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ABSTRACT

The stability theory that describes the ocal stability of atmospheric systems is set up by the generaliz-
ed Liapunovian second method on the basis of the nonequilibrium statistical physics. A combined
hydro-thermodynamic stability criterion for the atmosphere is derived in light of the constructed
generalized Liapunov functional which is suitable to describing the atmospheric system defined by the
system of partial differential equations, and the concept and criterion of the hydro-thermodynamic
stability are first introduced into the atmospheric thermodynamics, thus many ways of atmospheric
motions with the background of macroscopic thermodynamics are explained.

I. INTRODUCTION

The theory on motion stability in Liapunovian sense deals with the influence of the disturb-
ance factors on the motions of material systems (Qin et al., 1981a; Xu, 1962). A system that lo-
ses its stability near critical values is very sensitive to perturbations so that it would evolve to
a certain eventual state, maybe considerably different from the initial state undisturbed. The
atmosphere is a many-body system whose disturbant factors always exist inevitably. There-
fore, the problem of the stability of atmospheric motions has been paid great attention to
(Kuo, 1949; Miles, 1961; Haward, 1961 ; Fjortoft, 1950; Green, 1960; Wu 1964a; Burger, 1962;
Zeng, 1979; Yang et al., 1983; and Pedlosky., 1979). However, some of previous works com-
pleted by the linearized method to seek for characteristic values usually deal with the specific
objectives and, the methods employed most belong to the category of Liapunovian first
method. Moreover, there is something obviously unreasonable in the results obtained from
the linearized method of normal modes, because there does not exist such a process which is
globally stable or unstable, for instance, in the atmosphere and it is hard to image that the
global (e.g. the entire earth or Northern Hemisphere) atmosphere is wholly stable or augments
with time infinitely and monotonously. On the other hand, although it is noticed that the
baroclinic instability is one kind of the forms of thermodynamic convection (Pedlosky, 1979),
these works are not involved with the thermodynamic stability of the atmosphere in general.
In fact, the atmospheric heat-engine is a complicated thermodynamic system and, it is
often in the substable or weak-stable states (Prigogine, 1980). Meanwhile, this system also
possesses the so-called intrinsic stability determined by the dissipativity according to the second
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principle of classical thermodynamics (Glansdorff and Prigogine, 1971). These problems,
even for the thermodynamics and statistical physics itself, are still not matured. Now, on
account of the progress of nonlinear nonequilibrium statistical physics and the preliminary
success in the generalization of Liapunov stability theory setting up for ordinary differential
equations to partial ones, one could utilize and expand the concept of Liapunovian second
method. and construct, directly through a generalized Liapunov functional, a combined ther-
modynamic and dynamic stability (static stability included) criterion, by which one could
systematically discuss the hydro-thermodynamic stability of the nonlinear atmospheric
systems.

Il. THE CONCEPT OF STABILITY

1. The Definition of Stability

The concept on Liapunov stability of motions is the direct generalization of that for
equilibrium states of, e.g., a single pendulum in the classical mechanics (see, Qin et al., 1931a).
However, the atmospheric system being often in weak states, would not possess the simplicity
that is displayed in the problems about the stability of motion of rigid body with less freedom
degrees. Therefore we will introduce another definition of stability when discussing the atmos-
pheric many-body system.

The above-mentioned equilibrium or so-called reference state must be first undergone in
defining stability. Any present motion state can be regarded as a certain kind of departure
from a reference state. If the present motion tends to regress to the corresponding reference
state, such a motion would be considered as stable; if it continues to depart from the reference
state, considered as unstable. In the physics, consequently, this kind of reference state should
be “the oscillatory center’ of instantaneous states, or the so-called most probable state in
terms of the statistical physics.

According to the Einsteinian fluctuation formula, the probability by which a certain fluc-
tuation (disturbance) occurs can be estimated as

P,Nexpli% Lks :l s

where §%s is the second-order variation df entropy, 2 Boltzmann constant; as will be proved
below, §*s is the negative definite function of the fluctuation 3.4, of independent variables
4, (e.g. the fluctuation of temperature 87, where “3” denotes the departure from reference
states); it is easily seen that the state with minimum fluctuations (54=0) has the maximal
probability. Similarly, for a non-static fluid system (v=2:0), its reference should be the state
corresponding to Ju=0. Obviously, such a state is just a set of particular solutions (trivial
ones) to the system of equations governing disturbances (354;).

