首页 | 官方网站   微博 | 高级检索  
     


Modified treatment of intercepted snow improves the simulated forest albedo in the Canadian Land Surface Scheme
Authors:Paul A Bartlett  Diana L Verseghy
Affiliation:Climate Processes Section, Environment Canada, Toronto, Ontario, Canada
Abstract:The Canadian Land Surface Scheme (CLASS) was modified to correct an underestimation of the winter albedo in evergreen needleleaf forests. Default values for the visible and near‐infrared albedo of a canopy with intercepted snow, αVIS,cs and αNIR,cs, respectively, were too small, and the fraction of the canopy covered with snow, fsnow, increased too slowly with interception, producing a damped albedo response. A new model for fsnow is based on zI*, the effective depth of newly intercepted snow required to increase the canopy albedo to its maximum, which corresponds in the model with fsnow = 1. Snow unloading rates were extracted from visual assessments of photographs and modelled based on relationships with meteorological variables, replacing the time‐based method employed in CLASS. These parameterizations were tested in CLASS version 3.6 at boreal black spruce and jack pine forests in Saskatchewan, Canada, a subalpine Norway spruce and silver fir forest at Alptal, Switzerland, and a boreal maritime forest at Hitsujigaoka, Japan. Model configurations were assessed based on the index of agreement, d, relating simulated and observed daily albedo. The new model employs αVIS,cs = 0.27, αNIR,cs = 0.38 and zI* = 3 cm. The best single‐variable snow unloading algorithm, determined by the average cross‐site d, was based on wind speed. Two model configurations employing ensemble averages of the unloading rate as a function of total incoming radiation and wind speed, and air temperature and wind speed, respectively, produced larger minimum cross‐site d values but a smaller average. The default configuration of CLASS 3.6 produced a cross‐site average d from October to April of 0.58. The best model employing a single parameter (wind speed at the canopy top) for modelling the unloading rate produced an average d of 0.86, while the two‐parameter ensemble‐average unloading models produced a minimum d of 0.81 and an average d of 0.84. © 2015 Her Majesty the Queen in Right of Canada. Hydrological Processes published by John Wiley & Sons, Ltd.
Keywords:forest  albedo  snow interception  unloading  CLASS
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号