在格陵兰地区地震图上记录到的 一 个附加震相——i 震相的特征

庆 梅,潘海涛,戴维乐

(安徽省地震局,安徽 合肥 230031)

摘要:在1976~1983年期间,格陵兰地区共记录到53个地震.所有的地震资料都用检查地震记录图纸的方式进行了复核审查,得到了该地区 P₁₀ P_g, P₁₁(PMP), S_n和 L_g 波的走时曲线及其视速度,这些结果与加拿大的走时曲线相一致.发现有9个地震的11张地震图上记录到一个附加的i 震相.初步研究认为,i震相的存在与震中距、震源深度和地震方向有关,不过此现象尚须进一步研究.

主题词: 地震图; 震相; 格陵兰; i 震相 中图分类号: P315.63 文献标识码: A 文章编号: 1000-0844(1999)04-0430-03

0 序言

格陵兰位于北极附近,是世界上最大的岛,面积有 2 670 000 km²,84% 的内陆地区终年被冰雪覆盖,内陆冰厚度达 3.5 km,沿海岸地区为非冻土区.在世界地震目录中只能看到为数不多的格陵兰地震,这可能是由于该区地震活动水平不高和地震台稀少所致.从 1963 年起格陵兰地区开始安装三分向短周期地震仪,相继建立了 NOR($v_0 = 5 \times 10^4$), DAG($v_0 = 5 \times 10^4$), KTG(SCO)($v_0 = 2.5 \times 10^4$), GDH($v_0 = 2.5 \times 10^4$), 和ALE地震台(图 1).该台网的检测阀值大约为 3~4 级,绝大多数地震沿东北部、北部和西部海岸线附近发生.

1 地震活动特征

本文选用了 1976~1983 年期间在格陵兰地区记录到的可靠的 53 个地震的地震参数,该结果取自于哥本 哈根地震台网报告、国际地震台网报告以及渥太华地震台网报告.图 1 给出了 5 个地震台及 53 个地震震中分 布情况.可见绝大多数地震沿海岸线分布,地震集中分布区在 DAG 地震台和 NOR 地震台之间,格陵兰北部 地区地震分布比较分散,西部沿海岸线分散分布,沿东海岸在 DAG 和 KTG(SCO)地震台之间没有地震连续 分布.本文将 53 个地震划分成 6 个区: I 区位于北东沿海地区(77°~80°N, 18°~23°W),分布有 12 个地震; II_s 区位于南西沿海地区(63°~73°N, 50°~58°W),分布有 12 个地震,II_N 区位于北西沿海地区(75°~77°N, 65°~71°W),有 7 个地震分布;III区位于北部沿海地区(81°~87°N, 20°~72°W),有 15 个地震分布;IV区位于 南东沿海地区(72°~77°N, 01°~25°W),有 5 个地震分布;V 区位于格陵兰以西(70°~72°N, 68°~70°W),有 1 个地震分布;VI区位于格陵兰内陆(72°~74°N, 34°~40°W),有 1 个地震分布.这一时期发生的最大震级为 M_b = 4.9(地震参数为: 1978-01-04 14; 52:09.7; 85.7°N, 23.9°W; M_b = 4.9; h= 36 km; III区,格棱兰北部沿海 区).在 S. Gregersen 工作^[1]的基础上,根据地震图记录和单台报告以及哥本哈根、渥太华、ISC(国际地震中 心)地震台网的报告,我们分析检核了所有地震参数,我们读取了位于 I,II_S IV, V, VI区的 29 个地震由 DAG,NOR,GDH和 KTG 台所记录的 P₁₀ P₂₀ P₁₁(PM P), S_n和 L_g 震相的初至到时.由于缺少近台 ALE 的记录 图纸,我们仅检核位于 II_N和 III区的其余 24 个地震的震相到时资料,据此我们还以震中距 △为X 轴,震相到 时 t为Y 轴绘出了格陵兰地区走时曲线,所用线性回归模式为

$$Y_i = a + bX_i$$

$$t_i = a + b(\Delta)$$

作者简介:庆梅(1954-),女,工程师,从事震相分析、地震编目、地震监测预报及科研工作.

