晚更新世共和盆地风沙沉积及其对地貌演化的指示意义

黄冬月, 强明瑞, 刘利, 陈杰, 何镇浩, 邓雅云. 晚更新世共和盆地风沙沉积及其对地貌演化的指示意义[J]. 第四纪研究, 2024, 44(6): 1674-1687. doi: 10.11928/j.issn.1001-7410.2024.06.16
引用本文: 黄冬月, 强明瑞, 刘利, 陈杰, 何镇浩, 邓雅云. 晚更新世共和盆地风沙沉积及其对地貌演化的指示意义[J]. 第四纪研究, 2024, 44(6): 1674-1687. doi: 10.11928/j.issn.1001-7410.2024.06.16
黄冬月, 强明瑞, 刘利, 陈杰, 何镇浩, 邓雅云. 晚更新世共和盆地风沙沉积及其对地貌演化的指示意义[J]. 第四纪研究, 2024, 44(6): 1674-1687. doi: 10.11928/j.issn.1001-7410.2024.06.16 HUANG Dongyue, QIANG Mingrui, LIU Li, CHEN Jie, HE Zhenhao, DENG Yayun. Late Pleistocene aeolian sedimentation in the Gonghe Basin: Implications for landform evolutions[J]. Quaternary Sciences, 2024, 44(6): 1674-1687. doi: 10.11928/j.issn.1001-7410.2024.06.16
Citation: HUANG Dongyue, QIANG Mingrui, LIU Li, CHEN Jie, HE Zhenhao, DENG Yayun. Late Pleistocene aeolian sedimentation in the Gonghe Basin: Implications for landform evolutions[J]. Quaternary Sciences, 2024, 44(6): 1674-1687. doi: 10.11928/j.issn.1001-7410.2024.06.16

晚更新世共和盆地风沙沉积及其对地貌演化的指示意义

  • 基金项目:

    国家自然科学基金项目(批准号: 42071109和42201168)资助

详细信息
    作者简介:

    黄冬月, 女, 26岁, 硕士研究生, 自然地理学专业, E-mail: 1847348425@qq.com

    通讯作者: 强明瑞, E-mail: mrqiang@scnu.edu.cn
  • 中图分类号: P534.63+1, P931.3

Late Pleistocene aeolian sedimentation in the Gonghe Basin: Implications for landform evolutions

More Information
  • 共和盆地位于青藏高原东北缘, 为一断陷盆地。早-中更新世以沉降为主, 发育了广泛的河湖相沉积; 中更新世末期的共和运动使得盆地抬升。盆地内广泛发育的河湖相沉积和风成沉积地层, 记录了共和盆地的演化历史。然而, 由于沉积地层年代数据相对匮乏, 目前针对共和盆地晚更新世风沙活动及环境变化的研究尚未深入。此外, 共和盆地由沉降转为抬升并导致黄河下切等地貌演化的关键时限也有待进一步认识。本研究选取共和盆地6个沉积剖面, 利用光释光测年以及剖面岩性变化、粒度和元素等古环境代用指标, 重建了共和盆地晚更新世风沙活动历史, 分析了风沙活动可能的驱动因素。考虑到干旱-半干旱地区河湖环境不但为风沙沉积提供了丰富的物源, 而且可能埋藏风沙沉积使其得以保存等事实, 依据风成砂沉积时代探讨了晚更新世以来盆地地貌演化过程。结果表明, 共和盆地风沙活动主要发生在3个时期, 分别为203±12 ka前后、176.2±21.1~143.3±27.8 ka和108±7~86±5 ka。203±12 ka前后, 自周围山体的流水携带松散碎屑物由边缘向盆地中心充填, 在风力作用下盆地边缘部分地点沉积了风成砂; 176.2±21.1~143.3±27.8 ka时期, 盆地仍处于充填阶段, 盆地内部应以曲流发育为主的河流泛滥平原、浅湖等交错分布, 推测河岸与湖泊周边滩地等地貌部位堆积了典型风沙沉积。由此可见, 共和运动(或高原面下切)的时限大体应晚于150 ka; 108±7~86±5 ka期间, 黄河从高原面下切至二塔拉高度(约3000 ma.s.l.), 持续至86±5 ka, 这一时期大量河湖相物质暴露于地表, 为区域风沙沉积提供了丰富的物源, 同时形成的层状地貌面也为风沙沉积提供了有利的堆积场所。共和盆地3个时期的风沙活动与盆地水系演化有关, 主要受控于风力以及流水作用产生的沙物质供给等的变化, 在滨岸或湖泊滩涂等地点堆积风成砂。

