大兴安岭北段岔路口斑岩Mo-热液脉状Zn-Pb成矿系统硫化物微量元素的分布、起源及其勘探指示

金露英, 秦克章, 李光明, 李真真, 宋国学, 孟昭君. 大兴安岭北段岔路口斑岩Mo-热液脉状Zn-Pb成矿系统硫化物微量元素的分布、起源及其勘探指示[J]. 岩石学报, 2015, 31(8): 2417-2434.
引用本文: 金露英, 秦克章, 李光明, 李真真, 宋国学, 孟昭君. 大兴安岭北段岔路口斑岩Mo-热液脉状Zn-Pb成矿系统硫化物微量元素的分布、起源及其勘探指示[J]. 岩石学报, 2015, 31(8): 2417-2434.
JIN LuYing, QIN KeZhang, LI GuangMing, LI ZhenZhen, SONG GuoXue, MENG ZhaoJun. Trace element distribution in sulfides from the Chalukou porphyry Mo-vein-type Zn-Pb system, northern Great Xing'an Range, China: Implications for metal source and ore exploration[J]. Acta Petrologica Sinica, 2015, 31(8): 2417-2434.
Citation: JIN LuYing, QIN KeZhang, LI GuangMing, LI ZhenZhen, SONG GuoXue, MENG ZhaoJun. Trace element distribution in sulfides from the Chalukou porphyry Mo-vein-type Zn-Pb system, northern Great Xing'an Range, China: Implications for metal source and ore exploration[J]. Acta Petrologica Sinica, 2015, 31(8): 2417-2434.

大兴安岭北段岔路口斑岩Mo-热液脉状Zn-Pb成矿系统硫化物微量元素的分布、起源及其勘探指示

  • 基金项目:

    本文受国家自然科学基金项目(41272108、41390444)和大兴安岭金欣矿业有限公司、黑龙江省有色金属地质勘查706队项目联合资助.

详细信息

Trace element distribution in sulfides from the Chalukou porphyry Mo-vein-type Zn-Pb system, northern Great Xing'an Range, China: Implications for metal source and ore exploration

More Information
  • 岔路口斑岩Mo-Zn-Pb矿床位于大兴安岭北段,是近年来新发现的超大型斑岩-热液脉状Mo-Zn-Pb成矿系统,脉状Zn-Pb矿化直接叠置在斑岩Mo矿化顶部。本文挑选岔路口斑岩型矿化及热液脉型矿化的黄铁矿、闪锌矿、方铅矿,通过EMPA、ICP-MS等多种方法分析硫化物的主微量元素组成,发现岔路口各阶段硫化物均富集Mo元素,相比于斑岩型矿化各阶段中的黄铁矿,Zn、Pb、Mn、Cd、Ga、Ag、Bi等元素在铅锌矿阶段内相对富集;相比于过渡阶段,铅锌阶段闪锌矿中Mo、Co元素及方铅矿中的Bi、Cd和Ag元素含量下降。微量元素在不同阶段内的变化可能是流体降温和天水混合的结果。黄铁矿的稀土总量与成矿岩体最接近,且与成矿岩体和围岩有相似的稀土配分模式,并有较明显的Eu负异常;黄铁矿宽广的Y/Ho比值(25.0~39.0)与成矿岩体的Y/Ho比值范围(27.4~38.7)最接近,同时包括了围岩相对较窄的Y/Ho比值(25.7~31.3),这表明成矿物质主要与成矿岩体同源,可能加入了一定量的围岩物质,岔路口硫化物富Mo的特征受控于深部斑岩Mo矿化岩浆-热液系统。对比东秦岭-大别W-Mo-Pb-Zn矿集区的远源热液脉状Pb-Zn矿床,岔路口浅部近源脉状矿化中的黄铁矿具有更高含量Mo/Ag-Bi/Sb比值和Mo/Pb-Sn/Sb比值,因此浅部硫化物的高Mo含量以及黄铁矿中相关元素比值的高值,可为脉状Zn-Pb矿化附近隐伏斑岩钼矿化的勘探提供新线索。此外,与其他热液脉状和斑岩型矿床相比,岔路口矿床硫化物更富集中高温元素;且综合分析多类矿床的硫化物的微量元素后,本文还初步查明不同矿床类型硫化物富集的微量元素,这一尝试可为矿床成因的判断提供新的思路。
  • 加载中
  • [1]

