乌兰地区青海云杉和祁连圆柏的树轮宽度: 水分记录还是温度记录?

王振波, 王淼, 王丰, 秦春, 杨保. 乌兰地区青海云杉和祁连圆柏的树轮宽度: 水分记录还是温度记录?[J]. 第四纪研究, 2024, 44(4): 949-962. doi: 10.11928/j.issn.1001-7410.2024.04.09
引用本文: 王振波, 王淼, 王丰, 秦春, 杨保. 乌兰地区青海云杉和祁连圆柏的树轮宽度: 水分记录还是温度记录?[J]. 第四纪研究, 2024, 44(4): 949-962. doi: 10.11928/j.issn.1001-7410.2024.04.09
王振波, 王淼, 王丰, 秦春, 杨保. 乌兰地区青海云杉和祁连圆柏的树轮宽度: 水分记录还是温度记录?[J]. 第四纪研究, 2024, 44(4): 949-962. doi: 10.11928/j.issn.1001-7410.2024.04.09 WANG Zhenbo, WANG Miao, WANG Feng, QIN Chun, YANG Bao. Is there a temperature or hydroclimate signal in tree-ring width of Qinghai spruce and Qilian juniper in the Wulan region, Qinghai Province?[J]. Quaternary Sciences, 2024, 44(4): 949-962. doi: 10.11928/j.issn.1001-7410.2024.04.09
Citation: WANG Zhenbo, WANG Miao, WANG Feng, QIN Chun, YANG Bao. Is there a temperature or hydroclimate signal in tree-ring width of Qinghai spruce and Qilian juniper in the Wulan region, Qinghai Province?[J]. Quaternary Sciences, 2024, 44(4): 949-962. doi: 10.11928/j.issn.1001-7410.2024.04.09

乌兰地区青海云杉和祁连圆柏的树轮宽度: 水分记录还是温度记录?

  • 基金项目:

    国家自然科学基金项目(批准号: 42130511)资助

详细信息

Is there a temperature or hydroclimate signal in tree-ring width of Qinghai spruce and Qilian juniper in the Wulan region, Qinghai Province?

More Information
  • 青藏高原东北部是对全球气候变化高度敏感的区域。由于其具有典型干旱、半干旱的气候特征, 一般认为该地区树木的径向生长主要受水分条件控制。然而, 已有研究发现, 在该区域乌兰-都兰及以东地区, 影响树木径向生长的气候因子较为复杂, 既有水分, 也有温度因素。本研究分析了乌兰地区青海云杉和祁连圆柏树轮宽度对气候的响应特征, 并与德令哈地区明确指示降水的树轮宽度序列进行比较。结果表明: 1)在1956~2010 A.D. 间, 青海云杉树轮宽度记录了当年7月的温度信号, 而祁连圆柏树轮宽度与当年7月温度、5~6月降水及5~7月帕默尔干旱指数(PDSI)均显著相关; 2)两个树种径向生长对气候的响应在1970~1980 A.D. 开始发生了变化: 对当年7月温度的响应逐渐增强, 而对前一年7月至当年6月降水的响应呈现出先下降再上升的趋势, 同时对生长季5~7月PDSI的响应逐渐减弱; 3)在1789~2010 A.D. 更长的时段内, 乌兰地区青海云杉和祁连圆柏与德令哈指示降水变化的树轮序列高度相关。以上结果表明, 在器测记录以前的时段, 乌兰地区青海云杉和祁连圆柏树轮宽度仍主要反映水分条件(降水和干湿)的变化, 而器测记录以来其对当年7月温度的显著响应可能与近几十年来的西北地区暖湿化有关。未来在树木生长-气候响应模式发生转变的地区, 需要综合考虑不同时间长度的树轮-气候响应关系来进一步明确树轮序列所包含的气候信息。

  • 加载中
  • 图 1 

    研究区域概况

    Figure 1. 

    Study area and regional climate.(a)Location of the sampling site and the Dulan Meteorological Station; (b)Growing environment of sampled Qinghai spruce and Qilian juniper; (c)Monthly mean temperature and precipitation at the Dulan Meteorological Station from 1956 A.D. to 2010 A.D.; (d) Annual mean temperature, total annual precipitation and PDSI from Dulan Meteorological Station and the CRU TS 4.06 dataset

    图 2 

    树轮宽度年表及复本量

    Figure 2. 

