冰芯中不溶微粒的研究进展

邬光剑, 姚檀栋

冰川冻土 ›› 2005, Vol. 27 ›› Issue (4) : 528-538.

PDF(1349 KB)
PDF(1349 KB)
冰川冻土 ›› 2005, Vol. 27 ›› Issue (4) : 528-538. DOI: 10.7522/j.issn.1000-0240.2005.0079  CSTR: 32264.14.j.issn.1000-0240.2005.0079
冰冻圈与全球变化

冰芯中不溶微粒的研究进展

  • 邬光剑, 姚檀栋
作者信息 +

Progress in Studies on Insoluble Microparticle in Ice Cores

  • WU Guang-jian, YAO Tan-dong
Author information +
文章历史 +

摘要

冰芯中的微粒是反映大气粉尘的直接指标,其研究内容包括浓度、通量、粒径和矿物组成等在不同时期的变化特征以及其对全球气候的影响.简要地介绍大气粉尘对全球气候的影响,总结了近年来冰芯中的微粒研究以及用于解释末次冰盛期时高粉尘的几个气候模型的主要进展,着重讨论利用微粒的同位素特征来确定其来源以及利用微粒记录进行定年的方法与结果.

Abstract

The atmospheric dust is one of the most important factors in studying the global climate changes. Its effects include the scatter and reflect of solar insulation, the supply to the iron fertilizer to ocean, and its restrain to rain. The insoluble microparticle in ice cores is a direct proxy for atmospheric dust. Many researches have been carried out for microparticles in ice cores, including concentration, flux, size distribution, composition, and its application in dating. In this paper, the main progresses in ice core microparticle studies in the past decades are introduced. The isotope composition of microparticles, such as 87Sr/86Sr, 206Pb/204Pb, and εNd, along with REE feature and mineralogy, are used to discern the different potential source areas. It is interesting that the dust in Greenland ice sheet comes from Central Asia arid and semiarid areas, especially the Taklimakan Desert. The seasonal change of dust record can be used to date ice core, which is very useful for those thinner annual layers in the lower part of ice core. In most ice cores, high dust concentration emerged during the Last Glacial Maximum, except the Guliya and Sajama. The expansion of dust source area, weak hydrological cycle, stronger wind, change in atmosphere circulation, and increase in latitudinal temperature gradient are the potential causes for high atmospheric dust in LGM.

关键词

冰芯 / 微粒 / 大气粉尘 / 气候变化

Key words

ice core / microparticle / atmospheric dust / climatic change

引用本文

导出引用
邬光剑, 姚檀栋. 冰芯中不溶微粒的研究进展[J]. 冰川冻土, 2005, 27(4): 528-538 https://doi.org/10.7522/j.issn.1000-0240.2005.0079
WU Guang-jian, YAO Tan-dong. Progress in Studies on Insoluble Microparticle in Ice Cores[J]. Journal of Glaciology and Geocryology, 2005, 27(4): 528-538 https://doi.org/10.7522/j.issn.1000-0240.2005.0079
中图分类号: P343.6   

