火星O2(a1Δg)气辉高光谱分辨辐射传输特性研究

武魁军, 吴传航, 胡向瑞, 王后茂, 熊远辉, 李娟, 何微微. 2023. 火星O2(a1Δg)气辉高光谱分辨辐射传输特性研究. 地球物理学报, 66(5): 1864-1875, doi: 10.6038/cjg2022Q0592
引用本文: 武魁军, 吴传航, 胡向瑞, 王后茂, 熊远辉, 李娟, 何微微. 2023. 火星O2(a1Δg)气辉高光谱分辨辐射传输特性研究. 地球物理学报, 66(5): 1864-1875, doi: 10.6038/cjg2022Q0592
WU KuiJun, WU ChuanHang, HU XiangRui, WANG HouMao, XIONG YuanHui, LI Juan, HE WeiWei. 2023. Hyperspectral-resolved radiative transmission theory of O2(a1Δg) dayglow on Mars. Chinese Journal of Geophysics (in Chinese), 66(5): 1864-1875, doi: 10.6038/cjg2022Q0592
Citation: WU KuiJun, WU ChuanHang, HU XiangRui, WANG HouMao, XIONG YuanHui, LI Juan, HE WeiWei. 2023. Hyperspectral-resolved radiative transmission theory of O2(a1Δg) dayglow on Mars. Chinese Journal of Geophysics (in Chinese), 66(5): 1864-1875, doi: 10.6038/cjg2022Q0592

火星O2(a1Δg)气辉高光谱分辨辐射传输特性研究

  • 基金项目:

    国家自然科学基金项目(41975039, 61705253), 山东省自然科学基金(ZR2021QD088), 山东省高等学校"青创科技支持计划"(2021KJ008)资助

详细信息
    作者简介:

    武魁军, 男, 博士, 副教授, 主要从事光学遥感及空间物理方面的研究.E-mail: wukuijun@ytu.edu.cn

    通讯作者: 何微微, 女, 博士, 副教授, 主要从事光学遥感及空间物理方面的研究.E-mail: heweiwei@ytu.edu.cn
  • 中图分类号: P407

Hyperspectral-resolved radiative transmission theory of O2(a1Δg) dayglow on Mars

More Information
  • 1.27 μm波段的氧分子近红外气辉是火星大气最重要的气辉辐射之一, 该气辉高光谱分辨辐射传输模型的建立对于研制火星探测载荷, 反演火星大气的风场温度场与臭氧浓度, 以及研究火星空间物理, 有重要的科学价值与工程意义.在研究火星大气O2(a1Δg)气辉光化学反应模型的基础上, 提出了O2(a1Δg)气辉体辐射率的计算方法, 并建立了火星大气气辉辐射传输理论; 通过与用于研究火星大气特征的光谱学探测仪(Spectroscopy Spectrograph for the Investigation of Characteristics of the Atmosphere of Mars, SPICAM)的实测数据进行对比, 验证了所建立的火星O2(a1Δg)气辉高光谱分辨辐射传输模型的准确性; 针对火星与地球大气的O2(a1Δg)气辉, 在体辐射率、自吸收效应, 以及临边辐射光谱特性三个方面进行了系统深入的比较, 对比结果表明, 火星大气由于密度低、氧气丰度小, 其自吸收效应可以忽略不计, 但其O2(a1Δg)气辉辐射强度与地球大气相当, 可以用于火星大气的风场温度场与臭氧浓度的探测与反演.

  • 加载中
  • 图 1 

    火星O2(a1Δg)气辉产生机理

    Figure 1. 

    The generation mechanism of Mars O2(a1Δg) dayglow

    图 2 

    临边观测几何路径模型构造

    Figure 2. 

    The construction of geometric path model limb observation

    图 3 

    火星上临边切点高度为20 km时O2(a1Δg)辐射光谱

    Figure 3. 

    O2(a1Δg) radiation spectrum at the critical tangent point height of 20 km on Mars

    图 4 

    7540轨道2 km处测得的O2(a1Δg)强辐射光谱

    Figure 4. 

    The O2(a1Δg) strong radiation spectrum measured at 2 km of the 7540 orbit

    图 5 

    参考光谱

    Figure 5. 

    The reference spectrum

    图 6 

    观测光谱与参考光谱差分计算得到的实验光谱

    Figure 6. 

    Experimental spectrum obtained by difference calculation between observed spectrum and reference spectrum

    图 7 

    实验光谱与理论光谱对比;其中短划线为实验光谱,实线为理论光谱

    Figure 7. 