  • 加载中
  • 图 1 

    研究区概况

    Figure 1. 

    Overview map of the study area.

    图 2 

    剖面地层变化

    Figure 2. 

    Photographs of the study sections

    图 3 

    剖面岩性及代用指标变化

    Figure 3. 

    Variations of lithostratigraphic units with OSL ages and relevant proxies

    图 4 

    部分样品OSL年龄生长曲线

    Figure 4. 

    OSL growth curves of representative samples

    图 5 

    典型层位样品粒度频率分布曲线

    Figure 5. 

    Grain-size frequency distributions of representative samples from the different lithostratigraphic units of the study sections

    图 6 

    典型样品常量元素UCC标准化曲线

    Figure 6. 

    Major elemental composition of representative samples from the studied sections, normalized by Upper Continental Crust(UCC)values

    图 7 

    共和盆地地形剖面与沉积岩性变化

    Figure 7. 

    Variations of topography and the lithostratigraphic units of the study sections in the the Gonghe Basin

    图 8 

    共和盆地风沙活动与其他气候记录的对比

    Figure 8. 

    Comparison of aeolian activities with other paleoclimatic records.

    表 1 

    光释光测年结果

    Table 1. 

    Luminescence dating results

    测年方法 样品编号 沉积物类型 深度(cm) 含水量(%) 粒级(μm) U(μg/g) Th(μg/g) K(%) 年代剂量(Gy/ka) 等效剂量(Gy) 年龄(ka)
    OSL MGTC-65 古土壤 65 3.1 4~11 2.12 8.77 1.63 3.43±0.14 38.31±3.11 11.2±1.0
    MGTC-230 风成砂 230 0.21 4~11 1.44 7.21 1.53 2.95±0.12 279.01±16.79 94.4±6.8
    MGTC-260 风成砂 260 0.26 4~11 1.42 7.75 1.56 3.03±0.12 321.55±27.17 106.0±9.9
    SZY-70 风成砂 70 2.25 90~125 1.50 7.25 1.62 2.59±0.10 230.51±22.40 89.0±9.4
    SZY-190 风成砂 190 1.1 4~11 1.35 6.92 1.47 2.83±0.11 446.40±37.38 164.9±14.8
    SZY-263 风成砂 263 1.98 90~125 1.61 7.63 1.36 2.37±0.09 339.02±64.28 143.3±27.8
    GGHA-50 古土壤 50 10±5 90~125 2.55±0.09 8.21±0.25 1.62±0.05 2.72±0.11 45.35±3.87 16.4±0.8
    GGHA-80 古土壤 80 10±5 90~125 2.10±0.09 7.96±0.25 1.65±0.06 2.62±0.1 68.82±5.29 26.3±1.3
    GGHA-145 风成砂 145 10±5 90~125 1.67±0.08 6.94±0.22 1.65±0.06 2.44±0.1 354.75±35.71 145.2±15.7
    GGHA-190 风成砂 190 10±5 90~125 1.56±0.07 5.91±0.19 1.34±0.05 2.07±0.08 364.65±71.09 176.2±21.1
    IRSL YDH-075 风成砂 75 10±5 90~125 1.72±0.3 8.88±0.6 1.80±0.04 3.38±0.15 290±9 86±5
    YDE-180 风成砂 180 10±5 90~125 1.66±0.3 8.65±0.6 1.52±0.03 3.04±0.13 617±26 203±12
    HK-180 古土壤 180 10±5 90~125 3.11±0.4 14.81±0.7 2.77±0.04 4.90±0.23 255±4 52±3
    HK-390 砂透镜体 390 10±5 90~125 2.66±0.4 13.35±0.7 2.08±0.04 4.01±0.19 433±14 108±7
    下载: 导出CSV
  • [1]

