JOURNAL OF SALT LAKE SCIENCE

高精度正热电离质谱法测定 Br 同位素

刘卫国 肖应凯 祁海平 张崇耿

(中国科学院盐湖研究所,西宁 810008)

摘 要 本文对 Cs2Br+ 正热电离质谱分析法测定 Br 同位素进行了研究. 通过实验建立了最 佳分析条件.将样品涂在加有石墨的钽带上,能使由 CsBr 发射出的 Cs2Br+ 离子强度大为增加.对化 学试剂 KBr 中 Br 同位素丰度比的测定值为1.02654±0.00012. 其精度为 0.011%(95%的置信水 平). 测定结果表明:几种不同来源的溴化物中,Br 同位素存在可观察的差异.

关键词 溴 同位素 质谱

Br 有两种天然同位素⁷⁹ Br 和⁸¹ Br. 关于 Br 同位素丰度测定的报道并不多,最早 Aston^[1] 在 1920 年做的 Br 同位素测定,结果表明 Br 的两种同位素有相近的丰度值. 而后,Bleweet^[2]使用慢电 子轰击法测定 Br⁺及 Br⁻离子测得 Br 同位素比(⁸¹Br/⁷⁹Br)为 0.975±0.0257. Williams^[3]通过对 Br⁺、Br[±]及 Br²⁺几种不同离子形式的电子轰击方法测得 Br 同位素(⁸¹Br/⁷⁹Br)为 0.979±0.004. Cameron^[4] 也通过固体 NaBr 的电子轰击方法研究了自然界 Br 同位素的变化,4 个天然 Br² 和海湾 水的样品平均值(⁷⁹Br/⁸¹Br)为 1.0217±0.0002,而 West Viginia 卤水的值则明显的偏低^[5].现已报 道的 Br 同位素丰度最精确的测定是由 Catanzary^[6]采用负热电离质谱法进行的,并用由高纯度同 位素制备的已知同位素丰度样品对其结果进行较正,其⁷⁹ Br/⁸¹Br 为 1.02784±0.0019,同时得出 Br 的原子量为 79.90363±0.00092.其它更精确的 Br 同位素测定方法的报道尚未见到,因而有必 要研究高精度测定 Br 同位素比值的新方法.

实 验

1 试剂

供质谱分析使用的工作物质是由 KBr 经阳离子交换树脂分离处理得到的 HBr. 光谱纯的石墨 粉用 80%的乙醇加 20%水(v/v)调为石墨悬浮液. 光谱纯的 Cs₂CO₃ 可直接使用.

2 质谱分析

同位素分析是由英制 VG354 型全自动热电离质谱仪完成的^[7]. 首先将 3µ1(约含 100µg)石墨悬 浮液涂在带的中央,在石墨悬浮液未干的条件下,将经 Cs₂CO₃ 中和的样品溶液涂在带上,并通以 1.1A 电流,维持 2 分钟左右使样品蒸干. 然后将样品带装入离子源内,当系统真空达到 2.6×10⁻⁵Pa时,开始进行同位素分析. 在 10min 内带电流增至 1.05A,扫描 Cs₂Br⁺离子流并自动 聚焦,调节带电流使 Cs₂Br⁺离子流稳定在3~4×10⁻¹²A强度下,其电流变化一般在1.15~1.25A之 .间. 通过磁场跳扫接收M/Z345(¹³³Cs₂⁷⁹Br⁺)与 347(¹³³Cs₂⁸¹Br⁺)的离子流强度,零点值定在M/Z346.4

57

的位置,每个样品的全部分析过程需 1.5hr,整个分析过程在计算机控制下进行,

结果与讨论

文献^[9]中曾论述过石墨在 M₂Cl⁺(M 为碱金属)热电离发射过程中的特性. 我们的研究表明,在 涂有石墨带上进行 M2Br+ 热电离发射时亦有明显的增强作用,从表1中可看出在不加石墨的条件 下,Cs2Br+离子流弱而且是非常不稳定的;在涂有普通碳粉的条件下,离子流可增至4.5×10⁻¹²A, 但是离子流强度衰减快;而在加石墨的条件下,带电流维持在 1.05~1.25A 之间,离子流能稳定在 3~4×10⁻¹²A 水平达 2hr 以上. 由此看出石墨对 Cs₂Br⁺ 离子的发射起了很大的作用.