    Abraitis PK, Pattrick RAD and Vaughan DJ. 2004. Variations in the compositional, textural and electrical properties of natural pyrite: A review. International Journal of Mineral Processing, 74(1-4): 41-59

    [2]

    Agangi A, Hofmann A and Wohlgemuth-Ueberwasser CC. 2013. Pyrite zoning as a record of mineralization in the Ventersdorp Contact Reef, Witwatersrand Basin, South Africa. Economic Geology, 108(6): 1243-1272

    [3]

    Audétat A, Pettke T, Heinrich CA and Bodnar RJ. 2008. Special Paper: The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Economic Geology, 103(5): 877-908

    [4]

    Barker SLL, Hickey KA, Cline JS, Dipple GM, Kilburn MR, Vaughan JR and Longo AA. 2009. Uncloaking invisible gold: Use of nanosims to evaluate gold, trace elements, and sulfur isotopes in pyrite from carlin-type gold deposits. Economic Geology, 104(7): 897-904

    [5]

    Bau M and Dulski P. 1995. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids. Contributions to Mineralogy and Petrology, 119(2-3): 213-223

    [6]

    Bau M and Dulski P. 1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behavior during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology, 155(1-2): 77-90

    [7]

    Belissont R, Boiron MC, Luais B and Cathelineau M. 2014. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac-Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes. Geochimica et Cosmochimica Acta, 126: 518-540

    [8]

    Benzaazoua M, Marion P, Pinto A, Migeon G and Wagner FE. 2003. Tin and indium mineralogy within selected samples from the Neves Corvo ore deposit (Portugal): A multidisciplinary study. Minerals Engineering, 16(11): 1291-1302

    [9]

    Blackburn WH and Schwendeman JF. 1977. Trace-element substitution in galena. The Canadian Mineralogist, 15: 365-373

    [10]

    Bostick BC, Fendorf S and Manning BA. 2003. Arsenite adsorption on galena (PbS) and sphalerite (ZnS). Geochimica et Cosmochimica Acta, 67(5): 895-907

    [11]

    Bralia A, Sabatini G and Troja F. 1979. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems: Evidences from southern Tuscany pyritic deposits. Mineralium Deposita, 14: 353-374

    [12]

    Brett R and Kullerud G. 1967. The Fe-Pb-S system. Economic Geology, 62(3): 354-369

    [13]

    Cabri LJ, Campbell JL, Laflamme JHG, Leigh RG, Maxwell JA and Scott JD. 1985. Proton-microprobe analysis of trace elements in sulfides from some massive-sulfide deposits. The Canadian Mineralogist, 23: 133-148

    [14]

    Campbell FA and Ethier VG. 1984. Nickel and cobalt in pyrrhotite and pyrite from the Faro and Sullivan orebodies. The Canadian Mineralogist, 22: 503-506

    [15]

    Cioacă ME, Munteanu M, Qi L and Costin G. 2014. Trace element concentrations in porphyry copper deposits from Metaliferi Mountains, Romania: A reconnaissance study. Ore Geology Reviews, 63: 22-39

    [16]

    Clark C, Grguric B and Mumm AS. 2004. Genetic implications of pyrite chemistry from the Palaeoproterozoic Olary Domain and overlying Neoproterozoic Adelaidean sequences, northeastern South Australia. Ore Geology Reviews, 25(3-4): 237-257

    [17]

    Cline JS. 2001. Timing of gold and arsenic sulfide mineral deposition at the Getchell Carlin-type gold deposit, north-central Nevada. Economic Geology, 96(1): 75-89

    [18]

    Cline JS, Hofstra AH, Muntean JL, Tosdal RM and Hickey KA. 2005. Carlin-type gold deposits in Nevada: Critical geologic characteristics and viable models. Economic Geology, 100th Anniversary Volume, 451-454

    [19]

    Cook NJ, Ciobanu CL, Pring A, Skinner W, Shimizu M, Danyushevsky L, Saini-Eidukat B and Melcher F. 2009a. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica et Cosmochimica Acta, 73(16): 4761-4791

    [20]

    Cook NJ, Ciobanu CL and Mao JW. 2009b. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton, (Hebei Province, China). Chemical Geology, 204(1-4): 101-121

    [21]

    Cook NJ, Ciobanu CL and Williams T. 2011. The mineralogy and mineral chemistry of indium in sulphide deposits and implications for mineral processing. Hydrometallurgy, 108(3-4): 226-228

