联合高频GNSS和强震数据快速反演四川泸定6.8级地震断层破裂特征

郑佳伟, 李敏, 方荣新, 吕黄晖, 刘经南. 2023. 联合高频GNSS和强震数据快速反演四川泸定6.8级地震断层破裂特征. 地球物理学报, 66(4): 1419-1427, doi: 10.6038/cjg2022Q0786
引用本文: 郑佳伟, 李敏, 方荣新, 吕黄晖, 刘经南. 2023. 联合高频GNSS和强震数据快速反演四川泸定6.8级地震断层破裂特征. 地球物理学报, 66(4): 1419-1427, doi: 10.6038/cjg2022Q0786
ZHENG JiaWei, LI Min, FANG RongXin, LÜ HuangHui, LIU JingNan. 2023. Rapid inversion of fault rupture characteristics for the Luding M6.8 earthquake in Sichuan with high-rate GNSS and strong-motion data. Chinese Journal of Geophysics (in Chinese), 66(4): 1419-1427, doi: 10.6038/cjg2022Q0786
Citation: ZHENG JiaWei, LI Min, FANG RongXin, LÜ HuangHui, LIU JingNan. 2023. Rapid inversion of fault rupture characteristics for the Luding M6.8 earthquake in Sichuan with high-rate GNSS and strong-motion data. Chinese Journal of Geophysics (in Chinese), 66(4): 1419-1427, doi: 10.6038/cjg2022Q0786

联合高频GNSS和强震数据快速反演四川泸定6.8级地震断层破裂特征

  • 基金项目:

    国家自然科学基金项目(41874038, 42274025, 41931075)资助

详细信息
    作者简介:

    郑佳伟, 1996年生, 博士研究生, 研究方向为高频GNSS精密定位及地震监测应用研究等. E-mail: jwzheng@whu.edu.cn

    通讯作者: 方荣新, 1982年生, 博士, 教授, 主要从事高频GNSS地震学研究. E-mail: rfang@whu.edu.cn
  • 中图分类号: P228, P315

Rapid inversion of fault rupture characteristics for the Luding M6.8 earthquake in Sichuan with high-rate GNSS and strong-motion data

More Information
  • 北京时间2022年9月5日12时52分, 四川甘孜藏族自治州泸定县发生6.8级地震.利用震中附近1 Hz高频GNSS观测数据获取了同震速度和位移波形, 并快速测定了泸定地震的震中和震级.实验结果表明: 高频GNSS反演的震中与美国地质调查局(USGS)发布的震中相差32 km, 与中国地震台网中心发布值相差16 km; 高频GNSS反演的震级, 与两个机构均仅差0.1个震级单位.针对地震预警、震后快速响应等时效性应用, 提出了一种联合高频GNSS和强震数据的线源破裂特征快速反演方法.泸定地震实验结果表明: 在震后20 s时可获得稳定的线源模型, 破裂长度、方向和破裂模式值分别为33.3 km、151°和0.6, 破裂方向与USGS震源机制解断层走向相差14°, 反演的断层破裂模式为双侧破裂.提出的地震断层破裂特征快速反演方法可用于地震预警、震后灾害快速评估以及紧急响应, 同时可为今后联合高频GNSS和强震数据快速测定地震破裂特征提供参考.

  • 加载中
  • 图 1 

    泸定地震观测台站分布图及震中位置

    Figure 1. 

    Distribution of observation stations and the epicenter of Luding earthquake

    图 2 

    震中附近7个GNSS台站的速度波形(按震中距排序)

    Figure 2. 

    Velocity waveforms of 7 GNSS stations near the epicenter (ranked by epicentral distance)

    图 3 

    震中附近7个GNSS台站的位移波形(按震中距排序)

    Figure 3. 

    Displacement waveforms of 7 GNSS stations near the epicenter (ranked by epicentral distance)

    图 4 

    高频GNSS地面峰值位移(PGD)震级

    Figure 4. 

    High-rate GNSS Peak Ground Displacement (PGD) magnitude

    图 5 

    高频GNSS台站(SCXD)和强震加速度台站(51XDG) 组成的并址站的速度波形

    Figure 5. 

