文章编号: 1001-1412(1999) 04-0069-07

新疆莫托萨拉铁锰矿的物质成分

覃志安

(天津地质研究院,天津 300061)

摘 要: 莫托萨拉铁锰矿中铁矿石的化学成分以 Fe_{2O_3} 为主, w (Fe_{2O_3}) 可达 78.76%, 其次为 w (SiO_2) (10% ~ 50%), w (FeO) 含量多< 5%。矿物成分以赤铁矿为主, 次为玉髓、磁铁矿、镜铁矿、 云母等。微量元素以Pb, Zn 较高, 局部 Cu 含量较高。稀土元素含量较低。锰矿石中以 MnO₂ 为主, w (MnO₂) 可达 60% 左右, 其次为 w (SiO_2) (10% ~ 20%) 和 Fe_{2O_3} ; 矿物组合分为两种类型: 一种以 菱锰矿为主, 次为赤铁矿、石英、水铁矿、方解石、玉髓等; 另一种以褐锰矿为主, 次为蒙脱石、云母、 软锰矿、黑锰矿等, 这种锰矿多为低磷优质锰矿, 其开发利用对我国冶金工业有重要意义; 微量元 素中亲铜元素 Cu, Pb, Ag, Au, As, Sb, Hg 含量较高, Ti, V, Cr, Ni 含量较低; 稀土元素含量也较低。 关键词: 莫托萨拉; 铁矿; 锰矿; 成分

中图分类号: P618. 32 文献标识码: A

1 地质概况

莫托萨拉铁锰矿位于莫托萨拉向斜的北翼,以其3000余米的海拔高度和铁锰共生而闻 名。矿区由一个向东倾伏的次级向斜和一个次级背斜组成。区内断裂较发育,走向多为NWW 和NEE。受褶皱、断裂影响,矿层产状、厚度时有变化。

矿区出露的地层有下石炭统和下三叠统。下石炭统分下部灰色岩段、中部含矿段和上部灰 色岩段。下部灰色岩段由灰色薄层结晶灰岩、黑灰色生物灰岩和砾岩组成。中部含矿段由花岗 岩砾岩、安山岩砾岩、砂岩、粉砂岩、含铁砂岩、含锰砂岩、硅质岩、铁矿层(厚 0.6~46 m)、锰矿 层(总厚度平均 15 m ±)组成。上部灰色岩段由灰白色结晶灰岩、砾状灰岩、钙质砾岩和少量灰 色硅质岩、泥岩、钙质砂岩组成。下三叠统由紫红色灰岩砾岩、花岗岩砾岩和一些紫红色薄层砂 岩及泥质砂岩组成。

矿区北部有少量闪长岩脉,东北部见火山角砾岩、含火山角砾凝灰岩、安山岩、玄武岩和流

收稿日期: 1999-06-07; 修订日期: 1999-06-17

科技项目: 国家科技攻关96-915 项目(编号 03-05B-2)部分研究成果

作者简介: 覃志安(1962-), 男(壮族), 广西柳城人, 高级工程师, 博士, 从事矿床学, 沉积学研究。

纹岩。

70

2 矿物成分和结构构造

铁矿为一较厚的 '单层 '(中间夹一些硅质岩),底板界线明显,而顶板界线呈过渡形式产出,近东西向分布,延伸长 1 000 m 以上,宽 300~500 m; 矿层中间厚(可达 46 m^[2]),四周薄 (小于1 m),南北两端有分叉现象。矿石以富矿为主(占 70% 左右),贫矿主要分布在矿层顶部, 其次分布于底部和中部。

图 1 铁矿石 X 射线分析曲线

铁矿石主要由赤铁矿及隐晶-微晶质 SiO² 组成(图1),其他矿物有云母、绿泥石、蒙脱石 等,见少量水赤铁矿、菱锰矿。热液作用可形成一些方解石、石英、毒重石和磁铁矿,少量绿泥 石、镜铁矿、黄铁矿、褐锰矿、闪锌矿、黄铜矿、黝铜矿、辉铜矿、铁方解石、锰方解石、萤石、石膏、 阳起石等。次生作用可形成一些假象磁铁矿、硬锰矿、水针铁矿及少量软锰矿、孔雀石、黄钾铁 矾、蓝铜矿、铜蓝、菱锌矿、硫酸铅矿等。矿石以短纤维片晶交织结构为主,似胶状结构与细晶片 散粒状结构次之,砂状碎屑结构很少。矿石以条带状和层状构造为主,鲕状构造虽少但分布较 普遍,鲕粒大小在 0.01~0.5 mm,部分鲕核中有生物残留体。

