF1 and CDF2 is greater than zero. This indi-

cates that the ensemble forecast probability is greater

than the model history when precipitation is greater

than Pr. The area between the cumulative probabil-

ity curve of the 96-h ensemble forecast and the model

history is the continuous integration of the difference

between the two curves within the 96-h forecast precip-

itation range. If the integration is greater than zero,

the ensemble forecast precipitation is more than the

model history. If the cumulative probability of the

ensemble forecast precipitation tends to distribute at

the tail (right side) of the model climatic CDF curve,

the area increases. It can be seen from Fig. 4a that

the area between the cumulative probability curve of

the 48-h ensemble forecast and the model history is

larger than that of the 96-h ensemble forecast. Fig-

ure 4b gives the probability density at 48 and 96 h,

corresponding to Fig. 4a. It can be found that the

total amount of the 48-h ensemble forecast precipita-

tion in the concentrated region is more than that of

96-h forecast precipitation, and the 48-h precipitation

is heavier than the 96-h precipitation. Thus, the 48-

h ensemble forecast has a better skill for predicting

heavy rains than the 96-h ensemble forecast.

The above analysis shows that the continuous

differences between the cumulative probability of the

model history and the ensemble members can be used

to measure the precipitation intensity. If the difference

is positive, more precipitation and wet conditions may

dominate, and vice versa.

4.2 Mathematical model of the extreme precip-

itation forecast index based on the Ander-

son-Darling test

Based on the theory of Aderson and Darling

(1952), Lalaurette (2002) defined the EPFI formula:

EPFI =
2

π

1
∫

0

p− Ff(p)
√

p(1− p)
dp, (1)

where p is the CDF of the historical model climate.

If the climatic distribution is put in an ascending or-

der, each percentile represents a probability threshold

f(p). In that way, f(0) and f(1) separately correspond
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to the minimum and maximum of the climate serial,

and so on. Ff(p) is taken as the cumulative probabil-

ity of the ensemble forecast. EPFI is the sum of the

difference between the cumulative probability of the

history and the ensemble forecast at each percentile.
1

√

p(1− p)
is the weight coefficient. If p = 1/2, the

weight coefficient is the smallest. If p = 0 or 1, the

weight coefficient is the biggest. This could improve

the EPFI sensitivity to the extreme events distributed

at the tail of the cumulative probability curve. To

some extent, it can make a prediction of the extreme

event. Equation (2) below is a discrete form, where

pi = i/100 (i = 0, 1, 2, · · · , 100).

EPFI =
2

π

100
∑

i=0

(

pi − Ff(pi)
√

pi(1− pi)
× 0.01

)

. (2)

It can be easily found from Eq. (1) that EPFI has some

properties as follows: EPFI is a real number between

–1 and 1. If the results of all ensemble members are

less than the minimum climatic probability (Ff(pi) is

1 for all Pi), EPFI is –1. This means that the extreme

drought may occur. If the results of all ensemble mem-

bers are more than the minimum climatic probability

(Ff(pi) is 0 for all Pi), EPFI is 1. This implies that

an extreme precipitation event may occur. The closer

the EFPI is to –1(+1), the greater probability of the

extreme drought (precipitation) event may happen.

The CDF of the model climate is an important

component of EPFI. In this paper, we adopt the model

climate CDF of T213 ensemble forecast precipitation

from 2007 to 2010 with the Lalaurette (2002) method.

Xia and Chen (2012) found that the T213 model fore-

cast has different errors for different forecast periods

of validity. In the first section, it has been found that

the ensemble forecast precipitation has different prob-

ability densities for different forecast lead times. The

frequency of light rain increases with the increase of

the forecast lead time. This paper selects daily pre-

cipitation of the T213 ensemble forecast in July from

2007 to 2010, and 7 model climate serials are gener-

ated at each grid point with the length of 1860. In the

following, the climate CDF scheme will be referred to

as T213-P1 in order to distinguish it from the scheme

in Section 6.

The CDFs of 24–168-h ensemble forecasts are cal-

culated using the daily precipitation from T213 ensem-

ble forecasts in July from 2007 to 2010. The length of

these serials is 15. The EPFI is computed using Eq.

(2). The derived EPFI could then provide the basis

for determining the critical threshold of extreme pre-

cipitation in the next sub-section.

4.3 Method for determining the critical thresh-

old of the EPFI

The above analysis indicates that extreme precipi-

tation/rainfall may occur when EPFI is positive. But

the forecasters need to know when they can release an

alarm for extreme heavy rainfalls based on the EPFI.