    Ring-width chronologies and sample replication.(a)Standard ring-width chronologies of Qinghai spruce and Qilian juniper in comparison with a tree-ring width series developed in the Delingha region, and the dotted vertical line shows the earliest year(1789 A.D.)used for the analysis. Chronologies presented are transformed to Z-Score; (b)Sample replication and subsample signal strength(SSS)for tree-ring data from the Wulan region

    图 3 

    青海云杉和祁连圆柏树轮宽度标准年表与月份气候要素的相关性分析

    Figure 3. 

    Correlation analysis between standard ring-width chronologies of Qinghai spruce and Qilian juniper and monthly climate variables. Upper and middle panels: Correlation analysis of monthly climate variables with Qinghai spruce and Qilian juniper in the Wulan region. Lower panel: Correlation analysis between the Delingha series and monthly climatic variables. The significance correlations are shown in filled color bars(P < 0.05). A negative abscissa indicates the month of the previous year

    图 4 

    青海云杉和祁连圆柏树轮宽度年表与月份气候要素一阶差分序列的相关性分析

    Figure 4. 

    Correlation analysis between first-order differenced ring-width chronologies of Qinghai spruce and Qilian juniper and monthly climate variables. Upper and middle panels: Correlation analysis of monthly climate variables with Qinghai spruce and Qilian juniper in the Wulan region. Lower panel: Correlation analysis between the Delingha series and monthly climatic variables. The significance correlations are shown in filled color bars(P < 0.05). A negative abscissa indicates the month of the previous year

    图 5 

    树轮宽度与气象数据月份组合的比较

    Figure 5. 

    Comparison between tree-ring width and monthly climate data. Left column: Comparison of the first-order differenced series of tree-ring chronologies(Qinghai spruce: SP_diff, Qilian juniper: JN_diff)with climate data (clim)in the Wulan region during 1956~2010 A.D. Right column: 31-year moving correlation analysis between the first-order differenced tree-ring chronologies (Qinghai spruce: SP_diff, Qilian juniper: JN_diff, Delingha series: DLH_diff)and climate data in the Wulan and Delingha regions. The correlation coefficient values are centered on the middle year of each 31-year window. For example, the correlation coefficient at 1966 A.D. indicates that this correlation is calculated for the time period between 1956~1981 A.D. The dots on the curve in the right column show a significant correlation(P < 0.05)

    图 6 

    三条树轮宽度序列间的31年滑动相关系数

    Figure 6. 

    31-year moving correlation coefficients between three ring-width chronologies. SP: Data for Qinghai spruce in the Wulan region; JN: Data for Qilian juniper in the Wulan region; DLH: Ring-width chronology in the Delingha region. The upper panel displays the moving correlations for the first-order differenced chronologies, whereas the lower panel shows the analysis for standard ring-width chronologies

    表 1 

    乌兰地区青海云杉与祁连圆柏树轮宽度的统计特征

    Table 1. 

    Ring-width characteristics of Qinghai spruce and Qilian juniper from the Wulan region

    统计项 祁连圆柏 青海云杉
    平均轮宽a 0.268 1.595
    树间相关系数a 0.244 0.302
    树内相关系数a 0.64
    一阶自相关相关系数b 0.355 0.517
    信噪比b 28.789 38.507
    平均敏感度b 0.212 0.195
    样本总体代表性(EPS)b 0.966 0.975
    SSS >0.85起始年(树数)b 101(16) 1789(17)
    a—基于原始树轮宽度数据的统计结果,b—基于去除生长趋势后数据的统计结果;由于青海云杉每棵树仅获取了一个样芯的宽度数据,无法计算树内相关系数
    下载: 导出CSV

    表 2 

    乌兰地区树轮宽度与德令哈序列的相关分析

    Table 2. 

    Correlations analysis between tree-ring chronologies in the Wulan and Delingha regions

    分析时段 树轮序列 乌兰-青海云杉 乌兰-祁连圆柏
    1789~2010 A.D.标准年表 乌兰-青海云杉
    乌兰-祁连圆柏 0.512
    德令哈序列 0.517 0.672
    1789~2010 A.D.一阶差分年表 乌兰-青海云杉
    乌兰-祁连圆柏 0.675
    德令哈序列 0.595 0.863
    下载: 导出CSV
  • [1]

    Yao T, Xue Y, Chen D, et al. Recent third pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100 (3): 423-444. doi: 10.1175/BAMS-D-17-0057.1

    [2]

    Liu X, Chen B. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology, 2000, 20 (14): 1729-1742. doi: 10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y

    [3]

    Wu G, Liu Y, He B, et al. Thermal controls on the Asian summer monsoon[J]. Scientific Reports, 2012, 2 (1): 404. doi: 10.1038/srep00404.