	表1 石墨、普通碳	盼对离子发射的影响	
发射剂		离子流强度	离子流稳定性
无 普通碳粉 石墨	1.6A 左右 1.4A 左右 1.15A 左右	$ \frac{2 \sim 4 \times 10^{-13} \text{A}}{4.0 \times 10^{-12} \text{A}} \\ \frac{4.0 \times 10^{-12} \text{A}}{4.0 \times 10^{-12} \text{A}} $	极不稳定 不稳定,衰减快 稳定达2小时以上

为了得到 Cs₂Br⁺ 离子,须将经阳离子交换树脂处理的 HBr 溶液用 Cs₂CO₃ 中和. 混合液的 HBr 与 Cs₂CO₃ 的比例对分析结果有明显的影响,其比例可通过混合液的 pH 来确定.实验表明,当混合

58

(C)1994-2020 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.ne

液的 pH 在 3~5 时能获得最强的 Cs₂Br⁺ 离子流,在此条件下溶液的 Cs/Br 比值约为 1:2.当 pH 在 6 以上或有过多的 Cs 存在时,Cs₂Br⁺ 离子流变弱,无规律且不稳定.图中表明了在不同的 pH 值条 件下观测 2~3 小时,⁷⁹Br/⁸¹Br 随时间的变化情况.pH 在 3~4 时,分馏效应不明显,在 100 分钟采 集的 10 组共 100 个比值结果表明,在此期间其值无明显的变化.

分析结果表明,在 pH 为 3~5 范围内⁷⁹ Br/⁸¹Br 的平均比值均在 1.026 左右,而当 pH 值为 2 时其比值明显偏低,为 1.02257.因而须将样品的 pH 值控制在 3~4 之间.

保持其它条件不变,改变涂样量(Br 含量),从 2µg 到 32µg 进行对比实验,结果表明,当涂样量 少于 4.0µg 时其 Cs₂Br⁺ 离子流强度和稳定性均下降,并且⁷⁹ Br/⁸¹Br 比值较低,因此,将涂样量控制 在 8~10µg 条件下较为合适.

1 石墨对不同碱金属溴化物离子发射的影响

将 KBr 经阳离子交换树脂处理后得到的 HBr 与分别用 LiOH、NaOH 和 RbOH 进行中和以得到 供质谱分析用的 LiBr、NaBr 和 RbBr 样品溶液. KBr 试剂可直接使用,但先将其溶液用 HBr 调 pH 到 3 左右. LiBr、NaBr、KBr 和 RbBr 的质谱测定过程同前所述,结果见表 2. 涂有石墨的 LiBr 样品在带 电流增至 2. 0A 时仍未发现有 Li₂Br⁺ 离子流出现,而在相同条件下由 NaBr 发射的 Na₂Br⁺ 离子流 可达 1×10^{-12} A. 相对于 LiBr 和 NaBr,由 KBr 发射的 K₂Br⁺ 离子与由 RbBr 发射的 Rb₂Br⁺ 离子流 强度更大而且更稳定.当带电流在 1. 2~1. 5A 范围内 K₂Br⁺ 离子流能保持在 3. 0×10⁻¹²A 约 3 小 时左右,其 159/157(即³⁹ K₂⁸¹Br⁺³⁹K⁴¹K⁷⁹Br/³⁹K₂⁷⁹Br)=1. 12351,用⁴¹ K/³⁹K=0. 07217(9)对159/157 进行校正得出⁸¹ Br/⁷⁹B. 比为 0. 97917 或者⁷⁹ Br/⁸¹Br 比为 1. 0213. Rb₂Br⁺ 离子能在4. 0×10⁻¹²A强 度下维持较长时间并且所需要的带电流较低,其峰值比 251/249(⁸⁵Rb₂⁸¹Br⁺⁸⁷Rb₂⁷⁹Br/⁸⁵Rb₂⁷⁹Br)= 1. 74898,用⁸⁷ Rb/⁸⁵Rb=0. 38518(9)对 251/249 进行校正得出⁸¹ Br/⁷⁹Br 比为 0. 97862 或者⁷⁹ Br/⁸¹ Br 比为 1. 0218. 由此得出的⁷⁹ Br/⁸¹Br 值 1. 0213 和 1. 0218 均明显地低于由 Cs₂Br⁺ 方法测得的⁷⁹ Br/⁸¹Br 比值. 而且必须进行³⁹ K⁴¹K⁷⁹Br⁺ 离子对 M/Z159 峰及⁸⁵ Rb⁸⁷Rb⁷⁹Br⁺ 离子对M/Z251峰校正, 因此,利用 K₂Br⁺ 或 Rb₂Br⁺ 进行自然界 Br 同位素的比值测定是不合适的.

