
NO.6 XU Daosheng, SHAO Aimei and QIU Chongjian 717

Doppler Radar Data Assimilation with a Local SVD-En3DVar

Method

XU Daosheng1,2 (
�����

), SHAO Aimei1,2∗ ( ����� ), and QIU Chongjian1 ( 	�
� )
1 Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Key Laboratory of

Arid Climate Change and Disaster Reduction of Gansu Province, College of Atmospheric Sciences,

Lanzhou University, Lanzhou 730000

2 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081

(Received December 12, 2011; in final form March 25, 2012)

ABSTRACT

An observation localization scheme is introduced into an ensemble-based three-dimensional variational
(3DVar) assimilation method based on the singular value decomposition technique (SVD-En3DVar) to im-
prove assimilation skill. A point-by-point analysis technique is adopted in which the weight of each obser-
vation decreases with increasing distance between the analysis point and the observation point. A set of
numerical experiments, in which simulated Doppler radar data are assimilated into the Weather Research
and Forecasting (WRF) model, is designed to test the scheme. The results are compared with those ob-
tained using the original global and local patch schemes in SVD-En3DVar, neither of which includes this
type of observation localization. The observation localization scheme not only eliminates spurious analysis
increments in areas of missing data, but also avoids the discontinuous analysis fields that arise from the local
patch scheme. The new scheme provides better analysis fields and a more reasonable short-range rainfall
forecast than the original schemes. Additional forecast experiments that assimilate real data from 10 radars
indicate that the short-term precipitation forecast skill can be improved by assimilating radar data and the
observation localization scheme provides a better forecast than the other two schemes.
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1. Introduction

Variational data assimilation, both four-

dimensional variational (4DVar) and three-

dimensional variational (3DVar), and ensemble

Kalman filtering (EnKF) are the two most impor-

tant approaches in current atmospheric data assimila-

tion. One major drawback of the current variational

method is the assumption that the background er-

ror covariances are static, nearly homogeneous and

isotropic (Parrish and Derber, 1998; Courtier, 1997;

Cohn et al., 1998; Lorenc, 2003). The EnKF ap-

proach (Evensen, 1994; Houtekamer and Mitchell,

2001; Anderson, 2001) provides an alternative to vari-

ational data assimilation. The EnKF estimates the

flow-dependent background error covariances from an

ensemble of short-term forecasts, and it is easy to im-

plement without tangent-linear and adjoint models.

The development of hybrid methods that combine

the advantages of the variational and EnKF meth-

ods has aroused wide attention in recent years. For

example, hybrid approaches that combine EnKF and

3DVar (e.g., Hamill and Snyder, 2000; Zupanski, 2005;

Buehner, 2005) use flow-dependent background error

covariances constructed by ensemble forecasts within

a variational framework. Several algorithms have

also been designed to combine forecast ensembles and

4DVar (Qiu et al., 2007; Liu et al., 2008; Zhang et al.,
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2009; Tian et al., 2008; Wang et al., 2009). Experi-

ments using these algorithms have shown that hybrid

schemes are able to produce better results than either

3DVar or 4DVar.

Qiu et al. (2007) proposed an ensemble-based

4DVar approach that uses the singular value de-

composition (SVD) technique (hereafter called SVD-

En4DVar for short). This was later extended by Shao

et al. (2009). SVD-En4DVar is a hybrid method that

avoids the use of tangent-linear and adjoint models.

The SVD technique is used to extract the leading sin-

gular vectors from an ensemble of four-dimensional

(4D) perturbation fields produced by the model, then

a linear combination of the extracted singular vectors

is used to fit 4D innovation data (observation minus

background) to produce an incremental analysis. Qiu

et al. (2007) showed that this method is robust even

when the model is imperfect and the observations are

incomplete, although a smaller ensemble will produce

larger truncation errors in the analysis variables dur-

ing the expansion process. In addition, this expan-

sion algorithm allows an observation at any point to

influence the analysis at all grid points. Spurious cor-

relations caused by sample errors will lead to larger

analysis errors in the absence of observations. This

phenomenon is especially obvious for radar data as-

similation with incomplete observations. The analysis

variables are expanded on a series of base vectors (the

number of which cannot exceed the number of forecast

members) using the SVD technique.