    [4]

    梁琛, 赵艳, 秦锋, 等. 孢粉-气候定量重建方法体系的建立及其应用——以青藏高原东部全新世温度重建为例[J]. 中国科学: 地球科学, 2020, 50 (7): 977-994. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202007008.htm

    Liang Chen, Zhao Yan, Qin Feng, et al. Pollen-based Holocene quantitative temperature reconstruction on the eastern Tibetan Plateau using a comprehensive method framework[J]. Science China: Earth Sciences, 2020, 50 (7): 977-994. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202007008.htm

    [5]

    秦锋, 赵艳. 基于孢粉组合定量重建古气候的方法在中国的运用及思考[J]. 第四纪研究, 2013, 33 (6): 1054-1068. doi: 10.3969/j.issn.1001-7410.2013.06.02

    Qin Feng, Zhao Yan. Methods of quantitative climate reconstruction based on palynological data and their applications in China[J]. Quaternary Sciences, 2013, 33 (6): 1054-1068. doi: 10.3969/j.issn.1001-7410.2013.06.02

    [6]

    朱大运, 王建力. 青藏高原冰芯重建古气候研究进展分析[J]. 地理科学进展, 2013, 32 (10): 1535-1544. doi: 10.11820/dlkxjz.2013.10.011

    Zhu Dayun, Wang Jianli. Progress in palaeoclimate research on the Tibet Plateau based on ice core records[J]. Progress in Geography, 2013, 32 (10): 1535-1544. doi: 10.11820/dlkxjz.2013.10.011

    [7]

    杨保, 康兴成, 施雅风. 近2000年都兰树轮10年尺度的气候变化及其与中国其他地区温度代用资料的比较[J]. 地理科学, 2000, 20 (5): 397-402. doi: 10.3969/j.issn.1000-0690.2000.05.002

    Yang Bao, Kang Xingcheng, Shi Yafeng. Decadal climatic variations indicated by Dulan tree-ring and the comparison with temperature proxy data from other regions of China during the last 2000 years[J]. Scientia Geographica Sinica, 2000, 20 (5): 397-402. doi: 10.3969/j.issn.1000-0690.2000.05.002

    [8]

    王锡津, 方克艳, 张仲石. 1901-1950年5-9月北半球CRU数据与树轮资料的对比[J]. 第四纪研究, 2023, 43 (5): 1254-1268. doi: 10.11928/j.issn.1001-7410.2023.05.08

    Wang Xijin, Fang Keyan, Zhang Zhongshi. The comparison of CRU products and tree-ring data in the Northern Hemisphere from May to September in 1901-1950 [J]. Quaternary Sciences, 2023, 43 (5): 1254-1268. doi: 10.11928/j.issn.1001-7410.2023.05.08

    [9]

    Christiansen B, Ljungqvist F C. Challenges and perspectives for large-scale temperature reconstructions of the past two millennia[J]. Reviews of Geophysics, 2017, 55 (1): 40-96. doi: 10.1002/2016RG000521

    [10]

    陈友平, 陈峰, 张合理, 等. 树轮记录的自公元1200年以来强火山喷发事件与高亚洲南部河流源区气候水文变化的关联[J]. 第四纪研究, 2021, 41 (2): 323-333. 10.11928/j.issn.1001-7410.2021.02.02

    Chen Youping, Chen Feng, Zhang Heli, et al. Strong link of large volcanic eruptions and climatic and hydrological changes recorded by tree rings in the river source area of Southern High Asia since 1200A. D. [J]. Quaternary Sciences, 2021, 41 (2): 323-333. 10.11928/j.issn.1001-7410.2021.02.02

    [11]

    谢成晟, 李景吉, 高苑苑, 等. 基于树轮宽度重建川西南137年秋冬季平均气温变化[J]. 第四纪研究, 2020, 40 (1): 252-263. doi: 10.11928/j.issn.1001-7410.2020.01.23