    Velocity waveforms at the collocated high-rate GNSS (SCXD) and strong-motion stations (51XDG)

    图 6 

    联合高频GNSS和强震数据的断层破裂特征反演流程图

    Figure 6. 

    Flowchart of inversion scheme for fault rupture characteristics by combining high-rate GNSS and strong-motion data

    图 7 

    泸定地震线源模型反演结果

    Figure 7. 

    Inversion results of line-source model for the Luding earthquake

    图 8 

    泸定地震断层破裂长度和震级的反演结果

    Figure 8. 

    Inversion results of the magnitude and fault rupture length for the Luding earthquake

    表 1 

    泸定地震震中和震级信息

    Table 1. 

    Epicenter and magnitude for the Luding earthquake

    地震基本信息来源 震中 震级
    经度(°) 纬度(°)
    CENC 102.080 29.590 6.8
    USGS 102.279 29.726 6.6
    本研究 101.952 29.674 6.7
    下载: 导出CSV
  •  

    Allen R M, Gasparini P, Kamigaichi O, et al. 2009. The status of earthquake early warning around the world: An introductory overview. Seismological Research Letters, 80(5): 682-693, doi: 10.1785/gssrl.80.5.682.

     

    Barb ot S, Fialko Y, Bock Y. 2009. Postseismic deformation due to the MW6.0 2004 Parkfield earthquake: Stress-driven creep on a fault with spatially variable rate-and-state friction parameters. Journal of Geophysical Research: Solid Earth, 114(B7): B07405, doi: 10.1029/2008JB005748.

     

    Böse M, Heaton T H, Hauksson E. 2012. Real-time finite fault rupture detector (FinDer) for large earthquakes. Geophysical Journal International, 191(2): 803-812, doi: 10.1111/j.1365-246X.2012.05657.x.

     

    Böse M, Allen R, Brown H, et al. 2014. CISN ShakeAlert: An earthquake early warning demonstration system for California. //Wenzel F, Zschau J eds. Early Warning for Geological Disasters. Berlin, Heidelberg: Springer, 49-69, doi: 10.1007/978-3-642-12233-0_3.

     

    Böse M, Felizardo C, Heaton T H. 2015. Finite-fault rupture detector(FinDer): Going real-time in Californian ShakeAlert warning system. Seismological Research Letters, 86(6): 1692-1704, doi: 10.1785/0220150154.

     

    Böse M, Smith D E, Felizardo C, et al. 2018. FinDer v. 2: Improved real-time ground-motion predictions for M2-M9 with seismic finite-source characterization. Geophysical Journal International, 212(1): 725-742, doi: 10.1093/gji/ggx430.

     

    Chen K J, Liu Z, Song Y T. 2020. Automated GNSS and teleseismicearthquake inversion (AutoQuake Inversion) for tsunami early warning: retrospective and real-time results. Pure and AppliedGeophysics, 177(3): 1403-1423, doi: 10.1007/s00024-019-02252-x.

     

    Chen Y T. 2009. Earthquake prediction: Retrospect and prospect. Sci. China Ser. D-Earth Sci. (in Chinese), 39(12): 1633-1658.

     

    Convertito V, Caccavale M, De Matteis R, et al. 2012. Fault extent estimation for near-real-time ground-shaking map computation purposes. Bulletin of the Seismological Society of America, 102(2): 661-679, doi: 10.1785/0120100306.

     

    Fang R X. 2010. High-rate GPS data non-difference precise processing and its application on seismology[Ph. D. thesis] (in Chinese). Wuhan: Wuhan University.

     

    Fang R X, Shi C, Wang G X, et al. 2014. Epicenter and magnitudeof large earthquake determined from high-rate GPS observations: A case study of the 2008 M8.0 Wenchuan earthquake. Science China Earth Sciences, 57(7): 1645-1652, doi: 10.1007/s11430-013-4803-2.

     

    Fang R X, Lv H H, Shu Y M, et al. 2021a. Improved performance of GNSS precise point positioning for high-rate seismogeodesy with recent BDS-3 and Galileo. Advances in Space Research, 68(8): 3255-3267, doi: 10.1016/j.asr.2021.06.012.