锰矿位于铁矿层上部,分上、中、下三层^[3]。下层矿较稳定,东西长1000m,南北宽400m, 最厚11m,品位低。中层矿不稳定,分布范围较下层矿小,品位中等,厚度可达18m,上层矿极 不稳定,呈断续的扁豆体产出,厚度很薄,以富矿为主。

据新疆地质—大队资料^①, 锰矿石以碳酸锰型为主, 占矿石量 50% ~ 60%; 氧化锰-碳酸锰

Fig. 1 X-ray diffractron pattern of iron ore 样号: No84 日期: 03-17-1998 靶: Cu 速度(度/分): 8.000 预备时间(秒): 0.20 步长(度): 0.020

① 新疆维吾尔自治区地质局第一地质大队, 新疆和静莫托萨拉铁、锰矿补充勘探地质报告》(1975)。

型次之,占 20% ~30%;氧化锰型占 10% ~20%;铁锰矿型< 10%。氧化锰与碳酸锰矿石的分 布规律不明显,但氧化锰多产在含锰层的中上部位。碳酸锰矿石主要由菱锰矿组成,具显微球 粒结构,球粒 0.01~0.05 mm,常聚集成致密体,有的具环带,赤铁矿充填其间;部分为微粒状 结构,常呈基底式胶结,菱锰矿充填于砂屑间。这种矿石中石英较多,还见一些蒙脱石、水赤铁 矿、重晶石、方解石、玉髓和少量锰方解石、硬石膏等。氧化锰矿石主要由褐锰矿组成(图 2),次 为黑锰矿、蒙脱石、云母、重晶石、绿帘石、绿泥石、黄铁矿、磁黄铁矿、毒重石、阳起石、透辉石和 少量含锰绿泥石、葡萄石、黄硅锰矿、锰辉石、红帘石、鳞绿泥石、石榴石、闪锌矿、方铅矿、黄铜 矿、辉钼矿、斑铜矿等,这些矿物多认为是热液作用形成的。矿石中由于次生作用可形成少量针 铁矿、水针铁矿、硬锰矿、水锰矿、铜蓝、孔雀石、菱锌矿、硫酸铅矿。

图 2 锰矿石 X 射线分析曲线

Fig. 2 X-ray diffractron pattern of Mn ore 样号: No69 日期: 03-17-1998 靶: Cu 速度(度/分): 8.00 预备时间(秒): 0.20 步长(度): 0.020

据 180 个 w (Mn) > 10% 的样品统计,条带状构造占 78%,系菱锰矿、褐锰矿与赤铁矿相间分布而成,有的夹有泥质砂岩及重晶石条带;细脉和网脉状占 9%,系褐锰矿呈脉状穿切菱锰矿;团块状或结核状的占 7%,为菱锰矿与泥质物质构成结核或团块;树枝状或被膜状占 4%,由褐锰矿、黑锰矿、软锰矿构成,呈树枝或被膜状充填于泥质、砂质岩石的裂隙中或附于岩石表面;层状构造仅占 2%,系菱锰矿呈层状夹于砂岩中。

