首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度卷积神经网络的地震数据随机噪声压制
作者姓名:陈天  易远元
作者单位:中国武汉 430100 长江大学地球物理与石油资源学院
基金项目:华北石油第三轮校企合作项目(HBYT-YJY-2018-JS-507)资助
摘    要:本文以提高地震数据的成像质量为目标,提出一种智能的卷积神经网络降噪框架,从带有噪声的地震数据中自适应地学习地震信号。为了加速网络训练和避免训练时出现梯度消失现象,我们在网络中加入残差学习和批标准化的方法,并采用了ReLU激活函数和Adam优化算法优化网络。此外,Marmousi和F3数据集被用来对网络进行训练和测试,经过充分训练的网络不仅能在学习中保留地震数据特征,而且能去除随机噪声。首先充分地训练网络,从中提取出随机噪声,并保留学习到的地震数据特征,之后通过重建地震数据估算测试集中的波形特征。合成记录和实际数据的处理结果显示了深度卷积神经网络在随机噪声压制任务中的潜力,并通过实验验证表明了深度卷积神经网络框架有很好的去噪效果。 

关 键 词:随机噪声压制   卷积神经网络   地震数据   深度学习   地震信号
收稿时间:2020-08-07
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《地震学报》浏览原始摘要信息
点击此处可从《地震学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号