    Xie Chengsheng, Li Jingji, Gao Yuanyuan, et al. Tree-ring width based autumn and winter mean temperature reconstruction and its variation over the past 137 years in southwestern Sichuan Province[J]. Quaternary Sciences, 2020, 40 (1): 252-263. doi: 10.11928/j.issn.1001-7410.2020.01.23

    [12]

    Huang R, Zhu H, Liang E, et al. A tree ring-based winter temperature reconstruction for the southeastern Tibetan Plateau since 1340 CE[J]. Climate Dynamics, 2019, 53 (5-6): 3221-3233. doi: 10.1007/s00382-019-04695-3

    [13]

    Shao X, Xu Y, Yin Z-Y, et al. Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau[J]. Quaternary Science Reviews, 2010, 29 (17-18): 2111-2122. doi: 10.1016/j.quascirev.2010.05.005

    [14]

    Shi J, Liu Y, Vaganov E A, et al. Statistical and process-based modeling analyses of tree growth response to climate in semi-arid area of north Central China: A case study of Pinus tabulaeformis [J]. Journal of Geophysical Research: Biogeosciences, 2008, 113: G01026. doi: 10.1029/2007JG000547.

    [15]

    Zhang Y, Shao X, Xu Y, et al. Process-based modeling analyses of Sabina przewalskii growth response to climate factors around the northeastern Qaidam Basin[J]. Chinese Science Bulletin, 2011, 56 (14): 1518-1525. doi: 10.1007/s11434-011-4456-5

    [16]

    Fang K, Gou X, Chen F, et al. Reconstructed droughts for the southeastern Tibetan Plateau over the past 568 years and its linkages to the Pacific and Atlantic Ocean climate variability[J]. Climate Dynamics, 2010, 35 (4): 577-585. doi: 10.1007/s00382-009-0636-2

    [17]

    Sheppard P R, Tarasov P E, Graumlich L J, et al. Annual precipitation since 515 BC reconstructed from living and fossil juniper growth of northeastern Qinghai Province, China[J]. Climate Dynamics, 2004, 23 (7): 869-881.

    [18]

    Zhang Q-B, Cheng G, Yao T, et al. A 2, 326-year tree-ring record of climate variability on the northeastern Qinghai-Tibetan Plateau[J]. Geophysical Research Letters, 2003, 30 (14): 1739. doi: 10.1029/2003GL017425.

    [19]

    He M, Yang B, Bräuning A, et al. Recent advances in dendroclimatology in China[J]. Earth-Science Reviews, 2019, 194: 521-535. doi: 10.1016/j.earscirev.2019.02.012.

    [20]

    Qin C, Yang B, Bräuning A, et al. Drought signals in tree-ring stable oxygen isotope series of Qilian juniper from the arid northeastern Tibetan Plateau[J]. Global and Planetary Change, 2015, 125: 48-59. doi: 10.1016/j.gloplacha.2014.12.002.

    [21]

    Deng Y, Gou X, Gao L, et al. Spatiotemporal drought variability of the eastern Tibetan Plateau during the last millennium[J]. Climate Dynamics, 2017, 49 (5): 2077-2091.

    [22]

    黄磊, 邵雪梅, 刘洪滨, 等. 树轮记录的青海柴达木盆地过去2800年来的极端干旱事件[J]. 气候与环境研究, 2010, 15 (4): 379-387. doi: 10.3878/j.issn.1006-9585.2010.04.05

    Huang Lei, Shao Xuemei, Liu Hongbin, et al. A 2800-year tree-ring record of severe sustained extreme drought events in Qaidam Basin, Qinghai[J]. Climate and Environment Research, 2010, 15 (4): 379-387. doi: 10.3878/j.issn.1006-9585.2010.04.05

    [23]

    Yang B, Qin C, Wang J, et al. A 3, 500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (8): 2903-2908.

    [24]

    Yang B, Qin C, Bräuning A, et al. Long-term decrease in Asian monsoon rainfall and abrupt climate change events over the past 6, 700 years[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 (30): e2102007118. doi: 10.1073/pnas.2102007118.

    [25]

    Deng Y, Gou X, Gao L, et al. Aridity changes in the eastern Qilian Mountains since AD 1856 reconstructed from tree-rings[J]. Quaternary International, 2013, 283: 78-84. doi: 10.1016/j.dendro.2021.125813.