    Henderson A C G, Holmes J A, Leng M J. Late Holocene isotope hydrology of Lake Qinghai, NE Tibetan Plateau: Effective moisture variability and atmospheric circulation changes[J]. Quaternary Science Reviews, 2010, 29 (17-18): 2215-2223. doi: 10.1016/j.quascirev.2010.05.019

    [2]

    Stauch G, IJmker J, Pötsch S, et al. Aeolian sediments on the north-eastern Tibetan Plateau[J]. Quaternary Science Reviews, 2012, 57: 71-84. doi: 10.1016/j.quascirev.2012.10.001.

    [3]

    贾惠兰, 李保生. 青海共和盆地东部晚更新世-全新世地层中元素分布与古气候[J]. 中国沙漠, 1991, 11 (2): 30-35.

    Jia Huilan, Li Baosheng. Chemical element distribution and palaeoclimate in Late Pleistocene-Holocene strata in east Gonghe Basin[J]. Journal of Desert Research, 1991, 11 (2): 30-35.

    [4]

    高尚玉, 陈渭南, 靳鹤龄, 等. 全新世中国季风区西北缘沙漠演化初步研究[J]. 中国科学(B辑), 1993, 23 (2): 203-208.

    Gao Shangyu, Chen Weinan, Jin Heling, et al. A preliminary study on the evolution of the desert in the northwestern margin in of Chinese monsoon area during Holocene[J]. Science in China(Series B), 1993, 23 (2): 202-208.

    [5]

    高尚玉, 王贵勇, 哈斯, 等. 末次冰期以来中国季风区西北边缘沙漠演化研究[J]. 第四纪研究, 2001, 21 (1): 66-71. doi: 10.3321/j.issn:1001-7410.2001.01.008

    Gao Shangyu, Wang Guiyong, Ha Si, et al. A case study on desert evolution in the northwestern fringe of monsoon area, China since the last glacial epoch[J]. Quaternary Sciences, 2001, 21 (1): 66-71. doi: 10.3321/j.issn:1001-7410.2001.01.008

    [6]

    Stauch G, Lai Z, Lehmkuhl F, et al. Environmental changes during the Late Pleistocene and the Holocene in the Gonghe Basin, north-eastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509: 144-155. doi: 10.1016/j.palaeo.2016.12.032.

    [7]

    Qiang M R, Chen F H, Song L, et al. Late Quaternary aeolian activity in Gonghe Basin, northeastern Qinghai-Tibetan Plateau, China[J]. Quaternary Research, 2013, 79 (3): 403-412. doi: 10.1016/j.yqres.2013.03.003

    [8]

    Qiang M R, Jin Y X, Liu X, et al. Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau: Variability, processes, and climatic implications[J]. Quaternary Science Reviews, 2016, 132: 57-73. doi: 10.1016/j.quascirev.2015.11.010.

    [9]

    刘冰, 靳鹤龄, 孙忠, 等. 青藏高原东北部共和盆地风成沉积地球化学特征及其揭示的气候变化[J]. 地球科学进展, 2012, 27 (7): 788-799.

    Liu Bing, Jin Heling, Sun Zhong, et al. Geochemical characteristics of aeolian deposits in Gonghe Basin, northeastern Qinghai-Tibetan Plateau and the indicating climatic changes[J]. Advances in Earth Science, 2012, 27 (7): 788-799.

    [10]

    刘冰, 靳鹤龄, 孙忠, 等. 末次盛冰期以来青藏高原东北部共和盆地冬夏季风演化记录[J]. 中国沙漠, 2013, 33 (2): 433-442.

