"曲化平"方法在吉林×××矿区 的应用和效果

杜维本

(冶金工业部物探公司研究所)

一、前言

M4低缓异常(图1),是吉林冶金地质公司608队在1981年做地面磁法普查时发现的。

该异常位于吉林省南部×××铁矿西南四公里处,处于老岭背斜南东翼隆起部位。异常 区内地层主要是震旦系大罗圈河组,不整合覆盖于老岭群大栗子组之上,厚度约300 —500 米。×××组地层呈一些小天窗零星出露于沟谷之中。测区的西南角和东北角有少量的中生界 侏罗系一白垩系地层分布,不整合(构造不整合)于大罗圈河组地层之上。

×××铁矿位于该区的东北部。××××铁矿赋存于大栗子组含铁层中,矿体上盘为千 枚岩夹变质粉砂岩,下盘为千枚岩。矿体严格受层位控制,是比较典型的沉积变质、受后期 热液改造的层控矿床。磁铁矿一赤铁矿一菱铁矿为主要矿石矿物,矿石平均品位50%左右, 为高炉或平炉自熔性富矿。

此外,本区还有临江式铁矿。它产于大罗圈河组地层底部,矿体呈层状,与地层产状一致,上下盘为石英砂岩。由于后期构造破坏,矿层多被切割成不连续的大小断块。矿石矿物 主要有菱铁矿,赤铁矿,磁铁矿,含铁绿泥石,菱锰矿等,并含稀土元素。此类矿石品位低, 属贫矿,目前尚未利用。

本区岩石、矿石磁性参数见表 1。

M₄异常(见图1)在平面图上呈椭园形,走向似为北东——南西,长轴2600米,短轴 2100米,异常梯度较缓,形态规则,强度较低,极大值只有690Y,属于低缓异常。608 队发 现该异常以后,做过不同比例尺的详查工作,他们认为:

1. 该异常位于×××铁矿东岔向斜的南西翼,地质条件有利; M₄之北有三个异常都是 由×××式铁矿引起,因此推测在震旦系之下仍有可能存在与成矿有关的大栗子组地层:

2. 根据磁参数测定结果,除安山岩、闪长玢岩、辉绿岩有不强的磁性外,只有磁铁矿 石磁性最强,其它岩石均无磁性。本区尚未见有其它火成岩侵入体存在。

因此推断该异常系磁铁矿体引起,并根据这一推断设计了六个钻孔。

首先施工的ZK38孔见矿情况最好,计六层矿,累计厚度达32米,详见表2。

• 80 •

fr the	块 数	K ' 10 ⁻⁶ CGSM		Jr ¹ 10 ⁶ CGSM	
4 称		范围	平均值	范围	平均值
744 64 57th		32000		40000	
做获叫	200	110000	58000	25000	11000
临江式铁矿		38()		22	
	8	10000	1000	2100 .	220
山长以岩		0		0	
內认知有	22	550	20	1100	10
辉 结 史		0		0	
· ····································	16	2400	760	300	30
安山岩)	40		U	
хща 	50	3800	800	920	140
千枚岩		Ð		0	
	300	3000	10	3500	12
石英砂岩	270		0		0
粉砂岩	110		0		· · ·

岩石、矿石磁性参数表

表 1

.

表2

.

Σ²- F .≇	见矿厚度			位	止	
19 75	自至	E R	TFe	S	19 1 安空	
1	343.85				临江式铁矿	
	346.15	2.3	25.92			
2	367.90				蒸拌磁鉄矿	
	384.72	16.82	51.60	0.26	交认成认为	
3	443.45				赤蚌磁铁矿	
	444.51	1.00	51.42	0.57		
4	50 8.9 3				赤铁磁铁矿	
	509.83	0.90	45.62	0.04		
5	512.23				英雄去姓矿	
	513.94	1.71	58.24	0.10	3.055	
6	521.05				菱铁磁铁矿	
	521.90	0.85	51.67	0.04		
7	541.85				菱铁磁铁矿	
	549.90	8.05	57.21	0.07		

• 81 •

图1.M 异常物探地质综合图

图2.M ,异常区地形图

图 3.M ,异常延 拓结果图

但是本区地形起伏 较大,(见2),高差可 达300—500米,必然会 对异常的形态特征造成 影式异常的形态特征造成 影式的考虑到×××× 了的特点(透镜术; 多层异常很可能是由多 个矿正猜矿体的空间分 布,以便可合理的布置 工程们和608 队— 起对该异常进行了不同 高度的"曲化平"计算。