For the aforementioned reasons, a localization

technique is imperative for application of the SVD-

En4DVar method to meso- and micro-scale data as-

similation. The forecast error covariances are not used

directly in the SVD-En4DVar method; it is therefore

difficult to apply covariance localization techniques

such as the Schur product method (Gaspari and Cohn,

1999). Xu et al. (2011) recently adopted a local patch

localization scheme in an emsemble-based 3DVar ap-

proach (SVD-En3DVar) to reduce the influence of spu-

rious long-distance correlations among error covari-

ances. In this localization scheme, the analysis do-

main is separated into many subdomains (called lo-

cal patches). The analysis is then performed indepen-

dently in each local patch. This procedure limits the

influence of each individual observation to a smaller

region. This scheme is equivalent to achieving local-

ization with a heaviside weighting function (i.e., the

weight of an observation is equal to 1 within the local

patch and 0 outside of the local patch). As a result,

the analysis increment is discontinuous at the edges of

each local patch. Furthermore, observations that are

far from the center of the local patch may still have

a disproportionately large contribution to the analysis

increment at the center point.

Hunt et al. (2007) solved similar problems in

the local EnKF by applying an observation localiza-

tion scheme in which the observational error covari-

ance was weighted according to distance from the cen-

ter of the local patch. In this paper, we introduce

a similar observation localization scheme into SVD-

En3DVar to evaluate the resulting improvement in as-

similation skill. The SVD-En3DVar results with the

global scheme and the local patch scheme are pro-

vided for comparison. The impacts of the different

localization schemes are tested by conducting a se-

ries of assimilation and forecast experiments in which

the SVD-En3DVar method is applied to simulated and

real radar observations within the Weather Research

and Forecasting (WRF) model framework.

This paper is organized as follows. The SVD-

En3DVar method and two localization schemes are

described in Section 2. The model and experimental

design are described in Section 3. Test results using a

single radar observation are shown in Section 4. Model

experiments using simulated radar data are reported

and the sensitivity of the results to various localization

parameters is discussed in Section 5. Experiments us-

ing real radar data are presented in Section 6. The

results are summarized and discussed in Section 7.

2. SVD-En3DVar method and localization sch-

emes

Consider an assimilation step performed at time

t = t0. A suitable model integration time (denoted by

τ) is chosen to generate the perturbed forecast ensem-

ble. Perturbation fields are produced for each member

of the forecast ensemble according to the method de-

scribed by Xu et al. (2011). In this method, pseudo-
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random perturbations in temperature and specific hu-

midity fields are taken as observation innovations. A

3DVar system is then used to assimilate these ob-

servation innovations and generate the perturbation

fields for all variables. These perturbation fields are

then added to the initial fields at time t = t0 − τ ,

yielding a set of perturbed initial fields. The per-

turbed forecast ensemble (which contains M members

denoted by um with m = 1, · · · ,M) is obtained by in-

tegrating the model with this set of perturbed initial

fields from t = t0 − τ to t = t0. The forecast with

unperturbed initial fields is taken as the background

state (denoted by ub). Two sets of perturbations are

then calculated, ∆um = um − ub in grid space and

∆dm = H(um) − H(ub) in observation space, where

H is the observation operator. Combining the pertur-

bations in grid space and observation space yields the

vector

am = (∆u
T
m,∆dT

m)
T. (1)

The dimension of vector am is Nv × Nx × No,

where Nv is the number of the model variables, Nx is

the number of the spatial grid points, and No is the

number of observations. A matrix A is constructed

from these deviation vectors as

A = (a1,a2, · · · ,aM ). (2)

The singular value decomposition (SVD) of A

yields:

A = BΛV T, (3)

where Λ is a diagonal matrix composed of the singular

values of A with λ1 > λ2 > · · · > λM > 0. B is an

N×M rectangular matrix composed of the firstM left

singular vectors of A, and V is an orthogonal matrix

composed of the right singular vectors of A. Similar

to the mth column vector of A in Eq. (1), the mth

column vector of B can be written in the partitioned

form

bm = (b
uT
m , bdT

m )
T, (4)

where bu
m and b

d
m correspond to ∆um and ∆dm in Eq.

(1), respectively.

The vector x = (∆uT,dT)T can be expressed as

the linear combination of the leading p singular vectors

in B:

x =

p
∑

r=1

αrbr = bα. (5)

From Eq. (4), we obtain

∆u =

p
∑

r=1

αrb
u
r = b

uα (6)

and

∆d =

p
∑

r=1

αrb
d
r = b

dα. (7)

The 3DVar cost function is

J(∆u) = ∆uTP−1∆u+ (H∆u−∆y)T

·O−1(H∆u−∆y), (8)

where P is the background error covariance matrix.