Incidentally, it is because §*s has so clear physical meaning that we choose L=4§2(Ps)
—T~' p(6v)*, where p is the density and §2(Ps) =p45%s (Glansdorfl and Prigogine, 1971),
as the preferable generalized Liapunov functional from many functidns in discussing the
stability by use of the direct method.

To sum up, as discussed above, the references are the most probable states with 34, =0,
i.e., the “equilibrium states” around which the values of physical quantities at spatial points
fluctuate. Therefore, in general cases, the climatic averaged states are approximately taken to
be references.
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2. System of Governing FEquations for Disturbances

The starting equations are the system of equations which dominate the change of dis-
turbances since what we are concerned with is whether or not the disturbances would grow.
These equations can be derived from the general conservative laws of mass, momentum and
energy through variation operations.

They are the motion equations for disturbances

o 3P 1= 8(pF) — 20 _giva(o0, V), (i=1,2,3) (1)

the continuity equation

—%[6P]=—div s(oVY, (2)

~

the mass-conservative equation
0 .
2 [ép, 1= E;. vaM Sa,—div (P, V), (3)

and the first law of thermodynamics

—a%—[d(Pe)]————div 5(PeV) —5(p div V) —div(sW), (4)

where v; denotes the component velocity in the x; direction in Cartesian coordinates; F;
is the external force exerted in the x;-direction, including the noninertial force, e.g. the Co-
riolis force; p, is the partial density of component (3P, =P);>,.» M, Sw, is represent-
ative of the contribution of all the & chemical reaction's to the density change of component
r, in which the influence of moisture phase transition (5c, condensation rate) can be retained
for our problems treated here; e is the specific internal energy that can be approximately
expressed as C,7T in the range of atmospheric temperature with C, being the specific heat at
constant volume; W is the heat flow vector; and others are the commonly used symbols.

3. Liapunovian Direct Method and Its Reestablishment

First, we briefly review the concept of Liapunovian direct method, and then pose our
method to discuss the stability.

The key point of the Liapunovian second method is to introduce the definite Liapunov
functional L. The theorem of stability proved by Liapunov shows that the stability of a sys-
tem depends on the sign of LoL/2+ (Qin et al., 1981a).

However, as mentioned above, the definition of Liapunov stability originates from the
classical mechanics. On the other hand, because of the complicated feedback effects of var-
ious factors in the atmosphere, it is impossible that the stability of instantaneous disturbances
in the atmosphere is so simple as shown by the linear normal mode method in which it in-
finitely increases from or monotonously regresses to, the fundamental state with time; and
that all the disturbances simultaneously undergo global growth or decay. In fact, they alter-
natively grow and decay. Therefore, it is meaningful in practice to solve the problem about
what direction the present instantaneous states developed from (small) disturbances will evolve
in, either continuing to depart from or regressing to the fundamental states (reference ones).
Obviously, it turns out the definition of stability in Paragraph 2.
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Now we will transform the Liapunovian second method into the direct method suitable
to our concept of stability.

First, Liapunov functional should be the function of disturbance variables §44(k=1,2,
-, n, n is the number of independent variables) since the problem under consideration is
whether the disturbance grows or not. Second, L should be a definite function (assuming to
be negative). The simplest form for the function which meets the above two requirments can
be taken as

L=—204(84.)7, (5)

L=1
where ¢, are positive coefficients. It is easily seen that L in Eq. (5) is similar in form to the
distance in Hilbert space. The only difference between them is that L is a “negative distance”
with a weight. Thus, according to our definition of stability, the present states must regress
to the reference state for a stable system, and the distance will inevitably shorten with time,
i.e., the “negative distance” will enlarge with time. As a result, we have

oL d P )
’at_ = —‘Za'ﬁ‘at (5Ak)2>0, (6 )
or
oL
L, <0. (7)

This is completely the same as the Liapunov stability criterion in form, but in content it is
not the stability in Liapunovian sense. The function of this criterion is to judge whether or
not local motions regress to references, and this stability is called the generalized Liapunov
stability.
III. GENERALIZED LIAPUNOV FUNCTION
According to the direct method generalized in the previous section, one needs to choose
a generalized Liapunov function as a starting point for discussing stability. The generalized
Liapunov function mentioned above is
L=¢8*(Ps)—T'P(v)*, (8)
where §2(©s) is the second-order variatjon of the entropy per unit volume (s being the specif-
3
ic entropy), T~'p(dv)* is the generalized kinetic energy of disturbance, and (dv)*=2;]
(vi)®.
Let us prove that L is a definite function.
According to the Prigogine theory of nonequilibrium thermodynamics (Glansdorff and
Prigogine, 1971), we have
8*(ps)=0T""'6(pe) —20(u.T7")bp,. (9)
In addition, we have