3 化学成分

铁矿石的化学成分(表1)以 Fe2O3 为主。

表1 铁锰矿石的化学成分

Table 1 Chemical composition of Fe and Mn ores

						1									-	-
样号	样品名称	SiO 2	Al2O3	Fe2O3	$\mathrm{F}\mathrm{eO}$	MnO	TiO2	CaO	MgO	Na 2O	K2O	P2O5	CO 2	s	${\rm L}{\rm oss}$	备注
N077	条带状含锰铁矿	31.67	3. 73	41.02	2. 23	4.46	0. 15	2.10	1. 41	0.35	1.75	0.50	3.68	0.43	5.30	1
N082	条带状铁矿	16.20	0.94	74.21	0.39	0. 20	0.067	0. 68	0. 15	0.10	0.30	0.12	0.44	0.87	1.55	1
N084	层状铁矿	17.84	0. 71	75.80	0.26	0. 61	0.049	0. 24	0. 12	0.12	0.20	0.15	0.52	0.76	2.13	1
79 <u>M</u> -62	条带状碧玉-赤铁矿	13.10	1. 33	78.76	0. 29	0.409	0. 03	2.35	0.40	0.12	0.29	0. 138	_	0. 023	1.48	2
78M7-2	重晶石碧玉-赤铁矿	9. 30	2.50	62.27	0. 32	8. 12	0. 19	0.34	0.40	0.17	0.94	0. 175	—	1.05	—	2
ME-3	碧玉-赤铁矿	37.65	2.45	49.08	2.56	0. 204	0. 11	3. 25	1. 69	0.21	0.07	0. 321	—	0. 018	1.78	2
78M I–8	条带状碧玉赤铁矿	47.10	1. 22	47.46	0. 92	0. 08	0. 01	0.34	0. 28	0.06	0.34	0.036	—	0. 327	0.58	2
79M-43	粉砂状碧玉赤铁矿	33.00	2.14	43.93	0. 23	1.1	0.04	9.60	0. 28	0.08	0.29	0.15	—	0.15	2.06	2
莫⊣	底矿	26.24	1. 51	67.11	1. 72	0.42	0. 02	0. 22	0. 24	—	—	—	—	0. 017	—	2
莫り	铁矿石	18.48	0.42	73.65	2. 30	0. 13	0. 02	0. 13	0. 03	—	—	—	—	0.54	—	2
N068	块状锰矿	18.94	4. 22	4. 62	_	36.86	0. 22	3. 01	3.06	0.40	2.56	0.13	4.62	2.21	7.01	1
N069	条带状锰矿	11.94	1. 12	0.47	0.26	57.26	0.087	4. 73	2.34	0.10	0.80	0.088	7.25	0.84	8.32	1
79M T -1 0	葌锰矿	19 45	1 53	5 46	0 11	42 43	0 15	4 03	1 13	0.16	0.51	0.055	_	0 647	3 37	2

注:1.由有色金属华北地质矿产测试中心分析。

2. 据西北冶金地质勘探公司地质研究所 新疆新源-巴仑台地区富铁矿成矿条件及找矿远景考察报告》(1980)。Loss 栏为H₂0, "—" 表示未测。

 $w(Fe_2O_3)$ 从 41. 02% ~ 78. 76%, 其次为 $w(SiO_2)(9. 30\% ~ 47. 10\%), w(MnO)(0.08\% ~ 8. 12\%), w(CaO)(0.24\% ~ 9. 60\%), Loss 变化较大, FeO, MgO 等含量较低。据华明弟研究^[1], 富铁矿中 FeO 含量比贫铁矿中的低, 他认为这种低量而分散、呈热液磁铁矿脉出现的 FeO 不是后期岩浆热液, 而是火山热液在沉积中的表现。总体来说, Fe₂O₃ 与 SiO₂, Al₂O₃ 等的 含量之间呈反比关系。由于铁矿品位较富, 开采条件良好, 矿石可用缆车从坑口直接运至位于 铁道和公路边的钢铁厂, 因此具有较大的经济意义。$

从表 1 中可看出锰矿石的主要化学成分为 M nO, w(M nO) 可达 57.26%, 其次为 $w(SiO_2)$ (11.94% ~ 19.45%)、 $w(CO_2)$ (7.25%), w(CaO) 较稳定(3.01% ~ 4.73%), 矿石中 w(Fe2O3)(0.47% ~ 5.46%)、 $w(Al_2O_3)$ (1.12% ~ 4.22%)、w(MgO)(1.13% ~ 3.06%)、w(S)(0.647% ~ 2.21%)。矿石中 $w(P_2O_5)$ 较低, w(P)/w(Mn) 多< 0.003, 是冶金工业急需的优质 锰矿, 部分矿石为优质富锰矿, 应当尽快开发利用。