    Liu Bing, Jin Heling, Sun Zhong, et al. The record of winter and summer monsoon evolution in Gonghe Basin, northeastern Qinghai-Tibetan Plateau since the Last Glacial Maximum period[J]. Journal of Desert Research, 2013, 33 (2): 433-442.

    [11]

    Liu B, Jin H L, Sun L, et al. Holocene climatic change revealed by aeolian deposits from the Gonghe Basin, northeastern Qinghai-Tibetan Plateau[J]. Quaternary International, 2013, 296: 231-240. doi: 10.1016/j.quaint.2012.05.003.

    [12]

    刘冰, 靳鹤龄, 孙忠, 等. 全新世共和盆地沙地时空演化及其驱动机制[J]. 中国沙漠, 2014, 34 (4): 982-991.

    Liu Bing, Jin Heling, Sun Zhong, et al. Spatiotemporal evolution of sandy land in the Gonghe Basin during the Holocene period and its possible driving mechanism[J]. Journal of Desert Research, 2014, 34 (4): 982-991.

    [13]

    秦小光, 殷志强, 汪美华, 等. 青藏高原东北缘共和-贵德盆地全新世气候变化[J]. 地质学报, 2017, 91 (1): 266-286.

    Qin Xiaoguang, Yin Zhiqiang, Wang Meihua, et al. Loess records of the Holocene climate change of Gonghe and Guide basins in the northeastern boundary of the Tibet Plateau[J]. Acta Geologica Sinica, 2017, 91 (1): 266-286.

    [14]

    张亚云, 胡梦珺, 李娜娜, 等. 共和盆地马四剖面12 cal ka BP以来的成壤环境演变[J]. 中国沙漠, 2019, 39 (6): 66-75.

    Zhang Yayun, Hu Mengjun, Li Nana, et al. Holocene environmental change of pedogenesis in the MS profile of Gonghe Basin, China[J]. Journal of Desert Research, 2019, 39 (6): 66-75.

    [15]

    徐春霞. 末次盛冰期以来共和盆地沙地特征时段空间格局演变研究[D]. 西宁: 青海师范大学硕士学位论文, 2022: 1-67.

    Xu Chunxia. Study on the Spatial Evolution of the Gonghe Basin Dune Field, Qinghai-Tibet Plateau, during Special Periods since the Last Glacial Maximum[D]. Xining: The Master's Thesis of Qinghai Normal University, 2022: 1-67.

    [16]

    王吉玉, 张兴鲁. 青海省共和盆地的第四纪地层[J]. 地质论评, 1979, 25 (2): 15-20.

    Wang Jiyu, Zhang Xinglu. Quaternary stratigraphic of Gonghe Basin, Qinghai Province[J]. Geological Review, 1979, 25 (2): 15-20.

    [17]

    徐叔鹰, 徐德馥, 石生仁. 共和盆地地貌发育与环境演化探讨[J]. 兰州大学学报, 1984, 20 (1): 146-157.

    Xu Shuying, Xu Defu, Shi Shengren. A discussion on the development of landforms and evolution of environments in the Gonghe Basin[J]. Journal of Lanzhou University, 1984, 20 (1): 146-157.

    [18]

    徐叔鹰. 青海共和组地层的沉积时代与沉积环境[J]. 兰州大学学报, 1987, 23 (2): 109-119.

    Xu Shuying. Depositional period and sedimentary environment of Gonghe series in the Qinghai Province, China[J]. Journal of Lanzhou University, 1987, 23 (2): 109-119.

    [19]

    徐叔鹰, 徐德馥, 石生仁. 青海共和盆地的风沙堆积[J]. 中国沙漠, 1982, 2 (3): 5-12.

    Xu Shuying, Xu Defu, Shi Shengren. Aeolian sand deposits in the Gonghe Basin, Qinghai Province[J]. Journal of Desert Research, 1982, (3): 5-12.