     

    Fang R X, Zheng J W, Geng J H, et al. 2021b. Earthquake magnitude scaling using peak ground velocity derived from high-rate GNSS observations. Seismological Research Letters, 92(1): 227-237, doi: 10.1785/0220190347.

     

    Fang R X, Zheng J W, Shu Y M, et al. 2021c. A new tightly coupled method for high-rate seismogeodesy: a shake table experiment andapplication to the 2016MW6.6central Italy earthquake. GeophysicalJournal International, 227(3): 1846-1856, doi: 10.1093/gji/ggab313.

     

    Gan W, Zhang P, Shen Z K, et al. 2007. Present-day crustal motionwithin the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research: Solid Earth, 112(B8), doi: 10.1029/2005JB004120.

     

    Geng J H, Pan Y X, Li X T, et al. 2018. Noise characteristics ofhigh-rate multi-GNSS for subdaily crustal deformation monitoring. Journal of Geophysical Research: Solid Earth, 123(2): 1987-2002, doi: 10.1002/2018JB015527.

     

    Genrich J F, Bock Y. 2006. Instantaneous geodetic positioning with 10-50 HzGPS measurements: Noise characteristics and implications for monitoring networks. Journal of Geophysical Research: Solid Earth, 111(B3): B03403, doi: 10.1029/2005JB003617.

     

    Goldberg D, Melgar D, Bock Y. 2019. Seismogeodetic P-wave amplitude: No evidence for strong determinism. Geophysical Research Letters, 46(20): 11118-11126, doi: 10.1029/2019GL083624.

     

    Graizer V. 2006. Tilts in strong ground motion. Bulletin of the SeismologicalSociety of America, 96(6): 2090-2102, doi: 10.1785/0120060065.

     

    Guo B F. 2015. Methods of coseismic displacement estimation using a single high-rate GNSS receiver and combining with strong-motion seismometers for earthquake early warning[Ph. D. thesis] (in Chinese). Wuhan: Wuhan University.

     

    Gutenberg B. 1945. Amplitudes of surface waves and magnitudes of shallow earthquakes. Bulletin of the Seismological Society of America, 35(1): 3-12, doi: 10.1785/BSSA0350010003.

     

    Hong S Y, Liu M. 2021. Postseismic deformation and afterslip evolution of the 2015 Gorkha earthquake constrained by InSAR and GPS observations. Journal of Geophysical Research: Solid Earth, 126(7): e2020JB020230, doi: 10.1029/2020JB020230.

     

    Hoshiba M, Iwakiri K. 2011. Initial 30 seconds of the 2011 off the Pacific coast of Tohoku Earthquake (MW9.0)-amplitude and τcfor magnitude estimation for Earthquake Early Warning-. Earth, Planets and Space, 63(7): 553-557, doi: 10.5047/eps.2011.06.015.

     

    Jan J C, Huang H H, Wu Y M, et al. 2018. Near-real-time estimates on earthquake rupture directivity using near-field ground motion datafrom a dense low-cost seismic network. Geophysical Research Letters, 45(15): 7496-7503, doi: 10.1029/2018GL078262.

     

    Larson K M, Freymueller J T, Philipsen S. 1997. Global plate velocitiesfrom the Global Positioning System. Journal of Geophysical Research: Solid Earth, 102(B5): 9961-9981, doi: 10.1029/97JB00514.

     

    Larson K M, van Dam T. 2000. Measuring postglacial rebound with GPS and absolute gravity. Geophysical Research Letters, 27(23): 3925-3928, doi: 10.1029/2000GL011946.

     

    Ma Q. 2008. Study and application on earthquake early warning[Ph. D. thesis] (in Chinese). Harbin: Institute of Engineering Mechanics, CEA.

     

    Melgar D, Crowell B W, Geng J H, et al. 2015. Earthquake magnitudecalculation without saturation from the scaling of peak ground displacement. Geophysical Research Letters, 42(13): 5197-5205, doi: 10.1002/2015GL064278.

     

    Melgar D, Crowell B W, Melbourne T I, et al. 2020. Noise characteristics of operational real-time high-rate GNSS positions in a large aperture network. Journal of Geophysical Research: Solid Earth, 125(7): e2019JB019197, doi: 10.1029/2019JB019197.