—

3*(ps) = pd's, (10)
where 8% can be written as (Reichl, 1980) 2

17rC
Sts= "T‘[Ty (8T)* + §(5a);,,+§ per?ON ON ] (11)

where e is the specific internal energy, o the specific volume, »4, and N, are the chemical poten-
tial and fractional mass of component r, respectively; C, the specific heat at constant volume,
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X the coefficient of heat expansion and

_(_ %% )
borr _< ON, /7. 5. N,), (12)

Here subscripts denote the variables that keep unchanged in taking partial derivatives.

If the local equilibrium assumption which is reasonable to the mixed ideal gases like
the atmosphere, and the Gibbs-Duhem stability conditions which are completely satisfied by
the atmosphere (Reichl, 1980)

Cr>0, X>0 and 2’ Urr?ON SN >0 (13)

are taken, it is obvious that §2(ps) is a negative definite function. The first two conditions in
(13) are representative of the thermal and mechanical stability, respectively, and the third con-
dition 3! u,,»6/N,0N, describes such an irreversible spontaneous phenomenon of the in-

trinsic stability by virtue of which the mixed gases of many components with inhomoge-
neous density will inevitably cause diffusion and thus fend to homogenization.
On the other hand, we have (Glasdorfl and Prigogine. 1971)

p(év)2=5z<—;ﬂ’)vz \) .
and
) . 1,
5'<-—2—pvi’ ):51),-5(,0:»,-) *5(‘7 v )6,0 . (14)
Substituting (9) and (14) into (8) gives
L=6T""8(Pe)— Eé(u,T“ —%T"tf)épf—T"‘évﬁ(pv;), (15)

where subscript i repeated in the same term means summing over all the three components
(i=1,2,3) in Cartesian coordinates. L in (15) is just the generalized Liapunov function we

have chosen.
IV. HYDRO-THERMODYNAMIC STABILITY CONDITIONS FOR ATMOSPHERIC SYSTEMS
The stability conditions are determined by the sign of 9L/9t since L is the definite

function. Considering the independent variables of disturbances (34,) chosen above, the
partial derivative of (15) with respect to time will be

oL _, 0L _ 2(6A,)

o “Xa6An  a

— 6T -2 8(pe) = (uT=) —2 60, + T'08v -2 30~ T='8v; 0=
=0T — (Pe,—ZI(m ) 3¢ 0P+ T 'vdv—,~ o~ vi 5, 0(Pv.).

(15)

Substituting the governing equations (1)—(4) for disturbances into (16), we gain an explic-

it formulation for the stability criterion. After a series of primary operations. the general

hydro-thermodynamic stability conditions are eventually obtained which include both thermal
and dynamic descriptions as follows

J=A-T"'B=234,~T"'2B;
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C. 8p .
=2adpdV VT =8V -3 (Vs,) 60, + F-div 8V

+-]%176TV,,-V5P — s,V ;- Vibp, —6cd(s, — sy,)
~a—p—5u[v(298in )] +%fl Slu(2Qsinp)]

T

o 1 @ 1 o
+.5_—6w[g4u(2.Qcos<p)] o —a—;f Sud(Pu) + T a—z}dvé(pv)

T
1 %55 L 5 5( OV sud( pw)

T oy 9 (pu)+ u pv)+T az ud(pw
100 s05(ow) + (80)2div pV 40V -V6

+ 50 {pw +T v)div pV 45 ‘Vop
1 1

+7TpV/.'V 7(51})2, (<0, unstable) 17

where dv is the whole disturbance velocity, > denotes summing over »r components of system.

Considered in the atmospheric systems are three components r =d, v and w, respectively repre-
sentative of the dry air, vapour and water-drop (liquid water). Symbol “,j”” denotes 9/dx;.
A stands for the part of thermal contributions and B the dynamic ones. In the derivation of
(17), the irreversible dissipative effects caused by the diffusion in various components of atmos-
pheric systems, chemical reactions, viscosity, heat conduction, etc. have been omitted. In
addition, also used are the relation between chemical potential and enthalpy (Ma et al., 1982),
thermodynamic relation for phase transition (Iribarne and Godson, 1973), state equation for
ideal gases, entropy expression for mixed ideal gases, etc. For the atmospheric motions of
larger scales, we have
w,; dw=0 and div V =0, (18)
and always
OF -3V =[dv(2Qsin @) — dw(2Qcos @) 16u
—Su[Su(292sin p) ]~ dwldg—Su(2Qcosp) 1=0. (19)
By use of the above expressions, the criterion (17) has, in fact, been a simplified formulation
for the original one.