4 微量元素

本次采集的 22 个矿石样品微量元素含量见表 2。矿石中铁族元素除 Fe, Mn 外, 其余元素 Ti, V, Cr, Ni, Co 等含量较低, 绝大多数小于地壳丰度值, 说明成矿过程中这些元素有贫化现 象; 亲铜元素 Cu, Pb, Zn, Au, Ag, As, Sb, Hg 等的含量较高, 绝大多数大大高于地壳丰度值, 说明成矿作用中这些元素得到了明显的富集, 特别是 Pb、Zn, 其总量在 20 万 t 以上^[1], 可达综 合利用的程度。但经多家单位采用磁选、浮选、重选等方法都无法把 Pb、Zn 矿分离, 镜下也未 见 Pb、Zn 的独立矿物。经电子探针测试, 它们以类质同象赋存于铁矿物中; 矿化剂元素 B 的含

W R/%

量也远高于地壳丰度;钨钼族元素 W、Sn、Mo、Bi 等的含量则与地壳平均丰度较为接近。从微 量元素看,铁锰矿的成因与该区火山岩关系不大。

表 2 铁、锰矿石微量元素含量

Table 2 Trace element content of iron and manganese ores

样号	卡样 名	Au	As	\mathbf{Sb}	Hg	В	Cu	Pb	Mn	W	Cr	Ni	Ti	Bi	Sn	M o	V	Zn	Ag	Co
N014	铁矿石	78	36	4.8	0.144	14.3	404.8	614.2	3037.4	2.4	12.2	7.6	382.8	0.5	1.2	46.69	30.3	2736.2	2.91	3. 0
N084	铁矿石	55	61.5	7.7	0.256	26	842.4	648.1	3884.3	2.7	13.4	5.8	270.3	0.3	2.0	76.43	134.8	787.6	2.23	1.6
N082	铁矿石	96	1 10	5.7	0.216	23.4	112.1	1992.7	1770.5	2.4	15.6	4.6	354.6	0.3	2.0	95.87	119.4	295	0.66	1. 6
N077	含锰铁矿	21	439	39.5	0.132	20	21.5	5000	10000	11.2	50.5	40.4	1007.4	0.9	1.5	34.25	1000	384.2	2.42	4
N069	锰矿石	25	1 32	7.0	0.068	72.4	40.4	152	10000	2.2	37.8	8.1	721.6	0.3	0.5	40.74	57.2	796.7	0.05	5.7
N068	锰矿石	15	244	6.9	0.056	39.4	80.9	306.5	10000	2.4	33.4	8.4	861.5	0.3	0.5	16.21	59.2	631.9	0.15	5.1
N160	铁矿石	72.8	107	5	0.096	19.3	1750	844.7	10000	2.7	22.1	10.5	730.8	0.3	0.5	9.27	54.8	4081.7	8.27	6.3
N163	铁矿石	4.2	1 14	14.5	0.010	31.9	67.5	267.8	10000	10.5	4.9	6.1	198.8	0.3	0.8	90.99	37.8	4686.3	3.83	24
N164	铁矿石	8.3	34.6	1.5	0. 0 10	35.8	83.8	409.6	2430.3	5.2	187.5	26.5	1269.3	0.3	2.5	4.71	79.9	975.2	0.94	11.9
N168	铁矿石	71.8	1 13	30	0.572	21.4	368	4635	326.1	46.4	11.1	1.5	109.6	1.2	3.0	35.67	55	1506.2	26.81	2.1
N170	铁矿石	49.6	56	10.9	0.328	28.8	444	5000	267.1	43.3	20.6	1.7	82.8	0.6	4.9	79.43	74.1	459.5	20.57	1. 7
N179	铁矿石	65.7	147	14	0.348	37.8	42.6	3 52 1	620.7	12.4	24.4	2.8	90.8	0.5	4.8	45.73	50.5	1097.8	5.45	1.5
N181	铁矿石	32.4	143	14.5	0.660	17.2	1119	759.5	8475	22.9	12.3	2.0	409.7	0.3	2.5	25.42	26.6	5000	4.79	11.9
N184	铁矿石	74.4	71	11.5	0.408	9.1	742	819.1	3010.8	2.4	12.9	1.5	50.2	0.5	2.2	32.52	25.6	2397.8	3.58	1.5
N185	铁矿石	19.7	2 19	17	0.140	13.9	97.5	215.7	20.1	35.6	5.0	1.5	143.8	0.3	1.7	9.84	10.2	168.6	1.15	1. 5
N188	铁矿石	47	103	7	0.340	199.1	816	353.3	865.7	10.2	16.2	1.5	520.8	0.3	1.9	11.26	39.6	725.9	2.16	1.5
N191	铁矿石	31.8	34.6	10.4	0.392	28.7	710	1937.5	2889.9	13.8	7.0	1.5	2.58	0.3	4.4	50.94	39.6	5000	25.87	8.9
N194	铁矿石	40.2	33.6	7.8	0.112	18.6	610	403.2	1886.5	3.0	14.6	1.8	90.6	0.4	3.0	28.39	53.3	3791.5	2.32	1.5
N197	铁矿石	12.3	180	5.8	0.204	30	592	529.8	3040.7	2.6	9.8	3.2	130. 5	0.3	4.5	60.90	42.9	200.8	7.22	1.5
N199	铁矿石	35.6	13	1.4	0.076	73.7	675	217.3	1763	2.2	69.2	12.6	1383.8	1.0	3.2	21.39	25.74	504.2	2.30	1. 5
N205	铁矿石	167	1 27	7.4	0.74	41.4	2400	5000	1656.6	38.3	30.1	12.5	748.3	1.4	5.5	20.45	35.8	5000	20.58	227.5
N208	铁矿石	126	386	16.4	1.10	106	750	5000	742.6	15.6	46	2.2	1370.1	8.4	5.7	28.09	115.6	5000	46.53	5.0