二、M₄异常的"曲 化平计算及解释

使用的方法(见文献(1,2))称 ---SKP 法。K面顶部是平面,标高为 400米(根据ZK38孔见矿情况和本 区震旦系一般厚度,认为矿体在400 米标高以下),两侧与地形重合。

计算中采用100 × 80 (米) 的网 格距,全区取28×25 = 700 点。地形 高程是从 1 / 5万地形图上用内插法 查得的。△Z 的观测精度大约为10--20Y。

我们算出850米,700米,600 米三个不同高度平面上的△Z,后两 个平面均在地形最高点以下。这三个 结果是一次完成的,用机约45分钟 (CYBER 机)。计算结果分别示于图 3-5。

• 82 •

图 5. M,异常延拓结果图

这些结果清楚的显示了场的空间分布特征、分析这些特征我们曾得到以下几点认识: 1.对比图 1 和图 5,

图 1 是在起伏地形上的原始异常,图 5 是距地形最高点 250 米以下的 600 米标高平面上的 $\triangle Z$,很明显,图 1 中所显示的 NE 走向的完整异常被分解成若干近S N 走向的局部异常 A₁,A₂,B₁,B₂,B₃,C₁,C₂。这些局部异常清楚的显示了矿体的分布,多个矿体并不连续, 而图 1 所反映的是包括地形影响在内的综合场。

2.图5中的异常大体上形成三个带,即A₁—A₂; B₁—B₂—B₃; C₁, C₂。带的走向近南 北。与局部异常以及北部的M₂₁₋₁, 2,)的走向一致,这反映了矿区构造的特点。而图 2中异常的走向 NE,是综合场的走向,并不代表矿体、矿带的实际走向。

3.三个带之间存在负值或低值带,这很可能是断层的反映。

4.局部异常A₁与图 1 中 500Y 代表的局部异常大体一致,位置的偏移可能是地形影响造成。A₂没有形成封闭的异常,A₁A₂很可能是同组矿层的反映,沿走向埋深有所不同,A₁处 浅些。北部 Z K 38孔见到的矿体似乎应该属于这组矿层。

5.B 带异常在图 1 中并没有明显的反映,可能是由于原始观测点处在地形较高的位置上。 经过向下的曲化平计算,在图 4,5逐渐清楚的反映出来,它们当代表另一组矿层。三个局 部异常不相连表明三个磁性体是不相连的。B2的强度、规模稍大,很可能是主要的磁性矿体。 至于C1,C2规模要小一些。

6.三组矿层之间的关系,它们是代表三个不同层位的矿?还是同一层位的矿受构造变动

• 83 •

图 6. M 4 综合剖面图

后形成的,只有经过验证以后才能 确定。总的说来似乎后一种可能性 大一些。

7.各局部异常是不相连的,说 明磁性矿体不相连。但还要注意× ××式铁矿不仅含磁铁矿,还有菱 铁矿,赤铁矿,由于矿体磁性不均 匀也可能造成局部异常的不连续。

8.除这些局部异常而外,似乎 还存在一个较低值的次级异常,在 不同高度的结果中都有所反映,尤 其是图 3所反映的主要是次级异常 的特征。这一现象应值得注意。

根据上述认识我们曾建议:

(1)应以图 5 为基础考虑勘探 线和验证工程的布置。当时除ZK 38孔已施工完了以外,其余各孔正 在施工中。从图 5 可见,勘探线和 这些孔的位置已经不太合理,有些 孔可能要落空,因为它们恰好都位 于各局部异常的边缘。(2)对各局 部异常有了初步认识后,进一步再 研究次级异常。

三、验证情况

曲化平计算结果出来的时候, ZK 38孔已经打完, 原设计的ZK42, ZK 39, ZK 37, ZK 43, ZK 44等孔正在施工中。虽然从曲化平结果来看这些孔的位置和勘探线方向都不太合适, 但 考虑到这些孔已经施工, 也就继续打下去了, 结果见表 3。

(1)这些钻孔是根据图1 所示的原始 △ Z 异常设计的,并没有什么不合理的地方。但是经过 向下的曲化平计算以后,完整的异常被分解成若干个局部异常,从图 5 上我们可以看出这些 钻孔恰好位于各局部异常之间或者边部,也就不难理解为什么Z K 42, Z K 39, Z K 43没有打 到矿体,Z K 37,Z K 44 只打到很薄的矿体了。