    [20]

    Li Jijun. The environmental effects of the uplift of the Qinghai-Xizang Plateau[J]. Quaternary Science Reviews, 1991, 10 (6): 479-483. doi: 10.1016/0277-3791(91)90041-R

    [21]

    李吉均, 方小敏. 青藏高原隆起与环境变化研究[J]. 科学通报, 1998, 43 (15): 1568-1574.

    Li Jijun, Fang Xiaomin. The uplift of Qinghai-Xizang Plateau and the change of environment[J]. Chinese Science Bulletin, 1998, 43 (15): 1568-1574.

    [22]

    潘保田. 贵德盆地地貌演化与黄河上游发育研究[J]. 干旱区地理, 1994, 17 (3): 43-50.

    Pan Baotian. A study on the geomorphic evolution and development of the upper reaches of Yellow River in Guide Basin[J]. Arid Land Geography, 1994, 17 (3): 43-50.

    [23]

    张智勇, 于庆文, 张克信, 等. 黄河上游第四纪河流地貌演化——兼论青藏高原1: 25万新生代地质填图地貌演化调查[J]. 地球科学, 2003, 28 (6): 621-626.

    Zhang Zhiyong, Yu Qingwen, Zhuang Kexin, et al. Geomorphological evolution of Quaternary river from upper Yellow River and geomorphological evolution investigation for 1∶250000 scale geological mapping in Qinghai Tibet Plateau[J]. Earth Science, 2003, 28 (6): 621-626.

    [24]

    赵振明, 刘百篪. 对龙羊峡形成的初步认识[J]. 西北地质, 2005, 38 (2): 24-32.

    Zhao Zhenming, Liu Baichi. The primary perspective of Longyang Gorge formation[J]. Northwestern Geology, 2005, 38 (2): 24-32.

    [25]

    孙延贵, 方洪宾, 张琨, 等. 共和盆地层状地貌系统与青藏高原隆升及黄河发育[J]. 中国地质, 2007, 34 (6): 1141-1147.

    Sun Yangui, Fang Hongbin, Zhang Kun, et al. Step-like landform system of the Gonghe Basin and the uplift of the Qinghai-Tibet Plateau and development of the Yellow River[J]. Geology in China, 2007, 34 (6): 1141-1147.

    [26]

    Craddock W H, Kirby E, Harkins N W, et al. Rapid fluvial incision along the Yellow River during headward basin integration[J]. Nature Geoscience, 2010, 3 (3): 209-213. doi: 10.1038/ngeo777

    [27]

    Perrineau A, Woerd J V D, Gaudemer Y, et al. Incision rate of the Yellow River in northeastern Tibet constrained by10Be and 26Al cosmogenic isotope dating of fluvial terraces: Implications for catchment evolution and plateau building[J]. Geological Society, London, Special Publications, 2011, 353 (1): 189-219. doi: 10.1144/SP353.10

    [28]

    苗琦, 李丽松, 钱方, 等. 青海黄河贵德段河流阶地及新构造运动研究[J]. 地质与资源, 2012, 21 (5): 493-496.

    Miao Qi, Li Lisong, Qian Fang, et al. Study on the terraces and neotectonics of the Yellow River in Guide area, Qinghai Province[J]. Geology and Resources, 2012, 21 (5): 493-496.

    [29]

    Zhang Huiping, Zhang Peizhen, Champagnac J-D, et al. Pleistocene drainage reorganization driven by the isostatic response to deep incision into the northeastern Tibetan Plateau[J]. Geology, 2014, 42 (4): 303-306. doi: 10.1130/G35115.1

    [30]

    Jia Liyun, Hu Daogong, Wu Huanhuan, et al. Yellow River terrace sequences of the Gonghe-Guide section in the northeastern Qinghai-Tibet: Implications for plateau uplift[J]. Geomorphology, 2017, 295: 323-336. doi: 10.1016/j.geomorph.2017.06.007.

    [31]

    Su Qi, Wang Xianyan, Yuan Daoyang, et al. Fluvial entrenchment of the Gonghe Basin and integration of the upper Yellow River—Evidence from the cosmogenically dated geomorphic surfaces[J]. Geomorphology, 2023, 429: 108654. doi: 10.1016/j.geomorph.2023.108654.