This matrix is similar to that used in conventional

EnKF, where P ≈ buΛ2
P (b

u)T/(M − 1). O is the ob-

servation error covariance matrix, y is the observation

and ∆y = y −Hub. Using Eqs. (6) and (7), the cost

function in control variable α space can be written as:

J(α) = (M − 1)αTΛ−2
P α

+

p
∑

r=1

(αrb
d
r −∆y)

TO−1(αrb
d
r −∆y). (9)

The control variable α is obtained by minimizing this

cost function, and the analysis increment in the patch

can be computed according to Eq. (6).

The observation operators for radial velocity Vr

and reflectivity Z are

Vr = u
x− xi

ri

+ v
y − yi

ri

+ (w − vT )
z − zi

ri

(10)

and

Z = 43.1 + 17.5lg(ρqr), (11)

respectively, where u, v, and w represent the zonal,

meridional, and vertical components of wind, (x, y, z)

is the location of the radar, (xi, yi, zi) is the location of

observation i, ri is the distance between the radar and
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the observation, vT (m s
−1) is the mass-weighted fall

velocity of rainwater, ρ is the density of air, and qr is

the density of rainwater. The control variables are the

three wind components (u, v, and w), the perturbed

potential temperature (θp), the perturbed geopoten-

tial (Hp), and the mixing ratios of water vapor (qv),

rain water (qr), and cloud water (qc).

In the original SVD-En4DVar (Shao et al., 2009),

the analysis field is treated as a whole and all of

the observations are assimilated simultaneously. This

approach (hereafter called the global (GB) scheme)

means that p-dimensional orthogonal vectors are used

to fit the entire set of observations and analysis fields.

Many studies of EnKF have demonstrated that local-

ization techniques are necessary if the size of the en-

semble used to estimate background error covariance is

small. The Schur product method (Gaspari and Cohn,

1999) is widely used for localization in EnKF. The

Schur product method reduces covariances through an

elementwise multiplication of the background error co-

variance matrix and a correlation function with local

support. This procedure acts to smooth the increment

fields because it reduces the background error covari-

ance in a distance-dependent manner, with greater

reductions farther from the observation. The Schur

product method could be applied in SVD-En3DVar

by multiplying the correlation function matrix and the

matrix AAT; however, the dimension of matrix AAT

is very high (N = Nv×Nx×No). The eigenvector de-

composition of AAT would be very difficult even for a

small local patch. The dimension of the matrix ATA

(M ×M) is much lower than that of AAT; therefore,

the eigenvector decomposition of ATA = V Λ2V 2

could be used to obtain V and Λ. B would then

be computed as B = AV Λ−1 according to Eq. (3).

Even so, the Schur product method is still not suitable

for application within SVD-En3DVar.

Xu et al. (2010) introduced a local patch scheme

(hereafter called the LP scheme) into SVD-En3DVar.

The LP scheme is a point-to-point assimilation algo-

rithm that separates the global grid into independent

local patches with horizontal and vertical grid lengths

lh and lv, respectively. Each grid point has its own lo-

cal patch and is located at the center of a local patch.

The assimilation process is performed independently

for each patch, then the analysis values at the center

point of each local patch are combined to obtain the

global analysis field. In this way, the impact of any

given observation is confined to its own local patch,

and the dimension of matrix A is much lower in each

local patch than in the full domain. The defect of this

scheme is the fixed weight assigned to each observa-

tion, which leads to discontinuous analysis increments

at the edge of each local patch and does not completely

eliminate the influence of spurious long-distance cor-

relations within a local patch. Fortunately, it is con-

venient to adopt observation localization rather than

covariance localization under this point-to-point as-

similation algorithm (Hunt et al., 2007; Miyoshi and

Yamane, 2007). Observation localization is realized

by multiplying observational error variance by the in-

verse of a localization weighting function (such as the

Gaussian function). In this paper we introduce an ob-

servation localization scheme (hereafter called the OL

scheme) into SVD-En3DVar. The Gaussian function

is used as the weighting function for observation local-

ization:

w(σh, σv) =



















exp
[(

−

r2
h

σ2
h

)

·

(

−

r2
v

σ2
v

)]

,

rh 6 lh and rv 6 lv,

0, rh > lh or rv > lv,

(12)

where rh and rv denote the horizontal and vertical dis-

tance between the observation point and the center of

the local patch, respectively; lh and lv are the same

horizontal and vertical grid lengths of the local patch

as in the LP scheme; and σh and σv are the local-

ization scale parameters in the horizontal and vertical

directions, respectively. As in the LP scheme, the as-

similation is performed independently for each local

patch in the OL scheme; however, the singular vectors

adopted during the assimilation are the same as those

used in the GB scheme (i.e., those obtained from the

decomposition of matrix A over the whole domain).