N160~N208 号样中的 Au、Cu 由地质矿产部河北中心 实验室测试,其余由冶金工 业部物探院测试 中心测试, Pb 和 Zn 的分析上限为 5 000, Mn 的分析上限为 10 000。

5 稀土元素

表 3 为 4 个铁、锰矿石的稀土元 素含量。多数样品中稀土元素含量较 低,并且轻稀土含量明显比重稀土含 量高,即随着原子序数增大,元素的 含量有逐渐下降的趋势,各元素分布 的奇偶效应明显,Eu 的负异常似乎 与锰矿关系较密切(图 3)。N077 样 含锰铁矿中稀土元素含量较高,特别 是 Y 含量较高。铁锰矿石在稀土元 素方面与该区火山岩的关系不很密

Fig. 3 REE pattern of iron and manganese ores N069. 锰矿 N077. 含锰铁矿 N082、N084. 铁矿

 $w(Au)/10^{-9}$

 $w_{\rm P}/10^{-6}$

切,这可从稀土元素配分、相似性度量、元素对比值等方面看出^[4]。 表3 铁锰矿石的稀土元素含量

Table 3 REE Content of Iron and Manganese Ores.

 $w_{\rm P}/10^{-6}$

										0						8
样号	样品	La Ce	Pr	Nd	\mathbf{Sm}	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Y	Σree
N069	条带状锰矿	11.19 20.0	3 2.32	6.22	1.31	0.29	1.15	0.19	0.99	0. 18	0.47	0.07	0.40	0.06	5. 78	50. 69
N077	含锰铁矿	20.04 36.9	9 5.21	19.42	5.01	0.98	5.97	0.97	5.64	1. 01	2.65	0.40	2. 29	0.36	39.99	146. 92
N082	铁矿石	5.97 14.3	2 1.54	3.18	0.76	0.25	0.61	0.11	0.62	0. 13	0. 38	0.06	0.40	0.06	3. 82	32. 22
N084	铁矿石	3.58 4.24	0.70	2.55	0.59	0.18	0.51	0.09	0.54	0. 11	0. 33	0. 05	0. 29	0.04	5. 32	19. 13