    [32]

    董光荣, 高尚玉, 金炯, 等. 青海共和盆地土地沙漠化及其防治[J]. 中国沙漠, 1989, 9 (1): 64-78.

    Dong Guangrong, Gao Shangyu, Jin Jiong, et al. Land desertification and its control in Gonghe Basin, Qinghai Province[J]. Journal of Desert Research, 1989, 9 (1): 64-78.

    [33]

    董光荣, 高尚玉, 金炯. 青海共和盆地土地沙漠化与防治途径[M]. 北京: 科学出版社, 1993: 10-35.

    Dong Guangrong, Gao Shangyu, Jin Jiong. Desertification in Gonghe Basin in Qinghai and Its Prevention Approaches[M]. Beijing: Science Press, 1993: 10-35.

    [34]

    陈发虎, 张家武, 程波, 等. 青海共和盆地达连海晚第四纪高湖面与末次冰消期以来的环境变化[J]. 第四纪研究, 2012, 32 (1): 122-131. doi: 10.3969/j.issn.1001-7410.2012.01.13

    Chen Fahu, Zhang Jiawu, Cheng Bo, et al. Palaeovegetational and palaeoenvironmental changes in Gonghe Basin since last deglaciation[J]. Quaternary Sciences, 2012, 32 (1): 122-131. doi: 10.3969/j.issn.1001-7410.2012.01.13

    [35]

    高由禧, 徐淑英, 郭其蕴, 等. 东亚季风的若干问题[M]. 北京: 科学出版社, 1962: 49-63.

    Gao Youxi, Xu Shuying, Guo Qiyun, et al. Some Problems on East-Asia Monsoon[M]. Beijing: Science Press, 1962: 49-63.

    [36]

    Buylaert J P, Yeo E Y, Thiel C, et al. A detailed post-IR IRSL chronology for the last interglacial soil at the Jingbian loess site(Northern China)[J]. Quaternary Geochronology, 2015, 30: 194-199. doi: 10.1016/j.quageo.2015.02.022.

    [37]

    Li G Q, Rao Z G, Duan Y W, et al. Paleoenvironmental changes recorded in a luminescence dated loess/paleosol sequence from the Tianshan Mountains, arid Central Asia, since the Penultimate Glaciation[J]. Earth and Planetary Science Letters, 2016, 448: 1-12. doi: 10.1016/j.epsl.2016.05.008.

    [38]

    Guérin G, Mercier N, Adamiec G. Dose-rate conversion factors: Update[J]. Ancient TL, 2011, 29 (1): 5-8.

    [39]

    Huntley D J, Baril M R. The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating[J]. Ancient TL, 1997, 15 (1): 11-13.

    [40]

    Huntley D J, Hancock R G V, Ancient T L. The Rb contents of the K-feldspar grains being measured in optical dating[J]. Ancient TL, 2001, 19 (2): 43-46.

    [41]

    Prescott J R, Hutton J T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations[J]. Radiation Measurements, 1994, 23 (2-3): 497-500. doi: 10.1016/1350-4487(94)90086-8

    [42]

    Wallinga J, Murray A S, Duller G A T, et al. Testing optically stimulated luminescence dating of sand-sized quartz and feldspar from fluvial deposits[J]. Earth and Planetary Science Letters, 2001, 193 (3-4): 617-630. doi: 10.1016/S0012-821X(01)00526-X

    [43]

    覃金堂, 周力平. 沙漠边缘厚层黄土上部光释光测年的初步研究[J]. 第四纪研究, 2007, 27 (4): 546-552. doi: 10.3321/j.issn:1001-7410.2007.04.010

    Qin Jintang, Zhou Liping. Optically stimulated luminescence dating of upper part of a thick loess section at Caoxian near the northern desert of China[J]. Quaternary Sciences, 2007, 27 (4): 546-552. doi: 10.3321/j.issn:1001-7410.2007.04.010

    [44]

    Zhou L P, Shackleton N J. Photon-stimulated luminescence of quartz from loess and effects of sensitivity change on palaeodose determination[J]. Quaternary Science Reviews, 2001, 20 (5-9): 853-857.