    [26]

    Liu Y, Sun B, Song H, et al. Tree-ring-based precipitation reconstruction for Mt. Xinglong, China, since AD 1679 [J]. Quaternary International, 2013, 283: 46-54. doi: 10.1016/j.quaint.2012.03.045.

    [27]

    Chen F, Yuan Y, Wei W, et al. Temperature reconstruction from tree-ring maximum latewood density of Qinghai spruce in middle Hexi Corridor, China[J]. Theoretical and Applied Climatology, 2012, 107 (3): 633-643.

    [28]

    施雅风, 孔昭宸, 王苏民, 等. 中国全新世大暖期的气候波动与重要事件[J]. 中国科学(B辑化学生命科学地学), 1992, 22 (12): 1300-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199212010.htm

    Shi Yafeng, Kong Zhaochen, Wang Sumin, et al. Climatic fluctuation and important events during the Holocene Megathermal in China[J]. Science in China(Series B: Chemistry, Life Sciences and Geoscience), 1992, 22 (12): 1300-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199212010.htm

    [29]

    高琳琳, 勾晓华, 邓洋, 等. 西北干旱区树轮气候学研究进展[J]. 海洋地质与第四纪地质, 2013, 33 (4): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201304007.htm

    Gao Linlin, Gou Xiaohua, Deng Yang, et al. The advance of dendroclimatology in arid area of Northwest China[J]. Marine Geology & Quaternary Geology, 2013, 33 (4): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201304007.htm

    [30]

    杨保, 施雅风, 李恒鹏. 过去2ka气候变化研究进展[J]. 地球科学进展, 2002, 17 (1): 110-117. doi: 10.3321/j.issn:1001-8166.2002.01.017

    Yang Bao, Shi Yafeng, Li Hengpeng. Some advances in climatic change over the past two millennia[J]. Geoscience Progress, 2002, 17 (1): 110-117. doi: 10.3321/j.issn:1001-8166.2002.01.017

    [31]

    张卫国. 祁连山青海云杉林对气候变化的响应与适应[D]. 兰州: 兰州大学博士学位论文, 2024: 112-113.

    Zhang Weiguo. Response and Adaptation of Qinghai Spruce Forest to Climate Change in the Qilian Mountains[D]. Lanzhou: The Doctor's Thesis of Lanzhou University, 2024: 112-113.

    [32]

    Yin Z, Zhu H, Huang L, et al. Reconstruction of biological drought conditions during the past 2847 years in an alpine environment of the northeastern Tibetan Plateau, China, and possible linkages to solar forcing[J]. Global and Planetary Change, 2016, 143: 214-227. doi: 10.1016/j.gloplacha.2016.04.010.

    [33]

    Shao X, Xu Y, Yin Z, et al. Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau[J]. Quaternary Science Reviews, 2010, 29 (17): 2111-2122.

    [34]

    Zhang Q, Qiu H. A millennium-long tree-ring chronology of Sabina przewalskii on northeastern Qinghai-Tibetan Plateau[J]. Dendrochronologia, 2007, 24 (2): 91-95.

    [35]

    Yin Z, Shao X, Qin N, et al. Reconstruction of a 1436-year soil moisture and vegetation water use history based on tree-ring widths from Qilian junipers in northeastern Qaidam Basin, Northwestern China[J]. International Journal of Climatology, 2008, 28 (1): 37-53. doi: 10.1002/joc.1515

    [36]

    Liu W, Gou X, Yang M, et al. Drought reconstruction in the Qilian Mountains over the last two centuries and its implications for large-scale moisture patterns[J]. Advances in Atmospheric Sciences, 2009, 26 (4): 621-629. doi: 10.1007/s00376-009-9028-0

    [37]

    Yang B, Qin C, Bräuning A, et al. Rainfall history for the Hexi Corridor in the arid Northwest China during the past 620 years derived from tree rings[J]. International Journal of Climatology, 2011, 31 (8): 1166-1176. doi: 10.1002/joc.2143

    [38]

    邵雪梅, 王树芝, 徐岩, 等. 柴达木盆地东北部3500年树轮定年年表的初步建立[J]. 第四纪研究, 2007, 27 (4): 477-485. doi: 10.3321/j.issn:1001-7410.2007.04.001 http://www.dsjyj.com.cn/article/id/dsjyj_8780

    Shao Xuemei, Wang Shuzhi, Xu Yan, et al. A 3500-year master tree-ring dating chronology from the northeastern part of the Qaidam Basin[J]. Quaternary Sciences, 2007, 27 (4): 477-485. doi: 10.3321/j.issn:1001-7410.2007.04.001 http://www.dsjyj.com.cn/article/id/dsjyj_8780

    [39]

    Qin C, Yang B, Melvin T M, et al. Radial growth of Qilian juniper on the northeast Tibetan Plateau and potential climate associations[J]. PLoS One, 2013, 8 (11): e79362. doi: 10.1371/journal.pone.0079362.