参考文献

[1] Junge C E. Air Chemistry and Radioactivity [M]. New York: Academy Press, 1963. 111.
[2] Broecker W S, Henderson G M. The sequence of events surrounding Termination II and their implication for the cause of glacial-interglacial CO2 changes [J]. Paleoceanography, 1998, 13(4): 352-364.
[3] Martin J H. Glacial-interglacial CO2 change: the iron hypothesis [J]. Paleoceanography, 1990, 5: 1-13.
[4] Watson A J, Lefevre N. The sensitivity of atmospheric CO2 concentrations to input of iron to the oceans [J]. Tellus, 1999, 51(B): 453-460.
[5] Watson A J, Bakker D C E, Ridgwell A J, et al. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2 [J]. Nature, 2000, 407: 730-733.
[6] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica [J]. Nature, 1999, 399: 429-436.
[7] Ridgwell A J. Dust in the Earth system: the biogeochemical linking of land, air, and sea [J]. Philosophical Transactions of the Royal Society A, 2002, 360: 2905-2924.
[8] Maher B A, Dennis P F. Evidence against dust-mediated control of glacial-interglacial changes in atmospheric CO2 [J]. Nature, 2001, 410: 176-180.
[9] Rosenfeld D. Suppression of rain and snow by urban and industrial air pollution [J]. Science, 2000, 287: 1793-1796.
[10] Rosenfeld D, Rudich Y, Lahav R. Desert dust suppressing precipitation: A possible desertification feedback loop [J]. Proceedings of National Academy Science, 2001, 98(11): 5975-5980.
[11] Penner J E, Rotstayn L D. Indirect aerosol forcing [J]. Science, 2000, 290: 407.
[12] Idso S B. Thermal blanketing: a case for aerosol-induced climatic alteration [J]. Science, 1974, 186: 50-51.
[13] Idso S B. Climate change: the role of atmospheric dust [J]. Geol. Soc. Am., Special Papers, 1981, 186: 207-215.
[14] Overpeck J T, Rind D, Lacis A, et al. Possible role of dust-induced regional warming in abrupt climate change during the last glacial period [J]. Nature, 1996, 384, 447-449.
[15] Nakai S, Halliday A N, Rea D K. Provenance of dust in the Pacific Ocean [J]. Earth and Planetary Science Letters, 1993, 119: 143-157.
[16] Jacobsen S B, Wasserburg G J. Sm-Nd isotopic evolution of chondrites [J]. Earth Planetary Science Letters, 1980, 50: 139-155.
[17] Smith J, Vance D, Kemp R A, et al. Isotopic constraints on the source of Argentinian loess-with implications for atmospheric circulation and the provenance of Antarctic dust during recent glacial maxima [J]. Earth and Planetary Science Letters, 2003, 212: 181-196.
[18] Gaudichet A, De Angelis M, Lefevre R, et al. Mineralogy of insoluble particles in the Vostok Antarctic ice core over the last climatic cycle (150kyr) [J]. Geophysical Research Letters, 1988, 15(13): 1471-1474.
[19] Basile I, Grousset F E, Revel M, et al. Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6 [J]. Earth and Planetary Science Letters, 1997, 146: 573-589.
[20] Lunt D J, Valdes P J. Dust transport to Dome C, Antarctica, at the Last Glacial Maximum and present day [J]. Geophysical Research Letters, 2001, 28(2): 295-298.
[21] Gayley R I, Ram M. Atmospheric dust in polar ice and the background aerosol [J]. Journal of Geophysical Research, 1985, 90(D): 12921-12925.
[22] Hamilton W L. Microparticle deposition on polar ice sheets [A]. Ohio State University Research Foundation, Institute of Polar Studies, Report 29 [C]. 1969. 77.
[23] Hammer C U. Dating the Greenland ice core by microparticle concentration analysis. International Symposium on Isotope and Impurities in Snow and Ice [J]. IAHS Publication, 1977, 118: 297-301.
[24] Biscaye P E, Grousset F E, Revel M, et al. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland [J]. Journal of Geophysical Research, 1997, 102(C12): 26765-26781.
[25] Svensson A, Biscaye P E, Grousset F E. Characterization of late glacial continental dust in the Greenland Ice Core Project ice core [J]. Journal of Geophysical Research, 2000, 105(D4): 4637-4656.