    [45]

    Taylor S R, McLennan S M. The continental crust: Its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks[J]. Journal of Geology, 1985, 94 (4): 632-633.

    [46]

    陈渠, 吕镔, 刘秀铭, 等. 伊犁典型黄土磁学与常量元素地球化学特征及其古气候意义[J]. 第四纪研究, 2021, 41 (6): 1632-1644.

    Chen Qu, Lü Bin, Liu Xiuming, et al. Rock magnetism and geochemical characteristics of major elements of typical loesss in the Ily Basin and their paleoclimatic significance[J]. Quaternary Sciences, 2021, 41 (6): 1632-1644.

    [47]

    冯志强, 沈梦娟, 刘永江, 等. 太原盆地晚新生代沉积物元素地球化学特征及古环境意义——以清徐ZK01钻孔为例[J]. 第四纪研究, 2023, 43 (1): 1-19. doi: 10.11928/j.issn.1001-7410.2023.01.01

    Feng Zhiqiang, Shen Mengjuan, Liu Yongjiang, et al. Major and trace elements geochemical characteristics and paleoenvironmental implications of borehole ZK01 in Taiyuan Basin of the North China[J]. Quaternary Sciences, 2023, 43 (1): 1-19. doi: 10.11928/j.issn.1001-7410.2023.01.01

    [48]

    Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299 (5885): 715-717.

    [49]

    刘东生, 等. 黄土与环境[M]. 北京: 科学出版社, 1985: 1-481.

    Liu Tungsheng, et al. Loess and the Environment[M]. Beijing: Science Press, 1985: 1-481.

    [50]

    董光荣, 李森, 李保生, 等. 中国沙漠形成演化的初步研究[J]. 中国沙漠, 1991, 11 (4): 23-32.

    Dong Guangrong, Li Sen, Li Baosheng, et al. A preliminary study on the formation and evolution of deserts in China[J]. Journal of Desert Research, 1991, 11 (4): 23-32.

    [51]

    吴正. 风沙地貌与治沙工程学[M]. 北京: 科学出版社, 2003: 196-234.

    Wu Zheng. Geomorphology of Wind-Drift Sands and Their Controlled Engineering[M]. Beijing: Science Press, 2003: 196-234.

    [52]

    刘亮, 杨艺凝, 许姗, 等. 辽南晚更新世风成沉积序列与古气候意义[J]. 第四纪研究, 2024, 44 (2): 380-393. doi: 10.11928/j.issn.1001-7410.2024.02.10

    Liu Liang, Yang Yining, Xu Shan, et al. Late Pleistocene aeolian sequence and paleoclimatic significance in southern Liaoning, China[J]. Quaternary Sciences, 2024, 44 (2): 380-393. doi: 10.11928/j.issn.1001-7410.2024.02.10

    [53]

    范育新, 张青松, 蔡青松, 等. 光释光年代学对腾格里沙漠化机制及风沙物源的指示[J]. 第四纪研究, 2022, 42 (2): 350-367. doi: 10.11928/j.issn.1001-7410.2022.02.03

    Fan Yuxin, Zhang Qingsong, Cai Qingsong, et al. OSL chronology of sediments in the Tengger Sandy Desert and its indication to aeolian sand source and desertification mechanism[J]. Quaternary Sciences, 2022, 42 (2): 350-367. doi: 10.11928/j.issn.1001-7410.2022.02.03

    [54]

    Yu L P, Lai Z P, An P, et al. Aeolian sediments evolution controlled by fluvial processes, climate change and human activities since LGM in the Qaidam Basin, Qinghai-Tibetan Plateau[J]. Quaternary International, 2015, 372: 23-32. doi: org/10.1016/j.quaint.2014.09.043.