In this section, we focus on the method for determin-

ing the critical threshold of the EPFI. Extreme rain-

falls can be seen as dichotomous (yes/no). We can find

a certain approach to determine the critical threshold.

If EPFI is greater than this threshold, the forecaster

can make a warming of extreme rainfall occurrence.

How to determine this critical threshold?

It is known that the Threat Score (TS) and Bias

(BS) are two most commonly used indices in the as-

sessment of precipitation forecast. Based on the con-

tingency table of dimorphic distribution (Table 2) of a

real extreme rainfall event and the EPFI forecast, the

TS, BS, hit rate (HR), and false alarm rate (FAR) can

be obtained by using Eqs. (3)–(6).

We design an S index for identifying the critical

threshold of EPFI with consideration of the physical

significance of the TS and BS. As seen in Eq. (7),

the S index is proportional to the TS and inversely

proportional to |BS–1|. The way of using S index to

identify the critical threshold is to take 10 numbers

of 0.1, 0.2, 0.3, · · · , and 1.0 as the reference thresh-

old for releasing an alarm with the EPFI. The S in-

dices of these 10 reference thresholds are calculated by

Eq. (7). Figure 5 gives 4-yr averaged S indices of the

10 reference thresholds for 24–168-h forecasts. Then,

the EPFI corresponding to the maximum S index is

selected as the critical threshold for a certain fore-

cast period of validity. The critical thresholds of the

24–168-h extreme precipitation forecast are shown in

Table 3. It can be found that the critical threshold

of EPFI gradually decreases from 0.8 to 0.5 while the

forecast period of validity increases to 168 h.
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Table 2. Contingency table of dimorphic distribution

EPFI forecast

Yes No

Observed
Yes NA NC

No NB ND

Fig. 5. Variations of the S index with different EPFI

thresholds for 24–168-h forecast periods of validity.

TS = NA/(NA + NB+NC), (3)

BS = (NA +NB)/(NA + NC), (4)

HR = NA/(NA + NC), (5)

FAR = NB/(NB + ND), (6)

S =







TS

|BS− 1|
BS 6 0.99 or BS > 1.01,

TS× 102 0.99 < BS < 1.01.
(7)

Table 3. The EPFI thresholds for 24–168-h forecast

periods
Period of validity Thresholds of EPFI

24 h 0.8

48 h 0.7

72 h 0.7

96 h 0.7

120 h 0.6

144 h 0.6

168 h 0.5

5. Experimental forecasts of extreme rainfalls

in July 2011 with the CMA T213 ensemble

forecast system

5.1 Experiments and verification during 15–31

July 2011

The EPFIs at each model grid point for seven

forecast periods of validity are calculated by Eq. (2)

based on the CDF of the ensemble forecasts and the

model climate during 15–31 July 2011. Table 4 shows

the mean statistics of the extreme rainfall forecast.

The TS gradually decreases with the increase of the

forecast lead time. The TS of 24 h is the highest

(0.15). The bias is proportional to the forecast pe-

riod of validity, and the miss rate slightly increases

with the increase of the forecast time while the hit

rate decreases from 0.321 to 0.139. The false alarm

rate increases to 0.044 when the forecast time reaches

168 h.

Relative Operating Characteristic (ROC) is an ef-

fective measure to evaluate the probabilistic forecast

(Mason and Graham, 2002). It is obtained by plotting

the hit rate and false alarm rate of different probabil-

ities (EPFI can be divided into 10 grades) into one

curve. If the curve is above the diagonal, the forecast

skill is positive. The larger the area of ROC is, the bet-

ter the forecast is. Figure 6 gives the mean ROC of

the EPFI. The ROC is above the diagonal for forecast

period of 24–168 h. It is closer to the diagonal with the

increase of the forecast period. This indicates that all

of the 24–168-h forecasts have positive forecast skills,

which drop with the increase of the forecast period.

The area of ROC (AROC) can be found in Table 4.

5.2 Extreme precipitation forecast on 24 July

2011

In this section, we assess the extreme precipita-

Fig. 6. The average Relative Operating Characteristic

curve valid for the EPFI test. Each point of the curve

corresponds to a different EPFI threshold.
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Table 4. Statistics of the EPFI for extreme rainfalls during 15–31 July 2011

Score 24 h 48 h 72 h 96 h 120 h 144 h 168 h

TS 0.150 0.111 0.107 0.094 0.084 0.069 0.055

BS 1.168 1.156 1.723 1.573 1.298 1.911 1.589

HR 0.321 0.309 0.240 0.209 0.175 0.196 0.139

FAR 0.025 0.038 0.023 0.024 0.016 0.028 0.044

AROC 0.759 0.727 0.703 0.716 0.697 0.678 0.642

tion forecast on 24 July. The maximum precipitation

appeared in Beijing, Tianjin, Liaoning and nearby. On

that day, precipitation in some areas in Beijing was

over 100 mm and the areal mean was 62 mm. The

maximum cumulative precipitation occurred near the

north of the Miyun Reservoir with 244 mm rainfall.