用最小二乘法拟合计算得到每条直线 $t_{P_n} - \Delta$, $t_{P_g} - \Delta$, $t_{P_{11}} - \Delta$, $t_{S_n} - \Delta$, $t_{L_g} - \Delta$ 的相关系数、直线截距和斜率 r, a, b. 斜率 b 即为各震相的视速度:

 $v_{P_n} = 8.25 \text{ km/s}$ $v_{P_g} = 6.57 \text{ km/s}$ $v_{P_{11}} = 6.30 \text{ km/s}$ $v_{S_n} = 4.57 \text{ km/s}$ $v_{L_n} = 3.60 \text{ km/s}$

该结果与加拿大地区的走时曲线[2]

 $v_{p_n} = 8.20 \text{ km/s}$ $v_{p_g} = 6.20 \text{ km/s}$, $v_{s_n} = 4.75 \text{ km/s}$ $v_{L_g} = 3.57 \text{ km/s}$ 相一致.这表明格陵兰地区地震记录和我们70 的分析均是正常的.

2 i 震相的特征

在I,II, IV区由 DAG, NOR, G DH 和 KTG(SCO) 台站记 录的 9 个地震 11 张地震图上除了 P_n, P_g, P₁₁, S_n, L_g 震相以 外, 还记录了一个附加的震相 i 震相. 典型的具有 i 震相的记 录图(图 2)如 1979 年 2 月 15 日 DAG 台所记录的I 区地震: 60⁻ Δ = 307.6 km, $T_{\rm S}$ - $T_{\rm P}$ = 32.7 s, $T_{\rm i}$ - $T_{\rm P}$ = 20.1 s, i 位于 P 波与 S 波系列之间, 它的到时是在 P 波之后, S 波之前, 振幅 和频率均小于 P 波, 周期大于 P 波; $T_{\rm i}$ - $T_{\rm P}$ = $\frac{1}{2}$ ($T_{\rm s}$ - $T_{\rm P}$), $A_{\rm i}$ = (1/2 ~ 1/3) $A_{\rm P}$, $A_{\rm i}$ = (1/2 ~ 1/3)

 $A_{i} = (1/2 \sim 1/3) A_{p_{n}}, A_{i} = (1/2 \sim 1/3) A_{P_{g}}, f_{i} = (1/2 \sim 1/3) f_{p_{n}}, f_{i} = (1/2 \sim 1/3) f_{P_{g}}$

通常在 T_S- T_P= 20~45 s(最大 70 s)时能发现 i 震相, T_i- T_p= 10~20 s(最大 30 s). 表 1 给出了 9 个有 i 震相的地震参数.结果表明 i 震相的存在与震中距、震源深度有关.

	当发生震中距为 175~710.9 km 的浅源地震
	[震源深度为0~10 km)时能在地震图上记录到 i 震
PnPg=(1)	相.同一个地震在某一方向的地震台记录图上可以
图 7 右:雪相的曲刑地雪汝曲线	고录孙;雲相 而在모一方向地震台记录图上却记录

不到 i 震相(图 1). 图 3 给出了 i 震相的走时曲线和其视速度 值 $v_i = 6.05$ km/s.

序号	日期	区号	台站	h/km	∆⁄ km	$T_{\rm s} - T_{\rm p}$	$T_{i} - T_{p}$	t_{P_n}	t _{Pg}	t_{i}	A_{P_n}	$A_{\mathrm{P}_{\mathrm{g}}}$	$A_{\rm i}$
						/ s	/ s	/ s	/ s	/ s	$/\mu_{ m m}$	$/\mu_{ m m}$	$/\mu_{\rm m}$
35	1979-06-12	IV	DAG	0	175.0	19.8	10.0	27.18	29.18	37.18	2.2	9.0	3.0
50	1983-02-28	IV	KTG	0	192.8	20.2	11.0	30.94	32.14	41.94	10.0	33.2	21.0
12	1977-12-05	II $_{\rm S}$	$\rm GDH$	18	217.6	22.6	12.1	32.70		44.80	6.0		3.0
36	1979-08-16	II $_{\rm S}$	$G\mathrm{DH}$	18	246.6	25.2	11.2	35.65	39.85	46.85	1.0	3.5	2.0
33	1979-04-17	Ι	NOR	22	240.8	25.3	16.8	35.11	36.41	51.91	18.0	56.0	23.5
30	1979-02-24	II $_{\rm S}$	$G\mathrm{DH}$	0	267.7	25.5	12.8	36.96	39.56	49.76	0.2	1.0	0.8
28	1979-01-03	Ι	DAG	18	274.0	31.0	17.5	37.40	41.20	54.90	5.0	55.0	3.0
33	1979-04-17	Ι	DAG	22	301.8	31.6	14.6	40.81	45.91	55.41	2.2	6.0	6.0
29	1979-02-15	Ι	DAG	9	307.6	32.7	20.1	43.64	48.94	63.74	0.8	7.0	4.0
41	1980-08-20	IV	DAG	0	451.1	45.0	25.6	60.85	72.85	86.45	6.0	8.0	3.0
35	1979-06-12	IV	NOR	0	710.9	70.1	31.6	92.58	103.20	124.20	11.0	20.0	10.0

表1 具有 i 震相的地震参数

3 讨论与结论

(1) 在1976~1983 年期间格陵兰的地震活动水平不高, 共记录到 53 次 3~4 级地震, 最大震级为 4.9 级, 绝大多数地震沿北部、西部、东部海岸分布.北东地区(I区)是格陵兰地震集中分布区.