(2) 证实了关于构造的推断是正确的

608 队吴玉顺同志根据曲化平结果对异常区的构造作了推断(图 6, 7)。事实上从各孔 打到的不整合面的标高来看,这种近南北向的断层是存在的,而且伴随有升降运动,形成地 垒。

• 84 •

图7.M,异常(600米标高)平面图

图8.M₄-8线异常推断解释图

(3) ZK 90孔是608 队根据曲 化平计算结果设计的,目的在于验 证B2异常。验证结果见图 8 和表 3。 在予计的深度打到了矿体。由于磁 铁矿成分增加,磁性增强,打到的矿 体要比推断矿体薄一些。

4.M₄异常 (图 1)是一个比较 复杂的异常,经曲化平计算以后在 600 米标高平面上这个异常被分解 成若干个局部异常,它们对应不同 的磁性地质体,这已为钻探所证实。 从钻孔资料来看地质体的物质成分 和磁性差别也是很大的,北部ZK 38孔所打到的矿体应与 A, 异常有 关, 矿石品位好, 菱铁矿成分多; 南部的ZK 90孔打到的矿体应与B。 异常有关,主要是磁铁矿,磁性很 强; 而ZK37则黄铁矿成分增加, 深部有矿化现象。由于矿石矿物成 分的改变,必然导致磁性的变化, 这也是使异常复杂的原因。这是今 后在解释异常时应该注意的。

四、结束语:

曲化平,尤其是向下半空间的 曲化平计算对 M₄ 异常的解释和验 证工作起了重要的作用,主要是:

1.由于本区地形起伏较大,通 过曲化平把起伏地形上测得的场换

算成平面上的场,便于把握场的特征,有利于对场作出正确的解释推断。

2.通过向下半空间的曲化平,把复杂的低缓的综合异常分解,使我们对M₄异常的认识, 对矿体的分布,构造特征有了新的观点,而且得到了证实。

3.通过不同高度的曲化平结果给出不同高度的场的变化特征,给出场的空间分布的概念, 如果再同选择法结合起来,可能是求解重磁反问题的有效途径。

4.在计算中,地形数据是从 1 / 5 万地形图上查得的, △Z 的观测精度也只是一般的 野

• 85 •

钻孔编号	자명	进尺长度	见矿	品	位	成石米刑		终孔深度
	19 /25	自至	厚度	TFe	S	~ 罗伯尖望		
Z K 42							- 50m	743.05m
Z K 39							221 m	663.15m
Z K 37	1	533.91 535.38	2.47	47.85	0.82	磁铁矿		
	2	546.61 551.00	4.39	53.04	15.62	磁黄铁矿		
	3	703.00 731.00	28,00			矿化	148.m	751.84m
Z K 43							50m	739.02m
ZK 44	1	651.20 652.54	1.34	43	13	黄铁磁铁矿		
	2	659.2 664.53	.5.25	-19	13	黄铁磁铁矿	340 m	740 m
Z K 90	1	684.02 684.53	0.51	54		磁铁矿		
	2	691.07 699.05	8.58	56		磁铁矿		
	3	717.75 719.40	1.65	45		磁铁矿	360 m	754 m

验证结果见矿厚度表

,

表 3

野外观测精度。在这种条件下曲化平取得了比较好的效果。这一点很重要,对推广该方法很 有实际意义。

参考资料

,

①、杜维本、三维重磁场"曲化平"的一个方法、地球物理学报,VOL 25.NQ 1、1982。
②、杜维本、二维重磁场曲化平的等效源法、地质与勘探,第12期,1980。

AN INTRODUCTION ABOUT THE APPLICATION AND RESULT FOR THE METHOD OF "REDUCING FROM AN ARBITRARY SURFACE INTO PLANE" AT A CERTAIN MINING DISTRICT, JILIN

Du Veiben

(Geophysical Prospecting Co. M. M. I.)

Abstract

In this paper the auther describes the application and result of "reducing from an arbitrary surface into a plane" method It is very beneficial to proper understanding of the characteristics of geophysical field and to making a correct interpretation for them, transforming the measured field at a relief topography into the field at a plane, as the topography of this district is very rugged. In particular, for the calculation of "reducing from a arbitrary surface into a plane" in the half space below the ground surface, the resolution of combined field will give us a new idea about the anomalies, the distribution of the orebodies and the structural features of a deposit. The case history presented here has shown that the reducing process method is very necessary under the conditions of complex relief.

• 87 •