Two deaths and one missing person were blamed on

this extreme event. The precipitation in the east of

Inner Mongolia and Shandong was more than 50 mm.

According to the statistics, extreme rainfall occurred

at a total of 76 grid points on 24 July, which accounts

2.39% of the total grids (Fig. 7). Most of these grid

points are in the north of Inner Mongolia, Beijing,

Hebei, Tianjin, central Shandong, the west and the

south of Tibet.

Figure 8 shows distributions of 48–120-h forecast

extreme rainfall. The start time of the forecasts is 0000

UTC 22 July, 0000 UTC 21 July, 0000 UTC 20 July,

and 0000 UTC 19 July, respectively. The shaded areas

are the regions where extreme rainfall appears judged

by EPFI. Compared with the observation, the 48- and

72-h EPFIs correctly predicted the extreme events in

the eastern Inner Mongolia, Beijing, Hebei, Tianjin,

and western Tibet. But they missed the events in cen-

tral Shandong and south of Tibet. The 72- and 96-h

forecasts present similar results. The 120- and 144-h

forecasts have also correctly predicted the events in the

eastern Inner Mongolia, Beijing, Hebei, Tianjin, and

western Tibet, but there are some false alarms which

increase with extension of the forecast period in South

China. The distribution of 24–96-h EPFI is very close

to the observations (figures of the first few forecast

times are omitted). Although the forecast skills of the

120-h or even longer lead times slightly decrease, the

ensemble forecast approach still can predict the ex-

tremes in most regions at quite early lead times.

The above analyses show that the EPFI is indeed

able to make forecasts of extreme rainfalls even 3–7

days in advance, but the EPFI is unrealistically larger

in South China. There are also some false alarms in

the 120-h forecast in South China. The 48–120-h fore-

casts miss the extreme events in central Shandong.

This may result from the fact that the model climate

CDF only contains precipitation information in July.

At that time, the rain belt jumps northward to North

China, following the movement of the subtropical high,

which leads to the increase of rainfall in North China

and the decrease of rainfall in South China and the

mid-lower reaches of Yangtze River. According to the

climate CDF in South and Central China, the fre-

quency of light rain increases. In North China, the

occurrence probability of heavy rain increases. Thus,

the EPFI is greater in South and Central China, and

smaller in North China.

6. Impact of the model climatic CDF on the

extreme precipitation forecast

It can be perceived from Eqs. (1) and (2) that

the model climatic CDF has a great impact on the en-

semble forecast of extreme precipitation. It is known

Fig. 7. Distribution of extreme precipitation grids on 24

July 2011.
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Fig. 8. Distributions of EPFI on 24 July 2011 at (a) 48-, (b) 72-, (c) 96-, and (d) 120-h forecast lead times.

that the rainy season in China falls mainly in June–

August. The available historical model data in China

cover a shorter time period than the ECMWF data.

Accordingly, we compile a second set of model climate

data. Daily precipitation forecast product from the

T213 EPS at each grid point in China during June–

August of 2008–2010 is selected. Seven independent

model climate series (24–168 h) are generated at each

grid point with a length of 4140 (n = 3 yr × 92 days

× 15 members), which is referred to as T213-P2 in the

following.

Comparison between the CDFs of the two model

climate datasets, i.e., T213-P2 and T213-P1, for 72-h

forecast (the results of other forecast times are simi-

lar) in South China, North China, and the mid-lower

reaches of Yangtze River is displayed in Fig. 9. The

frequencies of light to moderate rains in North China

increase and the CDF curve is closer to y-axis. In

South China and the mid-lower reaches of Yangtze

River, the frequencies of moderate and heavy rains

increase and the CDF curve is closer to x-axis. This

trend is more obvious in South China. These results

suggest that light rains occur more often in North

China and moderate to heavy rains happen less fre-

quently in central and South China based on T213-P2.

Figure 10 compares the EPFI maps from the two

climate datasets T213-P1 and T213-P2 at 48 and 120

h, respectively. We can see that for 48-h forecasts,

T213-P1 scheme missed the extreme precipitation in

central Shandong while T213-P2 successfully captured

it and set the alarm. For 120-h forecasts, the false

alarm from T212-P1 appeared in a larger area in South

China while the false alarm from T213-P2 decreased

obviously in this area, suggesting an improved result
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Fig. 9. Cumulative probability curves of the 72-h model climate precipitation datasets T213-P1 (solid) and T213-P2

(dashed) for (a) North China, (b) mid-lower reaches of Yangtze River, and (c) South China.

by using T213-P2. The other experiments produced

similar results. Overall, T213-P2 reduces the misses

in North China due to smaller EPFI, and also reduces

the false alarms in South China.