     

    Milne G A, Mitrovica J X, Scherneck H G, et al. 2004. Continuous GPS measurements of postglacial adjustment in Fennoscandia: 2. Modeling results. Journal of Geophysical Research: Solid Earth, 109(B2): B02412, doi: 10.1029/2003JB002619.

     

    Pillet R, Virieux J. 2007. The effects of seismic rotations on inertial sensors. Geophysical Journal International, 171(3): 1314-1323, doi: 10.1111/j.1365-246X.2007.03617.x.

     

    Ruhl C J, Melgar D, Geng J H, et al. 2019a. A global database of strong-motion displacement GNSS recordings and an example application to PGD scaling. Seismological Research Letters, 90(1): 271-279, doi: 10.1785/0220180177.

     

    Ruhl C J, Melgar D, Chung A I, et al. 2019b. Quantifying the value of real-time geodetic constraints for earthquake early warning using aglobal seismic and geodetic data set. Journal of GeophysicalResearch: Solid Earth, 124(4): 3819-3837, doi: 10.1029/2018JB016935.

     

    Rydelek P, Horiuchi S. 2006. Is earthquake rupture deterministic?. Nature, 442(7100): E5-E6, doi: 10.1038/nature04963.

     

    Sagiya T, Kanamori H, Yagi Y, et al. 2011. Rebuilding seismology. Nature, 473(7346): 146-148, doi: 10.1038/473146a.

     

    Shi C, Lou Y, Zhang H, et al. 2010. Seismic deformation of the MW8.0Wenchuan earthquake from high-rate GPS observations. Advances in Space Research, 46(2): 228-235, doi: 10.1016/j.asr.2010.03.006.

     

    Shu Y M, Fang R X, Geng J H, et al. 2018. Broadband velocities and displacements from integrated GPS and accelerometer data for high-rate seismogeodesy. Geophysical Research Letters, 45(17): 8939-8948, doi: 10.1029/2018GL079425.

     

    Trifunac M D, Todorovska M I. 2001. A note on the useable dynamic range of accelerographs recording translation. Soil Dynamics and Earthquake Engineering, 21(4): 275-286, doi: 10.1016/S0267-7261(01)00014-8.

     

    Trugman D T, Page M T, Minson S E, et al. 2019. Peak ground displacement saturates exactly when expected: Implications for earthquake early warning. Journal of Geophysical Research: Solid Earth, 124(5): 4642-4653, doi: 10.1029/2018JB017093.

     

    Wells D L, Coppersmith K J. 1994. New empirical relationships amongmagnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002.

     

    Zhao Q L, Guo J, Wang C, et al. 2022. Precise orbit determinationfor BDS satellites. Satellite Navigation, 3(1): 2, doi: 10.1186/s43020-021-00062-y.

     

    Zheng J W. 2022. Rapid determination of rupture characteristic of large earthquakes based on high-rate GNSS and accelerometer[Master's thesis] (in Chinese). Wuhan: Wuhan University.

     

    Zheng J W, Fang R X, Li M, et al. 2022. Line-source model basedrapid inversion for deriving large earthquake rupture characteristics using high-rate GNSS observations. Geophysical Research Letters, 49(5): e2021GL097460, doi: 10.1029/2021GL097460.

     

    陈运泰. 2009. 地震预测: 回顾与展望. 中国科学(D辑: 地球科学), 39(12): 1633-1658. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200912001.htm

     

    方荣新. 2010. 高采样率GPS数据非差精密处理方法及其在地震学中的应用研究[博士论文]. 武汉: 武汉大学.

     

    郭博峰. 2015. 单站高频GNSS求解同震位移的新方法及联合强震仪的地震预警应用研究[博士论文]. 武汉: 武汉大学.

     

    马强. 2008. 地震预警技术研究及应用[博士论文]. 哈尔滨: 中国地震局工程力学研究所.

     

    郑佳伟. 2022. 基于高频GNSS和加速度计信息的大震破裂特征快速确定研究[硕士论文]. 武汉: 武汉大学.

  • 加载中

(8)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-09-27
修回日期:  2022-11-30
上线日期:  2023-04-10

目录