    [40]

    Huang J, Zhang Q. Tree rings and climate for the last 680 years in Wulan area of northeastern Qinghai-Tibetan Plateau[J]. Climatic Change, 2007, 80 (3-4): 369-377.

    [41]

    Gou X, Deng Y, Gao L, et al. Millennium tree-ring reconstruction of drought variability in the eastern Qilian Mountains, Northwest China[J]. Climate Dynamics, 2015, 45 (7): 1761-1770.

    [42]

    Liu Y, An Z, Ma H, et al. Precipitation variation in the northeastern Tibetan Plateau recorded by the tree rings since 850 AD and its relevance to the Northern Hemisphere temperature[J]. Science in China(Series D: Earth Sciences), 2006, 49 (4): 408-420. doi: 10.1007/s11430-006-0408-3

    [43]

    Zhu H, Zheng Y, Shao X, et al. Millennial temperature reconstruction based on tree-ring widths of Qilian juniper from Wulan, Qinghai Province, China[J]. Science Bulletin, 2008, 53 (24): 3914-3920. doi: 10.1007/s11434-008-0400-8

    [44]

    邵雪梅, 黄磊, 刘洪滨, 等. 树轮记录的青海德令哈地区千年降水变化[J]. 中国科学(D辑: 地球科学), 2004, 34 (2): 145-153. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200402006.htm

    Shao Xuemei, Huang Lei, Liu Hongbin, et al. 1000-year precipitation change in Delingha area of Qinghai Province recorded by tree ring[J]. Science in China(Series D: Earth Sciences), 2004, 34 (2): 145-153. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200402006.htm

    [45]

    刘禹, 安芷生, Linderholm H W, 等. 青藏高原中东部过去2485年以来温度变化的树轮记录[J]. 中国科学(D辑: 地球科学), 2009, 39 (2): 166-176. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200902004.htm

    Liu Yu, An Zhisheng, Linderholm H W, et al. Tree-ring records of temperature changes in the central and eastern Tibetan Plateau over the past 2485 years[J]. Science in China(Series D: Earth Sciences), 2009, 39 (2): 166-176. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200902004.htm

    [46]

    汪青春, 周陆生, 秦宁生, 等. 利用乌兰树木年轮重建托托河冬季气温序列[J]. 高原气象, 2003, 22 (5): 518-523. doi: 10.3321/j.issn:1000-0534.2003.05.015

    Wang Qingchun, Zhou Lusheng, Qin Ningsheng, et al. Winter temperature of Tuotuo River reconstructed using tree-ring chronology of Wulan[J]. Plateau Meteorology, 2003, 22 (5): 518-523. doi: 10.3321/j.issn:1000-0534.2003.05.015

    [47]

    Liu Y, Sun C, Li Q, et al. A Picea crassifolia tree-ring width-based temperature reconstruction for the Mt. Dongda region, Northwest China, and its relationship to large-scale climate forcing[J]. PLoS One, 2016, 11 (8): e0160963. doi: 10.1371/journal.pone.0160963.

    [48]

    Zhang Y, Shao X, Yin Z, et al. Millennial minimum temperature variations in the Qilian Mountains, China: Evidence from tree rings[J]. Climate of the Past, 2014, 10 (5): 1763-1778. doi: 10.5194/cp-10-1763-2014

    [49]

    Shi C, Masson-Delmotte V, Daux V, et al. An unstable tree-growth response to climate in two 500 year chronologies, north eastern Qinghai-Tibetan Plateau[J]. Dendrochronologia, 2010, 28 (4): 225-237. doi: 10.1016/j.dendro.2009.12.002

    [50]

    Zhang Y, Wilmking M. Divergent growth responses and increasing temperature limitation of Qinghai spruce growth along an elevation gradient at the northeast Tibet Plateau[J]. Forest Ecology and Management, 2010, 260 (6): 1076-1082. doi: 10.1016/j.foreco.2010.06.034

    [51]

    Liu W, Gou X, Li J, et al. Temperature signals complicate tree-ring precipitation reconstructions on the northeastern Tibetan Plateau[J]. Global and Planetary Change, 2021, 200: 103460. doi: 10.1016/j.gloplacha.2021.103460.