The statistical results from comparisons of the

two model climate datasets are given in Fig. 11. Both

the TS and HR based on T213-P2 are higher than

those based on T213-P1. The AROC of T213-P2 is

also higher than T213-P1 (Table 5). However, the

false alarm rate and the bias of T213-P2 are slightly

higher than T213-P1, which means that although the

hit rate of T213-P2 dwarfs that of T213-P1, its false

alarm rate is defeated by that of T213-P1. Overall,

the T213-P2 climate is better than the T213-P1.

Comparisons of the climatic CDF between the two

model climate datasets show that T213-P2 has an im-

proved EPFI forecast skill than T213-P1. T213-P2 has

a higher probability to predict the extremes (although

it also has a higher false alarm rate). This may be

because the raining season in China covers three con-

tinuous months (June–August); T213-P2 uses three-

month data and thus contains more precipitation in-

formation than T213-P1 does, which uses only one-

month data. It is therefore inferred that the model

climatic CDF should contain as much objective pre-

cipitation information as possible.

7. Summary

Extremely heavy precipitation (abbreviated as

extreme precipitation/rainfall throughout the text) is

a small probability event that occurs with a great deal

of uncertainty. It is very difficult for its accurate pre-

diction. In this study, the differences between the

observed and model forecast precipitation CDFs are

analyzed with consideration of characteristics of the
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Fig. 10. EPFI maps derived from the two model climate precipitation datasets T213-P1 (a, c) and T213-P2 (b, d) on

24 July 2011 for 48- (a, b) and 120-h (c, d) forecasts.

Table 5. AROC of the two model climates of precipitation

AROC 24 h 48 h 72 h 96 h 120 h 144 h 168 h

T213-P1 0.759 0.727 0.703 0.716 0.697 0.678 0.642

T213-P2 0.762 0.724 0.711 0.731 0.710 0.696 0.661

T213 ensemble forecast precipitation. According to

the Anderson-Darling test, an EPFI is established on

the basis of the T213 ensemble forecast. The impact

of the historical model CDF on the EPFI is examined

through comparisons between experimental results on

the extreme precipitation events that occurred in July

2011. Preliminary results are summarized as follows.

(1) Precipitation forecasts from the T213 ensem-

ble prediction system show that the differences in the

probability density distribution for different forecast

lead times are obvious when the forecast precipitation

is between 10 and 40 mm. Precipitation density de-

creases with the growth of the forecast time. When

forecast rainfall is over 40 mm, the precipitation prob-

ability density is close to zero for different forecast

times. When forecast precipitation is less than 10 mm,

the precipitation probability increases. For precipi-

tation events of all intensity levels, the precipitation

probability begins to stabilize after the forecast time

reaches 168 h.

(2) Comparisons between the observed and the

model forecast precipitation show that the horizontal

pattern of the model precipitation is close to the ob-

servation, but the model precipitation is less in mag-
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Fig. 11. Average test results of the two model climates of precipitation.

nitude than the observation. Besides, extreme precip-

itation decreases with the growth of the forecast time.

There are some differences in the center location of

the extreme rainfalls. The observed centers are in

Guangdong Province and nearby areas whereas the

model centers are near Jiangsu, Zhejiang, and Fujian

provinces. Over the Tibetan Plateau, there is a fake

center of extreme rainfall.

(3) The extreme precipitation forecast index

(EPFI) has taken full advantage of the tail infor-

mation of the CDF curve of ensemble forecasts. The

results show that EFPI has a good ability to identify

extreme precipitation, which enables an alarm to be

set 3–7 days ahead of the extreme event. The EPFI

forecast skill decreases with the increase of the fore-

cast time.

(4) By comparing the CDF of two model climate

datasets, we find that the forecast skill of the CDF

that contains historical model precipitation informa-

tion from June to August is better than the CDF that

contains only the July precipitation information. This

may be associated with the actual length of the three-

month rainy season of China. Thus, it is better for the

model climatic CDF to include objective precipitation

information as much as possible.

It should be pointed out that in this paper, we

only obtained 5-yr data of the T213 ensemble forecast.

How to take advantage of the existing data to gener-

ate a better model climatic CDF in order to improve

the forecast skill of the EPFI on the extreme rainfalls

needs to be further studied.
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