    [22]

    Craig JG. 1967. Phase relations and mineral assemblages in the Ag-Bi-Pb-S system. Mineralium Deposita, 1(4): 278-306

    [23]

    Craig JG and Kullerud G. 1968. Phase relations and mineral assemblages in the copper-lead-sulphur system. American Mineralogist, 53: 145-161

    [24]

    Deditius AP, Utsunomiya S, Renock D, Ewing RC, Ramana CV, Becker U and Kesler SE. 2008. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochimica et Cosmochimica Acta, 72(12): 2919-2933

    [25]

    Deditius AP, Utsunomiya S, Reich M, Kesler SE, Ewing RC, Hough R and Walshe J. 2011. Trace metal nanoparticles in pyrite. Ore Geology Reviews, 42(1): 32-46

    [26]

    Deditius AP, Reich M, Kesler SE, Utsunomiya S, Chryssoulis SL, Walshe J and Ewing RC. 2014. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochimica et Cosmochimica Acta, 140: 644-670

    [27]

    Deyell CL and Hedenquist JW. 2011. Trace element geochemistry of enargite in the Mankayan district, Philippines. Economic Geology, 106(8): 1465-1478

    [28]

    Di Benedetto F, Bernardini GP, Costagliola P, Plant D and Vaughan DJ. 2005. Compositional zoning in sphalerite crystals. American Mineralogist, 90(8-9): 1384-1392

    [29]

    Douville E, Bienvenu P, Charlou JL, Donval JP, Fouquet Y, Appriou P and Gamo T. 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63(5): 627-643

    [30]

    Emmons SF, Irving JD and Loughlin GF. 1972. Geology and ore deposits of the Leadville mining district, Colorado. US Government Printing Office, 148: 1-368

    [31]

    Evans HT, Landergren S and Manheim FT. 1978. Molybdenum. In: Wedepohl KH (ed.). Handbook of Geochemisty. Heidelberg: Springer-Verlag, 42-A-1-42-O-17

    [32]

    Fleet ME, Chryssoulis SL, MacLean PJ, Davidson R and Weisener CG. 1993. Arsenian pyrite from gold deposits; Au and As distribution investigated by SIMS and EMP, and color staining and surface oxidation by XPS and LIMS. The Canadian Mineralogist, 31(1): 1-17

    [33]

    Fleischer M. 1955. Minor elements in some sulfide minerals. Economic Geology, 50: 970-1024

    [34]

    Franchini M, McFarlane C, Maydagán L, Reich M, Lentz DR, Meinert L and Bouhier V. 2015. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geology Reviews, 66: 366-387

    [35]

    Graeser S. 1969. Minor elements in sphalerite and galena from Binnatal. Contributions to Mineralogy and Petrology, 24(2): 156-163

    [36]

    Grammatikopoulos TA, Valeyev O and Roth T. 2006. Compositional variation in Hg-bearing sphalerite from the polymetallic Eskay Creek deposit, British Columbia, Canada. Chemie der Erde-Geochemistry, 66(4): 307-314

    [37]

    Heinrich CA. 2007. Fluid-fluid interactions in magmatic-hydrothermal ore formation. Reviews in Mineralogy and Geochemistry, 65(1): 363-387

    [38]

    Hemley JJ, Cygan GL, Fein JB, Robinson GR and d'Angelo WM. 1992. Hydrothermal ore-forming processes in the light of studies in rock-buffered systems: I, Iron-copper-zinc-lead sulfide solubility relations. Economic Geology, 87(1): 1-22

    [39]

    Hinchey JG, Wilton DHC and Tubrett MN. 2003. A LAM-ICP-MS study of the distribution of gold in arsenopyrite from the Lodestar prospect, Newfoundland, Canada. The Canadian Mineralogist, 41(2): 353-364

    [40]

    Huston DL, Sie SH, Suter GF, Cooke DR and Both RA. 1995. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: Part Ⅰ, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part Ⅱ, Selenium levels in pyrite; comparison with delta 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology, 90(5): 1167-1196

    [41]

    Ishihara S and Endo Y. 2007. Indium and other trace elements in volcanogenic massive sulfide ores from the Kuroko, Besshi and other types in Japan. Bulletin of the Geological Survey of Japan, 58(1-2): 7-22

    [42]

    Jahn BM, Wu FY and Chen B. 2000. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2): 82-92