[26] Bory A J-M, Biscaye P E, Grousset F E. Two distinct seasonal Asian source regions for mineral dust deposited in the Greenland (North GRIP) [J]. Geophysical Research Letters, 2003, 30(4): 1167, doi:10.1029/2002GL016446.
[27] Bory A J-M, Biscaye P E, Sevensson A, et al. Seasonal variability in the origin of recent atmospheric mineral dust at North GRIP, Greenland [J]. Earth and Planetary Science Letters, 2002, 196: 123-134.
[28] Kahl J D W, Martinez D A, Kuhn H, et al. Air mass trajectories to Summit, Greenland: a 44-year climatology and some episodic events [J]. Journal of Geophysical Research, 1997, 102(C12): 26861-26875.
[29] Donarummo Jr J, Ram M, Stoermer E F. Possible deposit of soil dust from the 1930's U.S. dust bowl identified in Greenland ice [J]. Geophysical Research Letters, 2003, 30(6): 1269, doi:10.1029/2002GL016641.
[30] Ram M, Illing M. Polar ice stratigraphy from laser-light scattering: Scattering from meltwater [J]. Journal of Glaciology, 1994, 40: 504-508.
[31] Ram M, Illing M, Weber P, et al. Polar ice stratigraphy from laser-light scattering: Scattering from ice [J]. Geophysical Research Letters, 1995, 22(24): 3525-3527.
[32] Zielinski G A, Mershon G R. Paleoenvironmental implications of the insoluble microparticle record in the GISP2 (Greenland) ice core during the rapidly changing climate of the Pleistocene-Holocene transition [J]. Geological Society of American Bulletin, 1997, 109(5): 547-559.
[33] Rea D K, Snoeckx H, Joseph L H. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere [J]. Paleoceanography, 1998, 13(3): 215-224.
[34] Wu Guangjian, Yao Tandong, Thompson L G, et al. Microparticle record in the Guliya ice core and its comparison with polar records since the last interglacial [J] , Chinese Science Bulletin, 2004, 49(6): 607-611.
[35] Ram M, Stolz M, Koenig G. Eleven year cycle of dust concentration variability observed in the dust profile of the GISP2 ice core from Central Greenland: Possible solar cycle connection [J]. Geophysical Research Letters, 1997, 24(19): 2359-2362.
[36] Ram M, Stolz M R. Possible solar influences on the dust profile of the GISP2 ice core from Central Greenland [J]. Geophysical Research Letters, 1999, 26(8): 1043-1046.
[37] Donarummo Jr J, Ram M, Stolz M R. Sun/dust correlations and volcanic interference [J]. Geophysical Research Letters, 2002, 29(9): 10.1029/2002GL014858.
[38] Thompson L G, Mosley-Thompson E., Microparticle concentration variations linked with climatic change: evidence from polar ice cores [J]. Science, 1981, 212: 812-816.
[39] Chylek P, Lesins G, Lohmann U. Enhancement of dust source area during past glacial periods due to changes of the Hadley circulation [J]. Journal of Geophysical Research, 2001, 106(D16): 18477-18485.
[40] Thompson L G, Mosley-Thompson E, Davis M E, et al. Late Glacial Stage and Holocene Tropical Ice Core records from Huascaran, Peru [J]. Science, 1995, 269: 46-50.
[41] Thompson L G, Mosley-Thompson E, Davis M E, et al. Kilimanjaro Ice Core records: evidence of Holocene climate change in Tropical Africa [J]. Science, 2002, 298: 589-593.
[42] Zdanowicz C M, Zielinski G A, Wake C P. Characteristics of modern atmospheric dust deposition in snow on the Penny Ice Cap, Baffin Island, Arctic Canada [J]. Tellus, 1998, 50B: 506-520.
[43] Thompson L G, Davis M E, Mosley-Thompson E, et al. A 25,000-year tropical climate history from Bolivian ice cores [J]. Science, 1998, 282: 1858-1864.
[44] Thompson L G, Mosley-Thompson E, Davis M E, et al. Holocene-late Pleistocene climate ice core records from Qinghai-Tibetan Plateau [J]. Science, 1989, 246: 474-477.
[45] Thompson L G, Yao T, Davis M E, et al. Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan Ice Core [J]. Science, 1997, 276: 1821-1825.