 工作物质	离子流强度(A)	带电流(A)	稳定性	79Br/81Br
LiBr	无	2. 0A		
NaBr	1.0×10^{-12}	1.8-2.0	不稳定	—
KBr	3. 0×10^{-12}	1.2-1.5	较稳定	1.0213
RbBr	4.0×10^{-12}	1.2-1.5	较稳定	1.0218
CsBr	4. 0×10^{-12}	1.1-1.2	稳定	1.02628

表 2 碱金属 Br 化物的发射离子比较

2 干扰因素

由于自然界物质中 Cl 的含量往往高于 Br 的含量,因此有必要研究 Cl 对 Br 的干扰. 在测定 Br 同位素条件下同时可产生 M/Z 为 301 和 303 的 Cs₂Cl⁺ 离子流,在正常的分析条件对 M/Z 为 298 到 M/Z 为 380 的峰位进行扫描,可以观察到一个很宽的峰,且 M/Z 比为 345 及 347 的峰叠加在 这个宽峰上面,宽峰的强度与 Cs₂Cl⁺ 离子流的强度有关,且随 Cs₂Cl⁺ 离子流的增强而升高,但从宽 峰顶部的放大图上表明,宽峰在 M/Z 为 345 和 347 处的高度几乎相等.因此可以从 M/Z 为 345 和 347 峰高中扣除同一零点值.由不同 Cl 含量情况下⁷⁹ Br/⁸¹Br 的测定结果表明,Cl 含量由 3.5µg 到 28µg 的平均⁷⁹ Br/⁸¹Br 测定值 1.02742 高于没有 Cl 存在时的⁷⁹ Br/⁸¹Br 值 1.2654,然而当 Cl 含量在 35~51.5µg 时其⁷⁹ Br/⁸¹Br 测定值与无 Cl⁻ 存在时的值相近.这是由于带电流增加后分馏效应 的影响,使随着 Cl 含量的增加⁷⁹ Br/⁸¹Br 比值增加的程度降低的缘故.由此可见,当在Br/Cl=1的样

59

品溶液的情况下,Br 同位素的测定值可以用 0.9991(即 1.02654/1.027423)对 Cl 干扰进行校正.

3 方法的重现性

在实验得出的最佳分析条件下对本法的测定结果重现性进行检验.将英国产 KBr 试剂经阳离 子树脂处理后进行重复测定,各次的分析结果列于表 3.5 组及 10 组的累加平均值也列于该表中. 其中每组有 10 个比值,⁷⁹Br/⁸¹Br 比值随其组数的增加而降低,是由于在分析过程中同位素分馏效 应的影响而造成的.5 组结果的精度为 0.011%,10 组的精度为 0.014%(均为 95%的置信度).

分析顺序	带电流(A)	Cs ₂ Br+ 强度	⁷⁹ Br/ ⁸¹ Br		
		$(10^{-12}A)$	5 组	10 组	
1	1.21-1.21	3.5-3.0	$1.026426 \pm 0.005\%$	$1.026158 \pm 0.008\%$	
2	1.17-1.16	3.2-3.1	1. $026590 \pm 0.005\%$	$1.026311 \pm 0.008\%$	
3	1.15-1.14	3.6-3.0	$1.026569 \pm 0.003\%$	$1.02618 \pm 0.004\%$	
4	1.24-1.23	3.4-3.0	$1.026698 \pm 0.0013\%$	$1.02628 \pm 0.0027 \%$	
5	1.13-1.13	3.3-3.1	$1.026416 \pm 0.009\%$	$1.026248 \pm 0.004 \%$	
	平均值		1.02654	1. 02628	
标准偏差(95%置信度)			0.00012	0.00015	
精度(95%置信度)		0. 011%	0. 014%		

表 3 KBr 试剂中 Br 同位素分析过程中的重现性(Br 含量 24µg)

表 4 中比较了几种 Br 同位素的测定方法.从中可以看出我们基于 Cs₂Br⁺ 离子的测定方法要 优于其它方法,其原因在于 Cs₂Br⁺ 离子有较大的质量数,使其质谱分析过程的同位素分馏效应较 小,且重现性好,因而是更精确的 Br 同位素的分析方法.