This approach results in considerable savings in com-

putational cost relative to the LP scheme (in which

the singular vectors are calculated independently for

each local patch).
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3. Model and experimental design

The advanced WRF model is used to perform the

assimilation and forecast experiments, with initial and

boundary conditions provided by NCEP-FNL 1-degree

analysis data. All experiments were conducted on a

180×180 grid mesh with a grid spacing of 7 km. The

center of the analysis domain is located at 22.8◦N,

112.8◦E. The model is integrated on 27 vertical layers,

with the model top at 50 hPa. The Ferrier scheme

is used to model microphysical processes in all exper-

iments. The assimilation time is set to 1200 UTC 6

June 2008. The background state is generated accord-

ing to a 6-h forecast integrated from 0600 UTC 6 June

2008 to the analysis time. The background horizontal

wind field on the 8th model level (σ = 0.86; approx-

imately 850 hPa) is shown in Fig. 1. The flow is

strong and southwesterly near the Leizhou Peninsula,

with obvious convergence near the center of Guang-

dong Province.

The ensemble samples are produced according to

the method described in Section 2, with the size of the

ensemble fixed at 30. Horizontal wind perturbations

on the 8th model level of the first ensemble member at

the initial time and analysis time are shown in Fig. 2.

The magnitude of the initial perturbation is large in

most areas except for Jiangxi, with a number of eddies

(Fig. 2a). Following the 6-h forecast, the perturbation

is mainly located in the areas of strongest rainfall over

Guangdong and the sea south of Guangdong; the per-

turbation is relatively weak in all other places (Fig.

2b).

The radial velocity and reflectivity are assimilated

into SVD-En3DVar using the three schemes outlined

above (the GB, LP, and OL schemes). Three sets of as-

similation experiments are performed for each scheme,

Fig. 1. Background horizontal wind field on the 8th

model level at 1200 UTC 6 June 2008.

Fig. 2. Perturbed horizontal wind field on the 8th model level according to the first ensemble member at (a) the initial

time (0600 UTC 6 June 2008) and (b) the analysis time (1200 UTC 6 June 2008).
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i.e., a single observation experiment, a simulated ob-

servation experiment, and a real observation experi-

ment. The results of these experiments are analyzed

and compared in the following sections.

4. Experiments with a single radar observa-

tion

A single observation experiment is performed to

test the efficiency of the OL scheme in SVD-En3DVar,

with the other two schemes (the GB and LP schemes)

used as a comparison. The grid point (98, 102) on the

8th model level is selected as the position of the single

observation. This grid point is located to the north of

the Guangzhou radar (grid point (98, 94)). The ob-

servation innovation is set to 5 m s−1.

The observation is located directly northward of

the radar site; the increment of the radar radial veloc-

ity observation is therefore very close to the meridional

component (v) of horizontal wind. Figure 3 shows the

analysis increment of v at the 8th model level after

the single observation is assimilated using each of the

above three schemes. The assimilation of a single ob-

servation impacts the whole analysis field when the

(GB) scheme is used (Fig. 3a), with relatively large

analysis increments even at grid points located far

from the observation. Non-zero analysis increments

are confined to the local patch when the LP scheme

is used (Fig. 3b), with all analysis increments outside

of the local patch equal to zero. This distribution re-

sults in a discontinuity at the edge of the local patch.

Non-zero analysis increments are mainly distributed

near the observation when the OL scheme is used (Fig.

3c), with reduced magnitudes at increasing distance

from the observation. The sharp discontinuity intrin-

sic to the LP scheme is greatly alleviated when the OL

scheme is applied instead.