(2) 当 $T_{\rm S}$ - $T_{\rm P}$ = 10 ~ 70 s 时绝大多数地震图上可记录到 清晰的地震波震相 $P_{\rm tr}$ $P_{\rm g}$ $S_{\rm tr}$ $L_{\rm g}(S_{\rm g})$. 在 $T_{\rm S}$ - $T_{\rm P}$ = 17 ~ 25 s, 震 中距为 145 ~ 245 km 的情况下,,在 DAG 台还记录到了反射波 PMP(来自莫霍界面).本文得到的格陵兰地区走时曲线和各震 相的视速度值与加拿大地区走时曲线及视速度值相一致.

(3) 格陵兰某些地区某些地震台在 $T_{\rm S} - T_{\rm P} = 20 \sim 45$ s(最大值 70 s) 时大约在 P 波与 S 波之间 $T_{\rm i} - T_{\rm p} = 1/2(T_{\rm i} - T_{\rm p})$ 处还记录到一个附加震相 i 震相. i 震相的振幅小于 P 波振幅,周期略大于 P 波周期. i 震相的存在与震中距、震源深度及 50 地震方向有关.本文得到 i 震相区域分布图,格陵兰北东地震集 中区(I 区)是 i 震相容易传播的地区,南东沿海地区(IV区) i 震 相传播比较困难,南西沿海岸线地区(II s) i 震相传播难易程度 则介于上述两者之间.

(4) 值得注意的是,有时能在某些地震图上出现 i 震相,有 时在另一些地震图上却找不到 i 震相.这可能与地震的震源深 度有关.如同一地震台几乎在同一地点记录到的以下 2 次地震, 一个震源较浅能记到 i 震相,另一个震源较深则记不到 i 震相.

29 号地震: 1979-02-15、79°30′N, 20°34′W, h=8.6 km M3.9、I 区 DAG 台记录到 i 震相, $\Delta=307.6$ km, $T_{\rm S}-T_{\rm P}=$ 32.7 s, $T_{\rm i}-T_{\rm p}=20.1$ s

44 号地震: 1982-01-21, 79°28′N, 19°30′W, h = 20.5 km, M4.0, I区DAG台记录不到 i 震相, $\Delta = 302.9$ km, $T_{\rm S} - T_{\rm P}$ = 32.7 s.

(5)关于记录到 i 震相的可能物理解释是:在格陵兰岛地壳 中的某一深度可能存在一个界面.界面以上是低速松散的沉积

层,以下是高速坚固的岩石层^[3~4].i震相是来自该界面的绕射或反射波.当震源浅于该界面时,可以记到较 清楚的i震相.关于这一解释尚需通过更多的观测资料作进一步深入研究.

工作中得到了盖格申教授的帮助指导和所提供的全部资料,在此表示衷心感谢.

[参考文献]

- [1] Gregersen S. Earthquakes in Greenland. Bull. Geol. Sco. Denmar, 1982, 31: 11~27.
- [2] Smith W E T, Miline W G. Canadian earth quakes-1965. Seism. Series Dom. Obs., 1965, (2): 1~38.
- [3] Chen K C, Chiu J M, Yang Y T. Q_p-Q_s relation in the sedimentary basin of the upper Mississippi embayment using converted phases. Bull. Seism. Soc. Am., 1994, 84: 1861 ~ 1868.
- [4] Chen K C, Chiu J M, Yang Y T. Shear-wave velocity of the sedimentary basin in the upper Mississippi embayment using Sto- P converted waves Bull. Seism. Soc. Am., 1996, 86: 848 ~ 856.

THE CHARACTERS OF AN EXTRA SEISMIC PHASE, i-PHASE, ON SEISMOGRAMS IN GREENLAND

QING Mei, PAN Hai-tao, DAI Wei-le

(Seismological Bureau of Anhui Province, Hefei 230031, China)

Key words: Seismogram; Seismic phase; Greenland; i-phase