    [43]

    Jin LY, Li GM, Li ZZ, Song GX, Qin KZ, Meng ZJ, Lü KP and Kan XS. 2012. The high fluorine and high oxidized fluid of Chalukou molybdenum-zinc-lead deposit, northern Da Hinggan Mountains. Mineral Deposits, 33(S1): 663-664 (in Chinese)

    [44]

    Jin LY, Qin KZ, Meng ZJ, Li GM, Song GX, Li ZZ, Lü KP, Kan XS and Zhao C. 2014. Features and occurrences of veins in Chalukou giant molybdenum-zinc-lead deposit, northern Da Hinggan Mountains, and their indications for mineralization. Mineral Deposits, 33(4): 742-760 (in Chinese with English abstract)

    [45]

    Jovic SM, Guido DM, Schalamu IB, Rios FJ, Tassinari CCG and Recio C. 2011. Pingüino In-bearing polymetallic vein deposit, Deseado Massif, Patagonia, Argentina: Characteristics of mineralization and ore-forming fluids. Mineralium Deposita, 46(3): 257-271

    [46]

    Kelley KD, Leach DL, Johnson CA, Clark JL, Fayek M, Slack JF, Anderson VM, Ayuso LE and Ridley WI. 2004. Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: Implications for ore formation. Economic Geology, 99(7): 1509-1532

    [47]

    Klemm LM, Pettke T, Heinrich CA and Campos E. 2007. Hydrothermal evolution of the El Teniente deposit, Chile: Porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Economic Geology, 102(6): 1021-1045

    [48]

    Klemm LM, Pettke T and Heinrich CA. 2008. Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineralium Deposita, 43 (5): 533-552

    [49]

    Koglin N, Frimmel HE, Lawrie Minter WE and Brätz H. 2010. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Mineralium Deposita, 45(3): 259-280

    [50]

    Kostova B, Pettke T, Driesner T, Petrov P and Heinrich CA. 2004. LA-ICP-MS study of fluid inclusions in quartz from the Yuzhna Petrovitsa deposit, Madan ore field, Bulgaria. Swiss Bulletin of Mineralogy and Petrology, 84(1): 25-36

    [51]

    Kouzmanov K, Pettke T and Heinrich CA. 2010. Direct analysis of ore-precipitating fluids: Combined IR microscopy and LA-ICP-MS study of fluid inclusions in opaque ore minerals. Economic Geology, 105(2): 351-373

    [52]

    Kuhlemann J, Vennemann T, Herlec U, Zeeh S and Bechstädt T. 2001. Variations of sulfur isotopes, trace element compositions, and cathodoluminescense of Mississippi Valley-type Pb-Zn ores from the Drau range, Eastern Alps (Slovenia-Austria): Implications for ore deposition on a regional versus microscale. Economic Geology, 96(8): 1931-1941

    [53]

    Large RR, Danyushevsky L, Hollit C, Maslennikov V, Meffre S, Gilbert S, Bull S, Scott R, Emsbo P, Thomas H, Singh B and Foster J. 2009. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology, 104(5): 635-668

    [54]

    Lawley CJM, Richards JP, Anderson RG, Creaser RA and Heaman LM. 2010. Geochronology and geochemistry of the MAX porphyry Mo deposit and its relationship to Pb-Zn-Ag mineralization, Kootenay Arc, Southeastern British Columbia, Canada. Economic Geology, 105(6): 1113-1142

    [55]

    Li FL. 2011. Geological characteristics and metallogenic epoch of Qianechong large-size porphyry Mo deposit at the northern foot of Dabie Mountains, Henan Province. Mineral Deposits, 30(3): 457-468 (in Chinese with English abstract)

    [56]

    Li HM, Chen YC, Ye HS, Wang DH, Guo BJ and Li YF. 2008. Mo, (W), Au, Ag, Pb, Zn minerogenetic series related to mesozoic magmatic activities in the East Qinling-Dabie mountains. Acta Geologica Sinica, 82(11): 1468-1477 (in Chinese with English abstract)

    [57]

    Li HM, Wang DH, Zhang CQ, Chen YC and Li LX. 2009. Characteristics of trace and rare earth elements in minerals from some typical lead-zinc deposits of Shaanxi Province. Mineral Deposits, 28(4): 434-448 (in Chinese with English abstract)

    [58]