5. Experiments with simulated radar data

5.1 Simulated radar data

The simulated observations used in the observ-

ing system simulation experiments (OSSEs) are dis-

tributed according to the real radar network. The

radar network consists of 10 S-band Doppler radars

located at Haikou, Guangzhou, Shaoguan, Meizhou,

Shantou, Yangjiang, Liuzhou, Nanning, Guilin, and

Longyan, respectively. This network covers most of

the southern part of South China. Each radar volume

scan covers 9 elevation angles: 0.5◦, 1.5◦, 2.4◦, 3.4◦,

4.3◦, 6.0◦, 9.9◦, 14.6◦, and 19.5◦. The gate spacing is

1.0 km for reflectivity and 0.25 km for radial velocity.

The locations of the 10 radars are indicated in Fig. 4a,

and the distribution of available observational data on

the 8th model level is shown in Fig. 4b. The simu-

lated radar data are interpolated to the model grid for

analysis.

The simulated radar data are calculated by

adding random errors to the “true” field. The stan-

dard deviation of the random errors is 1.0 m s−1 for

radial velocity and 5 dBZ for reflectivity. The “true”

field is generated by integrating the WRF model from

an initial state to the analysis time, where the ini-

tial state is obtained by adding a perturbation field

to the background field at 0600 UTC 6 June 2008.

The perturbation field is obtained by subtracting the

24-h forecast valid at 0600 UTC 6 June 2008 from

the 12-h forecast valid at the same time. Figure 5

shows the true horizontal wind field on the 8th model

level. The center of the cyclonic vortex is strength-

ened and shifted eastward (to the middle of Guang-

dong Province) relative to the background field.

5.2 Sensitivity to the localization parameters

Several sets of OSSEs were conducted to exam-

ine the sensitivity of the OL scheme to the values of

the observation localization parameters, with partic-

ular focus on the localization scales in the horizontal

and vertical directions. In one set of experiments, the

horizontal localization scales were set variously to 3,

5, 7, or 10 grid lengths without vertical localization.

This set of experiments was then used to investigate

the sensitivity of the assimilation to the horizontal lo-

calization parameters, and was compared with results

obtained using the LP scheme with lh = 20 and lv =

20. The results are listed in Table 1. No matter which

of the four localization scales was used, the root-

mean-square errors (RMSEs) from the OL scheme are

smaller than those from the LP scheme. The optimal
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Fig. 3. Distribution of analysis increments with the assimilation of a single observation on the 8th model level.

Assimilation is accomplished using the three schemes outline in Section 3: (a) the GB scheme; (b) the LP scheme; and

(c) the OL scheme. The dotted area indicates the area of the local patch. The solid circle represents the observation

point and the solid square represents the location of the Guangzhou radar site.

assimilation is obtained with localization scale σh =

5. The accuracy of the analysis is slightly sensitive to

the choice of horizontal localization scales.

The horizontal localization scale σh was then fixed

to 5 grid spaces and the vertical localization scale var-

ied to 3, 5, and 9 grid spaces. This set of experiments

was used to investigate the sensitivity of the analysis to

the vertical localization scale. The analysis errors de-

crease slightly when vertical observation localization

is used (Table 2). The result is best when σv = 5.

Therefore, σh and σv are both fixed to 5 grid spaces

in the following experiments.

5.3 Analysis increments in horizontal winds

The analysis increment in the horizontal wind

fields is compared with the true increments (i.e., the

difference between the true field and the background;

Fig. 6a) to illustrate the performance of the three
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Fig. 4. (a) Location of the 10 radars in the real radar network in South China and (b) distribution of available simulated

observation data on the 8th model level.

Fig. 5. True horizontal wind field on the 8th model level

at the analysis time (1200 UTC 6 June 2008).

Table 1. Root-mean-square error (RMSE) of analy-

sis assimilated using different horizontal localization

scales (σh)

u (m s−1) v (m s−1) θp (K) qv (kg kg−1)

Background 3.47 3.44 0.886 7.69E-04

LP 3.17 3.21 0.879 7.63E-04

OL (σh=3) 3.02 3.13 0.877 7.35E-04

OL (σh=5) 2.93 3.07 0.870 7.32E-04

OL (σh=7) 2.95 3.08 0.873 7.34E-04

OL (σh=10) 2.96 3.10 0.874 7.36E-04

Table 2. Root-mean-square error (RMSE) of analy-

sis field with different vertical localization scales (σv)

and fixed horizontal localization scale (σh = 5)

