首页 | 官方网站   微博 | 高级检索  
     


The normalized topographic method: an automated procedure for gully mapping using GIS
Authors:Carlos Castillo  Encarnación V Taguas  Pablo Zarco‐Tejada  Mike R James  Jose A Gómez
Affiliation:1. Institute for Sustainable Agriculture‐CSIC, Cordoba, Spain;2. Department of Rural Engineering, University of Cordoba, Cordoba, Spain;3. European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy;4. Lancaster Environment Centre, Lancaster University, Lancaster, UK
Abstract:Gully delineation is a critical aspect of accurately determining soil losses but associated methodologies are rarely detailed. Here, we describe a new gully mapping method, the normalized topographic method (NorToM), based on processing digital elevation model (DEM) data, and we assess associated errors when it is applied over a range of geomorphological scales. The NorToM is underpinned by two gully detection variables (normalized slope and elevation) calculated over local windows of prescribed size, and a group of filtering variables. For four study sites, DEMs of gullies were obtained using field and airborne photo‐reconstruction and evaluated using total station and differential global positioning system (dGPS) survey. NorToM provided accurate areal and volume estimates at the individual gully scale but differences increased at the larger gully system and gully network scales. We were able to identify optimal parameters for using the NorToM approach and so confirm that is represents a useful scale‐independent means of gully mapping that is likely to be valid in other environments. Its main limitations are that the normalization process might be time‐consuming at regional scales and the need for a fixed window size when applied to landforms with extreme variations in dimensions. Copyright © 2014 John Wiley & Sons, Ltd.
Keywords:gully erosion  mapping  resolution  GIS  photo‐reconstruction  DEM
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号