    Comparison of experimental spectra and theoretical spectra, where the dashed line is the experimental spectrum and the solid line is the theoretical spectrum

    图 8 

    (a) 7540轨道上的O2(a1Δg)气辉倾斜辐射率,其中短划线为SPICAM观测光谱的谱积分,实线为理论计算结果;(b) 理论计算结果和仪器观测结果的统计对比

    Figure 8. 

    (a) O2(a1Δg) dayglow slant emission rate in 7540 orbit, where the dashed line is the spectral integration of the SPICAM observed spectra and the solid line is the theoretical result; (b) Statistical comparison between theoretical calculation results and instrumental observation results

    图 9 

    (a) 地球北半球(45°N)O2(a1Δg)体辐射率;(b) 火星北半球(45°N)O2(a1Δg) 体辐射率

    Figure 9. 

    (a) Earth′s northern hemisphere (45°N) O2(a1Δg) volume emissivity; (b) Mars′northern hemisphere (45°N) O2(a1Δg) volume emissivity

    图 10 

    火星与地球透射率对比

    Figure 10. 

    Comparison of transmittance between Mars and Earth

    图 11 

    地球O2(a1Δg)在不同切线高度(30、50、70、90 km)处的临边辐射与透射光谱;其中红线代表临边辐射光谱,蓝线代表临边透射光谱

    Figure 11. 

    Limb radiation and transmission spectra of Earth O2(a1Δg) at different tangent heights (30, 50, 70, 90 km), which red lines represent limb radiation spectra and blue lines represent limb transmission spectra

    图 12 

    火星O2(a1Δg)不同切线高度(20、30、40、50 km)处的临边辐射光谱

    Figure 12. 

    Limb radiation spectra of Mars O2(a1Δg) at different tangent heights (20, 30, 40, 50 km)

  •  

    Altieri F, Spiga A, Zasova L, et al. 2012. Gravity waves mapped by the OMEGA/MEX instrument through O2 dayglow at 1.27 μm: data analysis and atmospheric modeling. Journal of Geophysical Research: Planets, 117(E11): E00J08, doi: 10.1029/2012JE004065.

     

    Clancy R T, Wolff M J, James P B. 1999. Minimal aerosol loading and global increases in atmospheric ozone during the 1996—1997 martian northern spring season. Icarus, 138(1): 49-63, doi: 10.1006/icar.1998.6059.

     

    Clancy R T, Sandor B J, Wolff M J, et al. 2012. Extensive MRO CRISM observations of 1.27 μm O2 airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations. Journal of Geophysical Research: Planets, 117(E11): E00J10, doi: 10.1029/2011JE004018.

     

    Clancy R T, Smith M D, Lefèvre F, et al. 2017. Vertical profiles of Mars 1.27 μm O2 dayglow from MRO CRISM limb spectra: seasonal/global behaviors, comparisons to LMDGCM simulations, and a global definition for Mars water vapor profiles. Icarus, 293: 132-156, doi10.1016/j. icarus. 2017.04.011. doi: 10.1016/j.icarus.2017.04.011

     

    de Vera J P, Alawi M, Backhaus T, et al. 2019. Limits of life and the habitability of mars: the ESA space experiment BIOMEX on the ISS. Astrobiology, 19(2): 145-157, doi: 10.1089/ast.2018.1897.

     

    Espenak F, Mumma M J, Kostiuk T, et al. 1991. Ground-based infrared measurements of the global distribution of ozone in the atmosphere of Mars. Icarus, 92(2): 252-262, doi: 10.1016/0019-1035(91)90049-Y.

     

    Fairén A G, Davila A F, Lim D, et al. 2010. Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars. Astrobiology, 10(8): 821-843, doi: 10.1089/ast.2009.0440.

     

    Fedorova A, Korablev O, Bertaux J L, et al. 2006a. Mars water vapor abundance from SPICAM IR spectrometer: seasonal and geographic distributions. Journal of Geophysical Research: Planets, 111(E9): E09S08, doi: 10.1029/2006JE002695.

     

    Fedorova A, Korablev O, Perrier S, et al. 2006b. Observation of O2 1.27 μm dayglow by SPICAM IR: seasonal distribution for the first Martian year of Mars Express. Journal of Geophysical Research: Planets, 111(E9): E09S07, doi: 10.1029/2006JE002694.