测试单位:武汉综合岩矿测试中心

总的看来,该铁锰矿物质成分复杂,可能与其复杂的成因有关。从本人的研究看,其形成可能与该区火山喷发后海底热泉有紧密的关系。火山岩和铁锰矿可能共用通道,但物质来源不一样,造成两者间微量元素、稀土元素等各不相同。

参加本项目工作的还有陈新邦、张成江等同志,成文过程中得到朱恺军博士、张兆英工程师的帮助,特表感谢。

参考文献:

- [1] 华明弟. 论莫托萨拉铁锰矿床的火山-沉积成因[J]. 新疆地质, 1985, 3(1): 12-21.
- [2] 张秀颖. 莫托萨拉铁矿[A]. 姚培慧. 中国铁矿志[C]. 北京: 冶金工业出版社, 1993. 381-384.
- [3] 张秀颖. 莫托萨拉铁锰矿床[A]. 姚培慧. 中国锰矿志[C]. 北京: 冶金工业出版社, 1995. 219-228.
- [4] 覃志安,陈新邦.莫托萨拉一带稀土元素地球化学特征及其地质意义[J].地质找矿论丛,1999,14(3):57-63.

CONSTITUENTS OF IRON AND MANGANESE ORES IN MOTUOSARLA DEPOSIT, XINJIANG

QIN Zhi-an

(Tianjin Geological Academy, Tianjin 300061, China)

Abstract: In Motuosarla deposit, the iron ore is mainly composed of $Fe_2O_3(\sim 78.76\%)$, $SiO_2(10-50\%)$, FeO (lower than 5%). The mineral composition is dominated by hematite, then chalcedony, magnetite, specularite, mica, actinolite, a little amount of Fe-calcite, siderite, etc. Among trace elements, the contents of pb and Zn are higher; Cu higher local-ly. REE contents are low without close relation to the volcanic rock.

The manganese ore is mainly composed of $M nO_2(60\%)$, then $SiO_2(10-20\%)$, Fe₂O₃. According to mineral composition, there are two types of ore, one type dominated by rhodochrosite, then hematite, quartz, ferrihydrite, calcite, chalcedony, etc; the other dominated by braunite, then montmorillonite, mica, pyrolusite, psilomelane, is usually excellent M n Ore with low-phosphorous content, its utillization has important significance to metal-lurgical industry. The contents of As and Zn are high among trace elements, and REE is low.

Key words: Motuosarla; iron ore; manganese ore; composition.

(上接第7页)

- [19] 季克俭, 王立本. 热液源研究的重要进展和 '三源 '交代热液成矿学说[J]. 地学前缘, 1994, 1(4): 126-132.
- [20] Mountain B W and Willian-Jones A E. M ass transfer and the path of metasomatic reactions in mesothermal gold deposits: an example from Flam beau Lake, Ontario[J]. Economic Geology, 1996, 91(2): 302-321. 133(6): 509-558.
- [21] 李兆麟. 地质作用中的流体形成演化及成矿作用[J]. 地学前缘, 1996, 3(4): 237-244.

THE ROLES OF FLUID IN THE FORMATION OF ORE DEPOSITS AND THE MAIN STUDY METHODS

XU Guang-ping, ZHAI Jian-ping, HU Kai

(Department of Earth Sciences, State Key Lab of Mineral Deposits, Nanjing University, Nanjing 210093, China)

Abstract: Fluid plays an important role in the forming process of ore deposits, and it is also a fundamental medium for the mobilization, transportation and enrichment of ore-forming elements, which are very critical for the formation of ore deposits. Furthermore, many beneficial ore-forming spaces are produced during the transportation of fluid. Taking ore-forming fluid as the main thread, this paper introduces the latest development of the studies on the roles of the ore-forming fluid in the forming process of ore deposits and reviews the main study methods. The isotopic geochemistry method is still a very useful one in the study of the ore-forming fluid, and the methods of experimental geochemistry, elemental geochemistry and petrology & mineralogy are also becoming more and more important. However, each method has its own deficiency, and it is necessary to combine these methods together in the practical research.

Key words: ore-forming fluids; mobilization; immiscibility; water-rock interaction; study methods