    [55]

    Cohen T J, Nanson G C, Larsen J R, et al. Late Quaternary aeolian and fluvial interactions on the Cooper Creek Fan and the association between linear and source-bordering dunes, Strzelecki Desert, Australia[J]. Quaternary Science Reviews, 2010, 29 (3-4): 455-471.

    [56]

    Maroulis J C, Nanson G C, Price D M, et al. Aeolian-fluvial interaction and climate change: Source-bordering dune development over the past~100 ka on Cooper Creek, Central Australia[J]. Quaternary Science Reviews, 2007, 26 (3-4): 386-404.

    [57]

    马晓莉, 李顺, 岳雅慧. 基于碎屑锆石特征的雅鲁藏布江山南宽谷风成沙丘物源示踪[J]. 第四纪研究, 2023, 43 (5): 1157-1171. doi: 10.11928/j.issn.1001-7410.2023.05.01

    Ma Xiaoli, Li Shun, Yue Yahui. Provenance analysis of wind-formed dunes in the Shannan broad valley of the Yarlung-Zangbo River based on detrital zircon characteristics[J]. Quaternary Sciences, 2023, 43 (5): 1157-1171. doi: 10.11928/j.issn.1001-7410.2023.05.01

    [58]

    Yu L P, Sun Y, An P, et al. Dunefield expansion and paleoclimate during MIS 3 in the Qaidam Basin, northeastern Tibetan Plateau: Evidence from aeolian-fluvial processes and revised luminescence chronologies[J]. Catena, 2022, 215: 106354. doi: 10.1016/j.catena.2022.106354.

    [59]

    杨小平, 杜金花, 梁鹏, 等. 晚更新世以来塔克拉玛干沙漠中部地区的环境演变[J]. 科学通报, 2021, 66 (24): 3205-3218.

    Yang Xiaoping, Du Jinhua, Liang Peng, et al. Palaeoenvironmental changes in the central part of the Taklimakan Desert, Northwestern China since the Late Pleistocene[J]. Chinese Science Bulletin, 2021, 66 (24): 3205-3218.

    [60]

    于禄鹏, 赖忠平, 潘彤. 黄河上游共和盆地黄河阶地的释光年代学及成因[C]//中国第四纪科学研究会. 第十一届全国第四纪学术会议论文集. 北京: 科学出版社, 2014: 213-214.

    Yu Lupeng, Lai Zhongping, Pan Tong. Luminescence chronology and genesis of Yellow River terraces in Gonghe Basin, upper reaches of the Yellow River[C]//Chinese Association of Quaternary Research. Proceedings of the Eleventh National Quaternary Academic Conference. Beijing: Science Press, 2014: 213-214.

    [61]

    Halfen A F, Lancaster N, Wolfe S. Interpretations and common challenges of aeolian records from North American dune fields[J]. Quaternary International, 2016, 410: 75-95. doi: 10.1016/j.quaint.2015.03.003.

    [62]

    Lancaster N. Geomorphology of Desert Dunes[M]. London: Cambridge University Press, 2023: 153-161.

    [63]

    柳丽雲, 张德国, 杨小平, 等. 全新世以来腾格里沙漠风沙活动地质记录与模拟数据综合研究[J]. 第四纪研究, 2024, 44 (2): 394-415. doi: 10.11928/j.issn.1001-7410.2024.02.11

    Liu Liyun, Zhang Deguo, Yang Xiaoping, et al. Evolution of aeolian activities in the Tengger Desert during the Holocene: Comprehensive research based on geological records and simulated data[J]. Quaternary Sciences, 2024, 44 (2): 394-415. doi: 10.11928/j.issn.1001-7410.2024.02.11

    [64]

    Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18 O records[J]. Paleoceanography, 2005, 20 (1): 1-17.

    [65]

    Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 534 (7609): 640-646.

    [66]

    Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10 (4): 297-317.

  • 加载中

(8)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-12-28
修回日期:  2024-04-20
刊出日期:  2024-11-30

目录