     

    Gagné M È, Melo S M L, Lefèvre F, et al. 2012. Modeled O2 airglow distributions in the Martian atmosphere. Journal of Geophysical Research: Planets, 117(E6): E06005, doi: 10.1029/2011JE003901.

     

    Gérard J C, Aoki S, Willame Y, et al. 2020. Detection of green line emission in the dayside atmosphere of Mars from NOMAD-TGO observations. Nature Astronomy, 4(11): 1049-1052, doi: 10.1038/s41550-020-1123-2.

     

    Gérard J C, Aoki S, Gkouvelis L, et al. 2021. First observation of the oxygen 630 nm emission in the Martian Dayglow. Geophysical Research Letters, 48(8): e2020GL092334, doi: 10.1029/2020GL092334.

     

    Guslyakova S, Fedorova A A, Lefèvre F, et al. 2014. O2(a1Δg) dayglow limb observations on Mars by SPICAM IR on Mars-Express and connection to water vapor distribution. Icarus, 239: 131-140, doi: 10.1016/j.icarus.2014.05.040.

     

    Harris R D, Adams G W. 1983. Where does the O(1D) energy go?. Journal of Geophysical Research: Space Physics, 88(A6): 4918-4928, doi: 10.1029/JA088iA06p04918.

     

    He W W, Wu K J, Feng Y T, et al. 2019. The radiative transfer characteristics of the O2 infrared atmospheric band in limb-viewing geometry. Remote Sensing, 11(22): 2702, doi: 10.3390/rs11222702.

     

    He W W, Wu K J, Fu D, et al. 2020. Instrument design and forward modeling of near-space wind and temperature sensing interferometer. Optics and Precision Engineering (in Chinese), 28(8): 1678-1689, doi: 10.3788/OPE.20202808.1678.

     

    Krasnopolsky V A. 1997. Photochemical mapping of Mars. Journal of Geophysical Research: Planets, 102(E6): 13313-13320, doi: 10.1029/97JE01085.

     

    Krasnopolsky V A. 2003. Mapping of Mars O2 1.27 μm dayglow at four seasonal points. Icarus, 165(2): 315-325, doi: 10.1016/S0019-1035(03)00214-8.

     

    Krasnopolsky V A. 2009. Seasonal variations of photochemical tracers at low and middle latitudes on Mars: observations and models. Icarus, 201(2): 564-569. doi: 10.1016/j.icarus.2009.01.017.

     

    Krasnopolsky V A. 2013. Night and day airglow of oxygen at 1.27 μm on Mars. Planetary and Space Science, 85: 243-249, doi: 10.1016/j.pss.2013.06.018.

     

    Lefèvre F, Lebonnois S, Montmessin F, et al. 2004. Three-dimensional modeling of ozone on Mars. Journal of Geophysical Research: Planets, 109(E7): E07004, doi: 10.1029/2004JE002268.

     

    Leiss A, Schurath U, Becker K H, et al. 1978. Revised quenching rate constants for metastable oxygen molecules O2(a1Δg). Journal of Photochemistry, 8(2): 211-214, doi: 10.1016/0047-2670(78)80021-5.

     

    Liu D, Dai C M, Wei H L. 2019. Comparison of LTE and non-LTE model for limb infrared radiation simulation of middle and upper atmosphere. Journal of Atmospheric and Environmental Optics (in Chinese), 14(5): 337-344, doi: 10.3969/j.issn.1673-6141.2019.05.003.

     

    Mahaffy P R, Benna M, Elrod M, et al. 2015. Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophysical Research Letters, 42(21): 8951-8957, doi: 10.1002/2015GL065329.

     

    McKay C P, Stoker C R, Glass B J, et al. 2013. The icebreaker life mission to Mars: a search for biomolecular evidence for life. Astrobiology, 13(4): 334-353, doi: 10.1089/ast.2012.0878.

     

    Melo S M L, Chiu O, Garcia-Munoz A, et al. 2006. Using airglow measurements to observe gravity waves in the Martian atmosphere. Advances in Space Research, 38(4): 730-738, doi: 10.1016/j.asr.2005.08.041.

     

    Mlynczak M G, Solomon S, Zaras D S. 1993. An updated model for O2(a1Δg) concentrations in the mesosphere and lower thermosphere and implications for remote sensing of ozone at 1.27 μm. Journal of Geophysical Research: Atmospheres, 98(D10): 18639-18648, doi: 10.1029/93JD01478.