    [52]

    Liu W, Gou X, Li J, et al. Separating temperature from precipitation signals encoded in tree-ring widths over the past millennium on the northeastern Tibetan Plateau, China[J]. Quaternary Science Reviews, 2018, 193: 159-169. doi: 10.1016/j.quascirev.2018.06.008.

    [53]

    李萌, 年雁云, 边瑞, 等. 基于多源遥感影像的青海云杉和祁连圆柏分类[J]. 遥感技术与应用, 2020, 35 (4): 855-863. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS202004013.htm

    Li Meng, Nian Yanyun, Bian Rui, et al. Classification of Picea crassifolia and Sabina przewalskii based on multi-source remote sensing images[J]. Remote Sensing Technology and Application, 2020, 35 (4): 855-863. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS202004013.htm

    [54]

    Holmes R L. Computer-assisted quality control in tree-ring dating and measurement[J]. Tree-Ring Bulletin, 1983, 43: 51-67. http://hdl.handle.net/10150/261223.

    [55]

    邵雪梅, 方修琦, 刘洪滨, 等. 柴达木东缘山地千年祁连圆柏年轮定年分析[J]. 地理学报, 2003, 58 (1): 90-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB200301011.htm

    Shao Xuemei, Fang Xiuqi, Liu Hongbin, et al. Dating the 1000-year-old Qilian juniper in Mountains along the eastern margin of the Qaidam Basin[J]. Geographical Journal, 2003, 58 (1): 90-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB200301011.htm

    [56]

    Melvin T M, Briffa K R, Nicolussi K, et al. Time-varying-response smoothing[J]. Dendrochronologia, 2007, 25 (1): 65-69.

    [57]

    Melvin T M, Briffa K R. A "signal-free" approach to dendroclimatic standardisation[J]. Dendrochronologia, 2008, 26 (2): 71-86.

    [58]

    Bunn A G. A dendrochronology program library in R(dplR) [J]. Dendrochronologia, 2008, 26 (2): 115-124.

    [59]

    Hitz O, Gärtner H, Monbaron M. Reconstruction of erosion rates in Swiss mountain torrents [C]//Heinrich I, Gärtner H, Monbaron M, et al. TRACE—Tree Rings in Archaeology, Climatology and Ecology. Jülich: Forschungszentrum Jülich GmbH, 2006: 196-202.

    [60]

    Timothy J O, Keith R B, Philip D J. Adjusting variance for sample-size in tree-ring chronologies and other regional-mean timeseries[J]. Dendrochronologia, 1997, 15: 89-99. https://ueaeprints.uea.ac.uk/id/eprint/33968/1/osborn_et_al_variance_adjustment_dendrochronologia1997.pdf.

    [61]

    Harris I, Osborn T J, Jones P, et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset[J]. Scientific Data, 2020, 7: 109. doi: 10.1038/s41597-020-0453-3.

    [62]

    Zang C, Biondi F. Treeclim: An R package for the numerical calibration of proxy-climate relationships[J]. Ecography, 2015, 38 (4): 431-436.

    [63]

    An Z, Colman S M, Zhou W, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32ka[J]. Scientific Reports, 2012, 2 (1): 619. doi: 10.1038/srep00619.

    [64]

    李宗善, 陈维梁, 韦景树, 等. 北京东灵山辽东栎林树木生长对气候要素的响应特征[J]. 生态学报, 2021, 41 (1): 27-37. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202101003.htm

    Li Zongshan, Chen Weiliang, Wei Jingshu, et al. Tree-ring growth responses of Liaodong Oak(Quercus wutaishanica)to climate in the Beijing Dongling Mountain of China[J]. Acta Ecologica Sinica, 2021, 41 (1): 27-37. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202101003.htm

    [65]

    Du D, Jiao L, Wu X, et al. Drought determines the growth stability of different dominant conifer species in Central Asia[J]. Global and Planetary Change, 2024, 234: 104370. doi: 10.1016/j.gloplacha.2024.104370.