Without vertical With vertical localization

localization σv=3 σv=5 σv=9

u (m s−1) 2.93 2.91 2.87 2.91

v (m s−1) 3.07 3.04 3.00 3.03

θp (K) 0.870 0.858 0.857 0.863

qv (kg kg−1) 7.32E-04 7.32E-04 7.28E-04 7.28E-04

localization schemes in SVD-En3DVar. The analysis

increment for the GB scheme (Fig. 6b) is consistent

with the true increment in some data-void regions,

such as in the area of the cyclonic vortex over the

sea southeast of Guangdong. This consistency indi-

cates that the GB scheme has some ability to rea-

sonably extend observed information to data-void ar-

eas. However, larger spurious analysis increments arise

in some regions far from the observation points, such

as west of Guangxi, Hunan, Jiangxi, Fujian, and the

South China Sea, suggesting that error covariance be-

tween these long-distance grid points is suspect. These

spurious analysis increments are reduced substantially

when the OS and LP schemes are used. Some spuri-

ous analysis increments still persist over the sea south

of Guangdong when the LP scheme is used (Fig. 6c),

and the analysis increment is discontinuous in south-

ern Jiangxi Province. This discontinuity is caused by



NO.6 XU Daosheng, SHAO Aimei and QIU Chongjian 725

the sudden change in the weight assigned to specific

observations at the edge of a local patch in the LP

scheme (in contrast to the fixed weight of observations

inside the local patch). These limitations are solved

in the OL scheme by the introduction of a distance-

dependent observation weighting scheme.

In areas where observations are dense, such as

Guangdong Province, the analysis increment is consis-

tent with the true increment in all the three schemes.

Figure 6 indicates that the analysis increment is

smaller than the true increment when the GB scheme

is used. The primary reason for this discrepancy is

that the GB scheme uses limited singular vectors to fit

all observations over the experimental domain, leading

to the loss of observed information. These problems

are further explored by calculating the relative obser-

vation innovation

ε =

√

n
∑

i=1

[yi −H(uai)]2

√

n
∑

i=1

[yi −H(ubi)]2

, (13)

where y is the observation, ua and ub are analysis field

Fig. 6. Increment of horizontal winds on the 8th model level according to (a) the true state of the model, (b) analysis

using the GB scheme, (c) analysis using the LP scheme, and (d) analysis using the OL scheme.
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Fig. 7. Analysis increment of horizontal winds on the 8th model level using (a) the LP scheme and (b) the OL scheme.

The symbol “+” denotes an observation point.

and background field, respectively, and H denotes the

observational operator. The magnitude of the rela-

tive observation innovation reflects the contribution

of the observations to the analysis. That is to say,

the larger relative observation innovations mean that

less observational information is merged into the ana-

lysis. The relative observation innovation is 0.891 for

the GB scheme, 0.616 for the LP scheme, and 0.628

for the OL scheme. The relatively high value for the

GB scheme implies that relatively little observational

information is absorbed when the GB scheme is used;

this situation is obviously improved when either of the

two localization schemes (LP or OL) is introduced.

Figure 7 shows the analysis increment for hori-

zontal winds in a smaller domain (24◦–26◦N, 114◦–

116◦E) with only radial velocity observations on the

8th model level assimilated to better understand the

performance of the LP and OL localization schemes.

The LP and OL schemes are consistent in areas where

observations are dense; however, a large gradient in

the analysis increment occurs at the edge of the ob-

serving network when the LP scheme is used. This

gradient is substantially reduced when the OL scheme

is used, as mentioned earlier.

5.4 Precipitation forecast

The previous section shows that introducing a lo-

calization technique (especially the OL scheme) can

improve the assimilation skill of SVD-En3DVar. In

this section, a series of forecasting experiments are

conducted both with and without the above assimi-

lation schemes to investigate the impacts of the lo-

calization technique on precipitation forecasts. The

12-h forecast results are shown at 6-h intervals in

Figs. 8 and 9. The actual 6-h cumulative precipitation

from 1200 to 1800 UTC 6 June 2008 was mainly dis-

tributed in the middle of Guangdong Province (Fig.

8a). A small amount of precipitation occurred in

southeastern Guangxi. The intensity and distribu-

tion of forecasted precipitation without observational

data assimilation is obviously different from the ac-

tual intensity and distribution. For example, the fore-

cast underestimates the intensity of rainfall in eastern

Guangdong and predicts spurious rainfall in southern

Jiangxi, while the distribution of predicted rainfall in

southeastern Guangxi is inconsistent with the actual

distribution. The precipitation forecast can be im-

proved with assimilation of observational data (Figs.