[46] Yao Tandong, Jiao Keqin, Huang Cuilan, et al., Variations of atmospheric compositions and environment in the Northern Tibetan Plateau since the last interglacial age [A]. Proceedings of the Fifth Chinese Conference on Glaciology and Geocryology, Vol.2 [C]. Lanzhou: Gansu Culture Press, 1996. 107-112. [姚檀栋,焦克勤,皇翠兰, 等. 末次间冰期以来青藏高原北部大气成分和环境变化 [A]. 中国地理学会冰川冻土分. 第五届全国冰川冻土学大会论文集(下册)[C]. 兰州: 甘肃文化出版社,1996. 818-827.]
[47] Prospero J M, Ginoux P, Torres O, et al. Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product [J]. Reviews of Geophysics, 2002, 40(1): 4-1~4-30.
[48] Delmonte B, Petit J R, Maggi V. Glacial to Holocene implications of the new 27000-year dust record from the EPICA Dome C (East Antarctica) ice core [J]. Climate Dynamics, 2002, 18: 647-660.
[49] Ram M, Gayley R I. Insoluble particles in polar ice: identification and measurement of the insoluble background aerosol [J]. Geophysical Research Letters, 1994, 21(6): 437-440.
[50] Steffensen J P. The size distribution of microparticles from selected segments of the Greenland Ice Core Project ice core representing different climatic periods [J]. Journal of Geophysical Research, 1997, 102(C12): 26755-26763.
[51] Unnerstad L, Hanson M. Simulated airborne particle size distribution over Greenland during Last Glacial Maximum [J]. Geophysical Research Letters, 2001, 28(2): 287-290.
[52] Neiburger M, Edinger J C, Bonner W D. Understanding our Atmospheric Environment. Second edition [M]. San Francisco: W H Freeman and Company, 1982. 453.
[53] Hamilton W L, Langway C C. A correlation of micorparticle concentrations with oxygen isotope ratios in 700 year old Greenland ice [J]. Earth and Planetary Science Letters, 1967, 3: 363-366.
[54] Hammer C U, Clausen H B, Dansgaard W, et al. Dating of Greenland ice cores by flow models, isotopes, volcanic debris and continental dust [J]. Journal of Glaciology, 1978, 20: 3-26.
[55] Mosley-Thompson E, Kruss P D, Thompson L G, et al. Snow stratigraphic record at South Pole: potential for paleoclimate reconstruction [J]. Annals of Glaciology, 1985, 7: 26-33.
[56] Fisher D A. Comparison of 100,000 years of oxygen isotope and insoluble impurity profiles from the Devon Island and Camp Century ice cores [J]. Quaternary Research 1979, 11: 299-304.
[57] Thompson L G, Hastenrath S, Arnao B M. Climate ice core records from the Tropical Quelccaya Ice Cap [J]. Science, 1979, 203: 1240-1243.
[58] Thompson L G. Variations in microparticle concentration, size distribution and elemental composition found in Camp Century [J]. IAHS Publication, 1977, 118: 351-364.
[59] Lanci L, Kent D V, Biscaye P E, et al. Isothermal remnant magnetization of Greenland ice: preliminary results [J]. Geophysical Research Letters, 2001, 28(8): 1639-1642.
[60] Kumai M. Electron microscope analysis of aerosols in snow and deep ice cores from Greenland [J]. IAHS Publication, 1977, 118: 341-350.
[61] Maggi V. Mineralogy of atmospheric microparticles deposited along the Greenland Ice Core Project ice core [J]. Journal of Geophysical Research, 1997, 102(C12): 26725-26734.
[62] Singer A. The paleoclimatic interpretation of clay minerals in sediments--a review [J]. Earth-Science Reviews, 1984, 21(4): 251-294.
[63] Yao Tandong, Jiao Keqin, Huang Cuilan, et al. Environmental records in ice cores and their spatial coupling features [J]. Quaternary Sciences, 1995, (1): 23-31. [姚檀栋, 焦克勤, 皇翠兰, 等. 冰芯所记录的环境变化及空间耦合特征[J]. 第四纪研究,1995, (1): 230-31.]
[64] Liu Chunping, Yao Tandong, Xie Shuncheng, Characteristics of microparticle variation and record of atmospheric environment in Dunde ice core [J] , Marine Geology and Quaternary Geology, 1999, 19(3): 105-113. [刘纯平,姚檀栋,谢树成. 祁连山敦德冰芯微粒变化特征和大气环境记录[J]. 海洋地质与第四纪地质, 1999, 19(3): 105-113.]
[65] Liu Chunping, Yao Tandong, Thompson L G, et al. Microparticle concentration within the Dunde ice core and its relation to dust storm and climate since the Little Ice Age [J]. Journal of Glaciology and Geocryology, 1999, 21(1): 9-14. [刘纯平, 姚檀栋, Thompson L G, 等. 敦德冰芯中微粒含量与沙尘暴及气候的关系[J]. 冰川冻土, 1999, 21(1): 9-14.]