    [66]

    陈发虎, 谢亭亭, 杨钰杰, 等. 我国西北干旱区"暖湿化"问题及其未来趋势讨论[J]. 中国科学: 地球科学, 2023, 53 (6): 1246-1262. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202306005.htm

    Chen Fahu, Xie Tingting, Yang Yujie, et al. Discussion of the "warming and wetting" trend and its future variation in the drylands of Northwest China under global warming[J]. Science China: Earth Sciences, 2023, 66 (6): 1241-1257. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202306005.htm

    [67]

    Muraoka H. Combined effects of light and water availability on photosynthesis and growth of Arisaema heterophyllum in the forest understory and an open site[J]. Oecologia, 1997, 112(1): 26-34.

    [68]

    Liang X, Ye Q, Liu H, et al. Wood density predicts mortality threshold for diverse trees[J]. New Phytologist, 2021, 229 (6): 3053-3057.

    [69]

    He M, Shishov V, Kaparova N, et al. Process-based modeling of tree-ring formation and its relationships with climate on the Tibetan Plateau[J]. Dendrochronologia, 2017, 42: 31-41. doi: 10.1016/j.dendro.2017.01.002.

    [70]

    Chen F, Wang H, Yuan Y. Divergent growth response of Qinghai spruce to recent climate warming in the arid northeastern Tibet Plateau[J]. Asian Geographer, 2017, 34 (2): 169-181.

    [71]

    Waring R H, Gao L. Recent reduction in the frequency of frost accounts for most of the increased growth of a high elevation spruce forest in Northwestern China[J]. Trees, 2016, 30 (4): 1225-1236.

    [72]

    施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23 (2): 152-164. http://www.dsjyj.com.cn/article/id/dsjyj_9211

    Shi Yafeng, Shen Yongping, Li Dongliang, et al. Discussion on the present climate change from warm-dry to warm wet in Northwest China[J]. Quaternary Sciences, 2003, 23 (2): 152-164. http://www.dsjyj.com.cn/article/id/dsjyj_9211

    [73]

    景升利, 杨海龙, 王佳庭. 黄土高寒区浅山人工林植物群落生态位特征研究[J]. 水土保持, 2020, 8 (4): 23-37.

    Jing Shengli, Yang Hailong, Wang Jiating. Niche characteristics of plant communities in shallow mountain plantations in loess alpine region[J]. Open Journal of Soil and Water Conservation, 2020, 8 (4): 23-37.

    [74]

    郭滨德, 张远东, 王晓春. 川西高原不同坡向云、冷杉树轮对快速升温的响应差异[J]. 应用生态学报, 2016, 27 (2): 354-364. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201602004.htm

    Guo Binde, Zhang Yuandong, Wang Xiaochun. Response of Picea purpurea and Abies faxoniana tree rings at different slope aspects to rapid warming in western Sichuan, China[J]. Chinese Journal of Applied Ecology. 2016, 27 (2): 354-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201602004.htm

    [75]

    Gao L, Gou X, Deng Y, et al. Assessing the influences of tree species, elevation and climate on tree-ring growth in the Qilian Mountains of Northwest China[J]. Trees, 2017, 31(2): 393-404.

    [76]

    彭剑峰, 勾晓华, 陈发虎, 等. 坡向对海拔梯度上祁连圆柏树木生长的影响[J]. 植物生态学报, 2010, 34 (5): 517-525. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201005008.htm

    Peng Jianfeng, Gou Xiaohua, Chen Fahu, et al. Influences of slope aspect on the growth of Sabina przewalskii along an elevation gradient in China's Qinghai Province[J]. Chinese Journal of Plant Ecology, 2010, 34 (5): 517-525. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201005008.htm

    [77]

    Liang E, Shao X, Eckstein D, et al. Topography-and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau[J]. Forest Ecology and Management, 2006, 236 (2-3): 268-277.

    [78]

    Qin L, Shang H, Liu W, et al. Differential response of radial growth and δ13C in Qinghai spruce(Picea crassifolia)to climate change on the southern and northern slopes of the Qilian Mountains in Northwest China[J]. Journal of Forestry Research, 2024, 35 (1): 58. doi: 10.1007/s11676-024-01711-z.

  • 加载中

(6)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2024-03-14
修回日期:  2024-05-11
刊出日期:  2024-07-30

目录