8c, d). When observational data are assimilated, the

intensity of the predicted rainfall in eastern Guang-

dong is stronger and the spurious rainfall forecast for

southern Jiangxi is weaker. The precipitation forecast

in eastern Guangdong is much closer to the truth when

the OL localization scheme is used than when the LP
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Fig. 8. 6-h cumulative precipitation from 1200 to 1800 UTC 6 June 2008 in experiments with simulated radar data.

(a) Observation, (b) forecast without data assimilation, (c) forecast with data assimilation using the LP scheme, and (d)

forecast with data assimilation using the OL scheme.

localization scheme is used. The spurious precipita-

tion in the forecast for southern Jiangxi persists when

the LP scheme is used; it is eliminated when the OL

scheme is used. The application of the OL scheme

in SVD-En3DVar substantially improves the precipi-

tation forecast in this case. The results for the subse-

quent 6 hours (Fig. 9) are similar to those shown in

Fig. 8, although the improvement of the forecast with

data assimilation is less clear.

The quality of the rainfall forecast is quantita-

tively evaluated using the threat score (TS). Figure

10 shows TSs calculated using different precipitation

thresholds. The TS for cumulative precipitation over

the first 6-h period is higher when data assimilation

is performed and is the highest when the OL scheme

is used. When data assimilation is performed for the

subsequent 6-h period, the TS is slightly higher than

or equal to that without assimilation.

5.5 Extended assimilation experiments

The experiments described above indicate that

the OL scheme represents an improvement over the
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LP scheme. The effects of the assimilation are not

always obvious, however, especially for non-observed

variables such as temperature and humidity. This may

result from the limited nature of the background field

at the start time of assimilation process, as this field

seldom contains mesoscale information, or an insuffi-

ciently long integration time for the perturbation sam-

ples. In this case, the estimated background error

covariance cannot accurately reflect the structure of

the forecast error. A pair of assimilation cycle experi-

ments using the OL and LP localization schemes is

performed to improve the effects of the data assimi-

lation. These experiments use the assimilation cycle

technique to institute a continuous 2-h assimilation

process at 30-min intervals from the original assimila-

tion time (1200 UTC 06 June 2008) to 1400 UTC 6

June 2008. The procedure is similar to that used in

the traditional EnKF. The perturbed forecast ensem-

ble contains 30 members, obtained using the method

described in Section 2. These ensemble members are

used as initial fields for 30-min forecasts conducted us-

ing the WRF model. These forecasts represent a new

ensemble of initial conditions for the next assimilation

cycle. Five of these assimilation cycles are performed

using each of the OL and LP localization schemes. A

6-h precipitation forecast is subsequently performed to

Fig. 9. As in Fig. 8, but for the 6-h period from 1800 UTC 6 to 0000 UTC 7 June 2008.
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Fig. 10. Threat scores of 6-h cumulative rainfall forecasts without assimilation of simulated observations (NS) and with

data assimilation using either the LP or OL localization scheme (LP and OL, respectively). (a) Precipitation threshold

= 1 mm and (b) precipitation threshold = 15 mm.

test and compare the effect of the assimilation when

the analysis field at 1400 UTC 6 June 2008 is used as

the initial field.

The RMSEs of the analysis fields using the LP

and OL schemes at 1400 UTC 6 June are listed in Ta-

ble 3. The results without data assimilation also listed

here for comparison (first row). The RMSEs of the

analysis fields are substantially reduced after five as-

similation cycles, especially the errors of temperature

and humidity. The assimilation provides a greater im-

provement when the OL scheme is used than when

the LP scheme is used. These results indicate that the

quality of the estimated error covariance is improved

by instituting assimilation cycles in which observed in-

formation is absorbed continuously. The assimilation

is in turn improved by this improvement in the esti-

mated error covariance. The improvement of the 6-h

precipitation forecast associated with data assimila-

tion is more pronounced when assimilation cycles are

used (Fig. 11) than when they are not used (Fig. 8).

Relative to forecasts without data assimilation (Fig.

11b), the area of precipitation is reduced by including

Table 3. Root-mean-square error (RMSE) of back-

ground or analysis fields after 5 assimilation cycles
u (m s−1) v (m s−1) θp (K) qv (kg kg−1)

Background 3.00 2.93 0.808 7.72E-04

LP 2.35 2.46 0.635 6.34E-04

OL 2.08 2.12 0.578 5.71E-04

data assimilation. The area and pattern of rainfall are

consistent with the observations.