[66] Li Zhongqin, Lu Gongxuan, Liu Baozhong, et al. Ice core dust particulate by XPS-SEM/EDAX--impact of dust particulate on SO4-2 record in ice cores [J]. Chinese Science Bulletin, 1999, 44(15): 1424-1427.
[67] Zhang Xiaowei, Kang Jjiancheng, Zhou Shangzhe. Research on ice core record from King George Island, West Antarctica: dating, particles and ion elution [J]. Journal of Glaciology and Geocryology, 2003, 25(5): 533-540. [张小伟,康建成,周尚哲. 南极乔治王岛冰芯研究--冰雪层定年、微粒记录及离子迁移[J]. 冰川冻土, 2003, 25(5): 533-540.]
[68] Kang Jiancheng, Wen Jiahong, Wang Dali, et al. Microparticle content changes of ice core with time at melted state--a study on microparticle of ice core from King George Island, Antarctica [J]. Journal of Glaciology and Geocryology(冰川冻土), 1998, 20(4): 376-380.
[69] Wang Dali, Kang Jiancheng, Sun Bo, et al. Characteristics and implication of microparticle n surface snow samples along a 330 km profile from Zhongshan Station of Antarctica [J]. Journal of Glaciology and Geocryology, 2000, 22(2): 128-134. [汪大立,康建成,孙波,等. 南极中山站至内陆冰盖330 km剖面表面雪样微粒分布特征及其意义[J]. 冰川冻土,2000,22(2): 128-134.]
[70] KANG Jiancheng, LIU Leibao, QIN Dahe, et al. Geochemical characteristics and zones of surface snow on east Antarctic Ice Sheet [J]. Chinese Science Bulletin, 2004, 49(20): 2205-2211.
[71] Mahowald N, Kohfeld K, Hansson M, et al. Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments [J]. Journal of Geophysical Research, 1999, 104(D13): 15895-15916.
[72] Mayewski P A, Meeker L D, Morrison M C, et al. Greenland ice core "signal" characteristics: an expanded view of climate change [J]. Journal of Geophysical Research, 1993, 98(D7): 12839-12847.
[73] COHMAP members. Climatic changes of the last 18,000 years: observations and model simulations [J]. Science, 1988, 241: 1043-1052.
[74] Petit J R, Mounier L, Jouzel J, et al. Paleoclimatological and chronological implications of the Vostok core dust record [J]. Nature, 1990, 343: 56-58.
[75] Rea D K, Leinen M, Janecek T R. Geological approach to the long-term history of atmospheric circulation [J]. Science, 1985, 227: 721-725.
[76] Hansson M E. Are changes in atmospheric cleaning responsible for observed variations of impurity concentrations in ice cores? [J]. Annals of Glaciology, 1995, 21: 219-224.
[77] Yung Y L, Lee T, Wang C H. Dust: a diagnostic of the hydrologic cycle during the last glacial maximum [J]. Science, 1996, 271: 962-963.
[78] De Angelis M, Barkov N I, Petrov V N. Aerosol concentrations over the last climate cycle (160kyr) from an Antarctic ice core [J]. Nature, 1987, 325: 318-321.
[79] Andersen K K, Armengaud A, Genthon C. Atmospheric dust under glacial and interglacial conditions [J]. Geophysical Research Letters, 1998, 25: 2281-2284.
[80] Tegen I, Rind D. Influence of the latitudinal temperature gradient on soil dust concentration and deposition in Greenland [J]. Journal of Geophysical Research, 2000, 105(D6): 7199-7212.
[81] Yao Tandong. The abrupt climatic changes on the Tibetan Plateau during the last ice age [J]. Science in China (Series D), 1999, 42: 358-367.
[82] Webb R S, Rind D H, Lehman S J, et al. Influence of ocean heat transport on the climate of the last Glacial Maximum [J]. Nature, 1997, 385: 695-699.
[83] Chuey J M, Rea D K, Pisias N G. Late Pleistocene paleoclimatology of the central equatorial Pacific: a quantitative record of eolian and carbonate deposition [J]. Quaternary Research, 1987, 28: 323-339.
[84] Jouzel J, Alley R B, Cuffey K M, et al. Validity of the temperature reconstruction from water isotopes in ice cores [J]. Journal of Geophysical Research, 1997, 102(C12): 26471-26487.

基金

国家自然科学基金项目(40301009);国家自然科学基金创新群体项目(40121101);国家自然科学基金重点项目90102005);中国科学院知识创新工程项目(KZCX3-SW-339)资助
PDF(1349 KB)

2471

Accesses

0

Citation

Detail

段落导航
相关文章

/