Expression (17) is just the basic criterion for testing the hydro-thermodynamic stability of
the atmosphere:J <0 means that the system is unstable, that is, the present state will continue
to depart from the reference state and the system will become more and more asymmetric,
hence structures are formed. On the other hand, />0 means that the system is stable,
that is, the present state will regress to the reference state and the system will become
more symmetric, hence structures tend to disappear (J >0) or quasi-steady (J =0).

V. THE PHYSICAL MEANING OF STABILITY CRITERION AND ITS SYNOPTIC ILLUSTRATIONS

In this section we examine the physical conditions of instability caused by several terms
in the criterion (17 ) and try to explain some well-known synoptic observations. It should be
noted that the following qualitative discussion puts emphasis on interpreting the physical im-
plication of every term. In case the stability sign of a specific system is to be determined, the
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total contribution from all the terms must be calculated. Indeed, it is convenient in practical
use that of all the terms in (17) the major ones are determined in advance through scale analysis
with respect to a certain specific system or situation.

1. Term A4, . 5
Cy

4415R_7—'25pav 'VT .

Obviously, A4,< 0 (unstable) demands that the sign of §p is different from §V -V7T,
implying that a warm advection (—8V -V7 >0) is accompanied with a pressure increase
(6p>>0, symbol ‘6" denotes the departure of local physical variables from references),and
vice versa. In this case, the departures of the corresponding physical variables from ref-
erences tend to enlarge.

We now examine the characteristics of stability for such systems as blocking highs,
typhoons, etc. N

The reference wind field of blocking highs can be approximately taken as the belt-flow.
Furthermore, since the component du dominates, A4, has an approximate form

PSR

It can be seen from Fig.l that the west part of the blocking high is stable (A4,<C0)
while the east part unstable (4,>>0). According to our definition of stability, in the west
part of the blocking high and its neighbourhood (i.c. in all the regions with §p>>0) the high
will strengthen while in the east part | §p| tends to decrease. In our opinion, the reason why
the blocking high—the carrier on the westerlies, which should actually travel eastwards—often
presents a quasi-static state or even moves back westwards, is closely related to the charac-
teristics of the stability distribution inside the high. Meanwhile, the stability analysis also
shows that the developing blocking high has experinced itself the supersession of “‘west-grow-
ing and east-decaying” from its beginning, and that the phenomenological movement is not
necessarily the same as the behaviour of system as a substance.

H

oP + -
=~ H

5v + - 08¢ <0
dcv T

T _ 5 <0

oy

+ Az2 <0
A -
Fig. 1. The stability structure of blocking highs. Fig. 2. TheTstability characteristics of the

V-shaped inverted trough.
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In brief, each term in the criterion (17) can be discussed in the way of term 4,. Synoptic
meteorology provides us with abundant iltustrations of stability. It is without difficulty to
abstract the stability models of temperature, pressure, humidity and wind from the other terms
of the criterion. Therefore, in order to avoid lengthy description, we only choose one or
two cases to illustrate from conceptual sense.

2. Term A,
AZE ﬁav'Z(VSr)épr

C o R 1
_ _av;[ VT =5V, o,
A, can be decomposed into two terms, 4,,, the vertical component, and A4,,, the horizontal
one.
It is easily demonstrated that 4,, can be reduced to the common criterion of static stabil-
ity when used in the single component (dry air). This is because for the dry air alone we have
aT 6pd

53563d:CPdT— E—, (20)

and then

Co, 0T R 0p
A“:_aw(T 2z p dz )6'0

_C» g9 9p
= T (r—cp )521} Dz 62, (21)
where subscript 4 has been omitted. Seeing that the density of dry air in the atmosphere
generally decreases with height, i.e.

2p
25 <0
we immediately obtain (noting that Swdz is identically positive)

r>rs<—>unstable, (4,:<0)

Also it is seen that 4,, comprises more information than the static stability and shows that
the unstable degree is proportional to the vertical velocity and vertical lapse rate of density.
In addition, for the single component d, 4,, can be reduced to

vV 8V 1
] (=55 wiCoa) (=4 - o Vips ) o (22)

It is seen that the first term in the brackets is representative of the sensible heat advection
and, the second term the working rate of the pressure gradient force.