     

    Muñoz A G, McConnell J C, McDade I C, et al. 2005. Airglow on Mars: some model expectations for the OH Meinel bands and the O2 IR atmospheric band. Icarus, 176(1): 75-95, doi: 10.1016/j.icarus.2005.01.006.

     

    Nair H, Allen M, Anbar A D, et al. 1994. A photochemical model of the Martian atmosphere. Icarus, 111(1): 124-150. doi: 10.1006/icar.1994.1137

     

    Navarro T, Madeleine J B, Forget F, et al. 2014. Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. Journal of Geophysical Research: Planets, 119(7): 1479-1495, doi: 10.1002/2013JE004550.

     

    Novak R E, Mumma M J, DiSanti M A, et al. 2002. Mapping of ozone and water in the atmosphere of Mars near the 1997 aphelion. Icarus, 158(1): 14-23. doi: 10.1006/icar.2002.6863

     

    Noxon J F, Traub W A, Carleton N P, et al. 1976. Detection of O2 dayglow emission from Mars and the Martian ozone abundance. Astrophysical Journal, 207: 1025-1035, doi: 10.1086/154572.

     

    Sander S P, Friedl R R, Golden D M, et al. 2003. Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation No. 14 (JPL Publication 02-25). Pasadena, CA: Jet Propulsion Laboratory.

     

    Sholes S F, Smith M L, Claire M W, et al. 2017. Anoxic atmospheres on Mars driven by volcanism: implications for past environments and life. Icarus, 290: 46-62, doi: 10.1016/j.icarus.2017.02.022.

     

    Ward W E, Gault W A, Rowlands N, et al. 2003. An imaging interferometer for satellite observations of wind and temperature on Mars, the Dynamic Atmosphere Mars Observer (DYNAMO). //Proceedings of SPIE 4833, Applications of Photonic Technology. Quebec: SPIE, doi: 10.1117/12.473823.

     

    Wu K J, Fu D, Feng Y T, et al. 2018. Simulation and application of the emission line O19P18 of O2(a1Δg) dayglow near 1.27 μm for wind observations from limb-viewing satellites. Optics Express, 26(13): 16984-16999, doi: 10.1364/OE.26.016984.

     

    Wang Y M, Zhang T L, Wang G Q, et al. 2023. The Mars orbiter magnetometer of Tianwen-1: in-flight performance and first science results. Earth Planet. Phys. , 7(2), 1-13 doi: 10.26464/epp2023028.

     

    Yang N, Xia C L, Yu T, et al. 2021. Measurement of Martian atmospheric winds by the O2 1.27 μm airglow observations using Doppler Michelson Interferometry: a concept study. Science China Earth Sciences, 64(11): 2027-2042, doi: 10.1007/s11430-020-9814-7.

     

    Yang X J, Wang H M, Wang Y M. 2020. Simulation and analysis on volume emission rate and limb radiation intensity of airglow at oxygen A (0, 0) band. Chinese Journal of Space Science (in Chinese), 40(6): 1039-1045. doi: 10.11728/cjss2020.06.1039

     

    Zasova L V, Altieri F, Grassi D, et al. 2006. Ozone in martian atmosphere from the 1.27 μm O2 Emission: OMEGA/Mars Express measurements. Mars Atmosphere Modelling and Observations. Granada, Spain. Forget F, et al., Eds. 521. hal-03804559.

     

    Zhang R, Ward W E, Zhang C M. 2017. O2 nightglow snapshots of the 1.27 μm emission at low latitudes on Mars with a static field-widened Michelson interferometer. Journal of Quantitative Spectroscopy and Radiative Transfer, 203: 565-571, doi: 10.1016/j.jqsrt.2017.08.009.

     

    何微微, 武魁军, 傅頔等. 2020. 临近空间风温遥感干涉仪设计及正演. 光学精密工程, 28(08): 1678-1689, doi: CNKI:SUN:GXJM.0.2020-08-007.

     

    杨晓君, 王后茂, 王咏梅. 2020. 氧气A(0, 0)波段气辉体发射率和临边辐射强度模拟与分析. 空间科学学报, 40(06): 1039-1045, doi: CNKI:SUN:KJKB.0.2020-06-022.

     

    刘栋, 戴聪明, 魏合理. 2019. 中高层大气临边红外辐射的LTE与non-LTE模拟对比. 大气与环境光学学报, 14(05): 337-344, doi: CNKI:SUN:GDJY.0.2019-05-003.

  • 加载中

(12)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-07-25
修回日期:  2022-11-22
上线日期:  2023-05-10

目录