    Li YJ, Wei JH, Chen HY, Tan J, Fu LB and Wu G. 2012. Origin of the Maoduan Pb-Zn-Mo deposit, eastern Cathaysia Block, China: Geological, geochronological, geochemical, and Sr-Nd-Pb-S isotopic constraints. Mineralium Deposita, 47(7): 763-780

    [59]

    Li ZK. 2013. Metallogenesis of the silver-lead-zinc deposits along the southern margin of the North China Craton. Ph. D. Dissertation. Wuhan: China university of Geosciences, 1-197 (in Chinese with English summary)

    [60]

    Li ZZ. 2014. Fluorine-rich and highly oxidized magmatic-hydrothermal evolution and metallogenesis of Chalukou giant porphyry Mo deposit in northern Great Xing'an Range. Ph. D. Dissertation. Beijing: University of Chinese Academy of Sciences, 1-246 (in Chinese with English summary)

    [61]

    Li ZZ, Li GM, Meng ZJ, Qin KZ, Song GX, Jin LY, Kan XS, Wang J and Zhang XN. 2014. Petrofacies classification, characteristics and formation mechanism of breccias in Chalukou giant molybdenum deposit of Da Hinggan Mountains. Mineral Deposits, 33(3): 607-624 (in Chinese with English abstract)

    [62]

    Li ZZ, Qin KZ, Li GM, Ishihara S, Jin LY, Song GX and Meng ZJ. 2014. Formation of the giant Chalukou porphyry Mo deposit in northern Great Xing'an Range, NE China: Partial melting of juvenile lower crust in intra-plate extension environment. Lithos, 202-203: 138-156

    [63]

    Liu J, Mao JW, Wu G, Wang F, Luo DF and Hu YQ. 2014a. Zircon U-Pb and molybdenite Re-Os dating of the Chalukou porphyry Mo deposit in the northern Great Xing'an Range, China and its geological significance. Journal of Asian Earth Sciences, 79: 696-709

    [64]

    Liu J, Mao JW, Wu G, Wang F, Luo DF, Hu YQ and Li TG. 2014b. Fluid inclusions and H-O-S-Pb isotope systematics of the Chalukou giant porphyry Mo deposit, Heilongjiang Province, China. Ore Geology Reviews, 59: 83-96

    [65]

    Liu WH. 2007. Ore genesis and metallogenic prediction of Huangshaping Pb-Zn polymetallic deposit, Hunan Province, South China. Ph. D. Dissertation. Changsha: Central South University, 1-149 (in Chinese with English summary)

    [66]

    Liu YJ, Cao LM and Li ZL. 1984. Element Geochemistry. Beijing: Geological Publishing House, 1-548 (in Chinese)

    [67]

    Loftus-Hills G and Solomon M. 1967. Cobalt, nickel and selenium in sulphides as indicators of ore genesis. Mineralium Deposita, 2(3): 228-242

    [68]

    Mao GZ, Hua RM, Gao JF, Zhao KD, Long GM, Lu HJ and Yao JM. 2006. REE composition and trace element features of gold-bearing pyrite in Jinshan gold deposit, Jiangxi Province. Mineral Deposits, 25(4): 412-426 (in Chinese with English abstract)

    [69]

    Mao JW, Pirajno F, Xiang JF, Gao JJ, Ye HS, Li YF and Guo BJ. 2011. Mesozoic molybdenum deposits in the east Qinling-Dabie orogenic belt: Characteristics and tectonic settings. Ore Geology Reviews, 43(1): 264-293

    [70]

    Maslennikov VV, Maslennikova SP, Large RR and Danyushevsky LV. 2009. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Economic Geology, 104(8): 1111-1141

    [71]

    Maydagán L, Franchini MB, Lentz D, Pons J and McFarlane C. 2013. Sulfide composition and isotopic signature of the Altar Cu-Au deposit, Argentina: Constraints on the evolution of the porphyry-epithermal system. The Canadian Mineralogist, 51(6): 813-840

    [72]

    McClenaghan SH, Lentz DR, Martin J and Diegor WG. 2009. Gold in the Brunswick No.12 volcanogenic massive sulfide deposit, Bathurst Camp, Canada: Evidence from bulk ore analysis and laser ablation ICP-MS data on sulfide phases. Mineralium Deposita, 44(5): 523-577

    [73]

    McClung CR and Viljoen F. 2011. A detailed mineralogical assessment of sphalerites from the Gamsberg zinc deposit, South Africa: The manganese conundrum. Minerals Engineering, 24(8): 930-938