A,, shows that in the region where the density is smaller than thf reference (5p,<0), the
loss of stability would occur as long as the sensible heat advection is larger than the working
rate there. One of the typical weather situations which accord with the above conditions is
the warm V-shaped inverted trough which is behind the high travelling over the East China
Sea, East Asia during early summer (Fig. 2). In this situation, because of the high tempera-
ture and low pressure within the trough, 8p,<(0. It is possible to find out a p 4 —minimum
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region with Vp, =0 in the trough, hence

5V %4
wn{(F i) (s Yo,

1
¥ (VACT ) 6pa. (23)

As a result, the warm advection behind the high (—6 v aac

;T >0> will make the density

of this region continue going down, thus increasing the instability. This is the situation that
the regenesis of cyclonic waves often takes place over the warm trough developed and extended
eastwards to some extent.

3. Terms B, and B, .

We now discuss the factors dominating the augment of velocity disturbance (dv):

(-Bl) + (Bz) = —*%&&ICUQQSH} (P)]‘l‘ %—-p év[u(ZQsin (p)]

These two terms represent the influence of the Coriolis force on the augment of the
kinetic energy of disturbances, we will take the blocking high as an example to illustrate the
meaning of these two terms (see Fig.3).

The pressure field, as shown in Fig.3 by solid lines, steadily maintains for several days.
If a temperature field described by dashed lines emerges, one could expect to have a region
(marked by asterisk)with §p >0 over the temperature trongh west of the blocking high because
of both 7<0 and §p >0 there. It can be seen from (B,)that the southerly disturbance with
Sv >0 will be supressed ((B,)>0) over the asterisk region due to #>>0(v~0), thus the flow over
the asterisk region tends to regress to zonal circulations. As known, it is just the common
evolving characteristics of the temperature-pressure field during the destroying period of the
second kind of blocking high (Ye et al., 1962). By the way, the higher the latitude is, the
stronger the above-mentioned effect is. As is the case that the blocking high collapse starts
often at the higher latitudes and then spreads to the lower ones.

Fig. 3. Discussion of stability for the blocking Fig. 4. Discussion of stability of low-level
high tending to destroy, jets,
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-

4. Terms B, and B,

a2 1 2
(B + (B =7 —5ubud(ou) + v 5 -8ud(pv)

These two terms represent the influence of the curl of wind field ( gg , %—#O) on

the stability. Here, as an example, the conditions of the low-level jet and shear line during
the pre-flood period in South China are discussed (see Fig.4 and Table 1). It can be seen
in Fig. 4 that (B,) and (B,) take negative values simultaneously within regions I and II, while
their stability is expected to appear within regions IIf and 1V. The synoptic observations show
that regions I and Il are just where there often occur heavy rains, especially the heavy rain re-
gion in the upper left of the low-level jet (Sun, 1978).

Table 1. The Structure of Stability for a Low-Level Jet

i I i 4 g
_ - [ I _ . N,
Su + - - +
Sv - + — +
2v , 2u
—Zc’//a‘y’ J +/+ +/+ +/+ +/+
(B:)/(By) -/ —/= /A +/t

Vi. CONCLUDING REMARKS

This paper has reestablished the concept of Liapunovian direct method and discussed
the local stability of a system with emphasis on whether the departure §A4 from a reference
A would grow or not, where the departure is just the so-called disturbance that obeys the same
equation system as that for the reference. Mathematically, the (reference) state of minimum
departure (34 =0) corresponds to the trivial solution to the system for disturbances, while
physically, the reference is the most probable state. Although the reference state is very def-
inite theoretically, its practical determination is difficult. Alternately, the approximate
“most orderless state”, e.g., the climate-averaged state over a certain period are usually em-
ployed. The further studies are expected to thoroughly solve this problem.

In addition, according to the dissipative structure theory of Prigogine’s school the forma-
tion of new structures always results from the instability of deterministic branching solutions
of the original system. On the other hand, the new structures stem from fluctuations. In
other words, it is necessary to use both deterministic and stochastic methods in clear un-
derstanding of temporal evolution of the system. For example, the stochastic differential
equation theory is just one of the approaches in which we need not test the stability by in-
troducing any perturbations. As soon as a starting distribution is given the temporal
evolution could be determined and, also this approach would give the time lag involved in
the formation of new states when the system enters into unstable regions. These problems
will be discussed in other papers,
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