6. Experiments with real radar data

In this section, a pair of assimilation and forecast-

ing experiments is performed using real observations

to further test the performance of the OL scheme. The

observations come from the same radar network as in

the OSSE, but are actual radar observations (rather

than simulation). The forecast length is 12 h. The ob-

served precipitation comes from MICAPS data. Based

on the OSSE results, the observation localization scale

parameters are fixed to 5 grid spaces in both the hor-

izontal and vertical directions.

The observations (Fig. 12a) indicate that pre-

cipitation occurred mainly in southern Guangdong

Province. The forecasts without assimilation show

a broader distribution of rainfall, with the center of

maximum precipitation situated to the east of the ob-

served precipitation in Guangdong. Moreover, these

forecasts predict spurious rainfall in southern Jiangxi

and southern Fujian. The precipitation forecasts using

the two data assimilation schemes are more consistent

with the observations. The horizontal area and inten-

sity of the strongest rainfall are reduced relative to the

forecast without data assimilation, and the center of
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Fig. 11. As in Fig. 8, but for the 6-h period from 1400 to 2000 UTC 6 June 2008.

rainfall is shifted toward the west. The predicted hori-

zontal extent and intensity of spurious precipitation in

southern Jiangxi and southern Fujian are smaller with

the OL localization scheme relative to the LP scheme.

The area of spurious rainfall in southeastern Guangxi

is also alleviated (see Fig. 12d). The observed rain-

fall over the following six hours was located mainly

in southeastern Guangdong (Fig. 13a). The forecast

without data assimilation indicates strong rainfall far

to the east of the observed rainfall, and the intensity of

the precipitation center is weaker than observed. The

forecast predicts substantial amounts of precipitation

in southern Jiangxi and Fujian. After data assimila-

tion, the intensity of the forecasted rainfall in Guang-

dong is stronger and closer to that observed. A small

area of spurious rainfall in southwestern Guangdong

appears in the forecast using the LP scheme, but not

in the forecast using the OL scheme.

The TSs of the rainfall forecasts before and after

assimilation are shown in Fig. 14. These scores are

substantially improved by data assimilation, with the

best scores resulting from the use of the OL localiza-

tion scheme.
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Fig. 12. As in Fig. 8, but for the 6-h period from 1200 to 1800 UTC 06 June 2008 in experiments with real radar

data.

7. Conclusions

An observation localization scheme (OL) is intro-

duced into the SVD-En3DVar system for radar data

assimilation. This scheme is based on the local patch

(LP) localization scheme. Both the global (GB) and

LP schemes have been used as comparisons to evaluate

the OL scheme. The primary conclusions are drawn

as follows.

(1) In areas where observational data are dense,

the analysis fields using the three schemes are con-

sistent; however, the differences between the three

schemes are often substantial in regions where obser-

vational data are sparse. Considerable analysis incre-

ments occur far from the observational position when

the GB scheme is used. These analysis increments

lack credibility particularly when the ensemble size is

small. The analysis increments are confined to limited

regions when the LP method is used; however, this

method yields discontinuities in analysis increments

in the transitional zones between areas with dense ob-

servations and areas with sparse observations. Both
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Fig. 13. As in Fig. 8, but for the 6-h period from 1800 UTC 6 June to 0000 UTC 7 June 2008 in experiments with

real radar data.

of these problems are alleviated when the OL scheme is

used. Furthermore, statistical analysis indicates that

the RMSEs in analysis fields are less when the OL

scheme is used than when either of the other two

schemes is used. Radar data assimilation can im-

prove the skill of precipitation forecasts. Of these

three schemes, the OL scheme provides the greatest

improvement in precipitation forecast skill.

(2) The efficiency of the OL scheme is related

to the localization scales; however, sensitivity experi-

ments show that the assimilation skill is not sensitive

to localization scales within a certain range. Assimi-

lation and forecast experiments with real radar data

from a heavy rainfall event also indicate that radar

data assimilation can improve the skill of precipita-

tion forecasts. The OL scheme offers more improve-

ment than the LP scheme.

(3) Observational information can be continu-

ously absorbed using assimilation cycles. This pro-

cedure can substantially improve the quality of analy-

sis fields, resulting in additional improvements in the

skill of precipitation forecasts. The full potential of as-

similation cycles should be further explored in future

work.
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Fig. 14. As in Fig. 10, but for experiments with or without real radar data assimilation.
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