    [74]

    Meng ZJ and Qin KZ. 1997. Geological characteristics, ore-forming center and prognosis for concealed orebodies of the Jiawula-Aqgan polymetallic orefield in Inner Mongolia. Geological Exploration for Non-Ferrous Metals, 6(1): 24-30 (in Chinese with English abstract)

    [75]

    Meng ZJ, Kan XS, Li XC, Wang JP, Zhang RZ, Lü KP, Sun ZJ, Shi YJ, Zhang JN, Wang HY, Han L and Zhang GY. 2011. The discovery and exploration process of the Chalukou giant porphyry molybdenum polymetallic deposit in forest-covered area of northeastern Da Higgnan Mountains and its geological significance. Geology in China, 38(6): 1504-1517 (in Chinese with English abstract)

    [76]

    Murakami H and Ishihara S. 2013. Trace elements of Indium-bearing sphalerite from tin-polymetallic deposits in Bolivia, China and Japan: A femto-second LA-ICPMS study. Ore Geology Reviews, 53: 223-243

    [77]

    Murao S, Deb M and Furuno M. 2008. Mineralogical evolution of indium in high grade tin polymetallic hydrothermal veins: A comparative study from Tosham, Haryana state, India and Goka, Naegi district, Japan. Ore Geology Reviews, 33(3-4): 490-504

    [78]

    Ono S, Hirai K, Matsueda H and Kabashima T. 2004. Polymetallic mineralization at the Suttsu vein-type deposit, southwestern Hokkaido, Japan. Resource Geology, 54(4): 453-464

    [79]

    Pačevski A, Moritz R, Kouzmanov K, Marquardt K, Živković P and Cvetković L. 2012. Texture and composition of Pb-bearing pyrite from the čoka marin polymetallic deposit, Serbia, controlled by nanoscale inclusions. The Canadian Mineralogist, 50(1): 1-20

    [80]

    Palero-Fernández FJ and Martín-Izard A. 2005. Trace element contents in galena and sphalerite from ore deposits of the Alcudia Valley mineral field (Eastern Sierra Morena, Spain). Journal of Geochemical Exploration, 86(1): 1-25

    [81]

    Pašava J, Tornos F and Chrastny V. 2014. Zinc and sulfur isotope variation in sphalerite from carbonate-hosted zinc deposits, Cantabria, Spain. Mineralium Deposita, 49(7): 797-807

    [82]

    Pfaff K, Koenig A, Wenzel T, Ridley I, Hildebrandt LH, Leach DL and Markl G. 2011. Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS: Incorporation mechanisms and implications for their genesis. Chemical Geology, 286(3-4): 118-134

    [83]

    Pudack C, Halter WE, Heinrich CA and Pettke T. 2009. Evolution of magmatic vapor to gold-rich epithermal liquid: The porphyry to epithermal transition at Nevados de Famatina, Northwest Argentina. Economic Geology, 104(4): 449-477

    [84]

    Qin KZ, Wang ZT and Pan LJ. 1995. Magmatism and metallogenic systematics of the Southern Ergun Mo, Cu, Pb, Zn and Ag belt, Inner Mongolia, China. Resource Geology, Special Issue, 18: 159-169

    [85]

    Qin KZ and Ishihara S. 1998. On the possibility of porphyry copper mineralization in Japanese Islands. International Geology Review, 40(6): 539-551

    [86]

    Raymond OL. 1996. Pyrite composition and ore genesis in the Prince Lyell copper deposit, Mt Lyell mineral field, western Tasmania, Australia. Ore Geology Reviews, 10(3-6): 231-250

    [87]

    Reich M, Kesler SE, Utsunomiya S, Palenik CS, Chryssoulis SL and Ewing RC. 2005. Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69(11): 2781-2796

    [88]

    Reich M, Deditius A, Chryssoulis S, Li JW, Ma CQ, Parada MA, Barra F and Mittermayr F. 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochimica et Cosmochimica Acta, 104: 42-62

    [89]

    Revan MK, Genç Y, Maslennikov VV, Maslennikova SP, Large RR and Danyushevsky LV. 2014. Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey). Ore Geology Reviews, 63: 129-149

    [90]

    Rusk BG, Reed MH, Dilles JH, Klemm LM and Heinrich CA. 2004. Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT. Chemical Geology, 210(1-4): 173-199