表 4 各种 Br 同位素分析方法的比较

电离方式	测定离子	工作物质	⁷⁹ Br/ ⁸¹ Br	精度(%)	
慢电子轰击	Br ⁺ , Br ⁺	【 试剂 】	1.026 ± 0.026	. 2.5	2
电子轰击	$\mathrm{Br^+}$, $\mathrm{Br^+}$, $\mathrm{Br^{2+}}$	KBr	1.021 ± 0.004	0.34	3
电子轰击	\mathbf{Br}^+	天然物质	1.0217 ± 0.0002	0.020	4
负热电荷	Br-	NBSRSM106	1.02784 ± 0.00190	0.18	6
正热电荷	Cs_2Br^+	试剂	1.02654 ± 0.00012	0.011	本工作

应 用

用本法测定四个不同来源的化学试剂中 Br 同位素结果列于表 5,测定值均明显低于 Catanzaro^[6] 基于 Br⁻ 离子测定值 1.02784.上海第一化学试剂厂样品的⁷⁹ Br/⁸¹ Br 值较低 (1.02553),这表明在自然界中 Br 同位素存在差异.

• 衣5 几种小问本族化子风利于历问位素比值					
	生产工厂	级别	⁷⁹ Br/ ⁸¹ Br	标准偏差(×10⁻₅)	
KBr	英国	分析纯	1. 02654	12	
KBr	上海第一化学试剂厂	光谱纯	1.02553	34	
KBr	西安试剂厂	99.0%	1.02592	12	
CuBr ₂	北京试剂研究所	98%	1.02654	38	

表 5 几种不同来源化学试剂中 Br 同位素比值

基于 Cs₂Br⁺ 为发射离子的正热电离质谱分析 Br 同位素较其它方法更为准确,精度更好. 在样 品带上涂有石墨会明显地改善 Cs₂Br⁺ 的离子发射,提高了灵敏度,进而提高了 Br 同位素比的测定 精度. 和以往质谱测定相比,对 Br 同位素的测定获得了重要改进. 可以相信,随着 Br 同位素测定准 确度的提高,自然界 Br 同位素地球化学的研究将会成为可能.

参考文献

- 1 Aston, Phil., Mag. 1992, 40:628
- 2 J. P. Blewett, Phys. Rev., 1936, 49:900
- 3 D. Williams and P. Yuster, Phys. Rev., 1946, 69:556
- 4 A. E. Cameron and E. L. Lippert, Science, 1955, 121:136
- 5 A. E. Cameron, Proc. Conf. Nuclear Processes in Geological Settings, University of Chicago, National Research Council, National Science Foundation, 1953, p70
- 6 E. J. Catanzaro, T. J. Murphy, E. L. Garrerand and W. R. Shield, J. Res. Natl. Bur. Stand. A. 1964, 68:593
- 7 VG Isotopes Limited, Isomass 54E and Isomass 54R Thermal Ionization Mass Spectrometers, Winsford, Cheshire, UK, 1981
- 8 Y. K. Xiao, L. Jin and H. P. Qi, Int. J. Mass Spectrom. Ion Processes, 1991, 107:205
- 9 P. De. Bievre, M. Callet, N. E. Holden and I. L. Barnes, J. Phys. Chem. Ref. Data, 1984, 13:809

The High Precision Isotopic Measurement of Bromine by Thermal Ionization Mass Spectrometry

Liu Weiguo, Xiao Yinkai, Qi Haiping and Zhang Chonggeng (Institute of Salt Lakes, Academia Sinica, Xining 810008)

ABSTRACT

A procedure for the determination of the bromine isotopic ratio by using positive thermal ionization mass spectrometry of the Cs_2Br^+ ion has been investigated. The intensity of Cs_2Br^+ emitted from CsBr is considerably enhanced by the addition of graphite to the filament substrate during loading. Optimal conditions for measurement have been established. The bromine isotopic compositions. ⁷⁹Br/⁸¹Br. in KBr chemical reagents have been measured to be 1.02654 ± 0.00012 with a precision of 0.011% (95% confidence Limit). The Isotopic ratios of bromine in bromides of the different origins hav also been measured and a significant variance of bromine isotopic composition has been observed.

Keywords Bromine isotopes, Mass spectrometry