    [91]

    Rusk BG, Reed MH and Dilles JH. 2008. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Economic Geology, 103(2): 307-334

    [92]

    Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307

    [93]

    Seo JH, Guillong M and Heinrich CA. 2012. Separation of Molybdenum and copper in porphyry deposits: The roles of sulfur, redox, and pH in ore mineral deposition at Bingham Canyon. Economic Geology, 107(2): 333-356

    [94]

    Shannon RD. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5): 751-767

    [95]

    Sinclair WD, Kooiman GJA, Martin DA and Kjarsgaard IM. 2006. Geology, geochemistry and mineralogy of indium resources at Mount Pleasant, New Brunswick, Canada. Ore Geology Reviews, 28(1): 123-145

    [96]

    Steininger RC. 1985. Geology of the Kitsault molybdenum deposit, British Columbia. Economic Geology, 80(1): 57-71

    [97]

    Tagirov BR and Seward TM. 2010. Hydrosulfide/sulfide complexes of zinc to 250℃ and the thermodynamic properties of sphalerite. Chemical Geology, 269(3-4): 301-311

    [98]

    Ulrich T, Long DGF, Kamber BS and Whitehouse MJ. 2011. In Situ trace element and sulfur isotope analysis of pyrite in a Paleoproterozoic gold placer deposit, Pardo and Clement Townships, Ontario, Canada. Economic Geology, 106(4): 667-686

    [99]

    Veksler IV, Dorfman AM, Kamenetsky M, Dulski P and Dingwell DB. 2005. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochimica et Cosmochimica Acta, 69(11): 2847-2860

    [100]

    Wagner T, Klemd R, Wenzel T and Mattsson B. 2007. Gold upgrading in metamorphosed massive sulfide ore deposits: Direct evidence from laser-ablation-inductively coupled plasma-mass spectrometry analysis of invisible gold. Geology, 35(9): 775-778

    [101]

    Wang ZT and Qin KZ. 1988. Geological-geochemical characteristics and metallogenic material sources of the Wunugetushan lower-crust porphyry copper-molybdenum deposit. Mineral Deposits, 7(4): 3-15 (in Chinese with English abstract)

    [102]

    Windley BF, Alexeiev D, Xiao W, Kröner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47

    [103]

    Wood SA, Crerar DA and Borcsik MP. 1987. Solubility of the assemblage pyrite-pyrrhotite-magnetite-sphalerite-galena-gold-stibnite-bismuthinite-argen-tite-molybdenite in H2O-NaCl-CO2 solutions from 200 degrees to 350 degrees C degrees. Economic Geology, 82(7): 1864-1887

    [104]

    Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30

    [105]

    Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22(6): 1-20

    [106]

    Xu S. 2012. Geology and geochemistry study of western Yunnan Laochang Ag-Pb-Zn ploymetallic deposit. Master Degree Thsis. Kunming: Kunming University of Science and Technology,1-72 (in Chinese with English summary)

    [107]

    Xu XC, Lou JW, Xie QQ, Xiao QX, Liang JF and Lu SM. 2011. Geochronology and tectonic setting of Pb-Zn-Mo deposits and related igneous rocks in the Yinshan region, Jinzhai, Anhui Province, China. Ore Geology Reviews, 43(1): 132-141

    [108]

    Yan DR. 2013. Geological Characteristics and Genesis of Ruanjiawan Cu-Mo-W deposit and Yinshan Pb-Zn-Ag deposit. Ph. D. Dissertation. Wuha: China University of Geosciences, 1-139 (in Chinese with English summary)

    [109]

    Yang XM, Lentz DR and Sulvester PJ. 2006. Gold contents of sulfide minerals in granitoids from southwestern New Brunswick, Canada. Mineralium Deposita, 41(4): 369-386

    [110]

    Ye L, Cook NJ, Ciobanu CL, Liu YP, Zhang Q, Liu TG, Gao W, Yang YL and Danyushevskiy L. 2011. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study. Ore Geology Reviews, 39(4): 188-217

    [111]

    Ye L, Cook NJ, Liu T, Ciobanu CL, Gao W and Yang YL. 2012. The Niujiaotang Cd-rich zinc deposit, Duyun, Guizhou Province, Southwest China: Ore genesis and mechanisms of cadmium concentration. Mineralium Deposita, 47(6): 683-700

    [112]

    Ye L, Gao W, Yang YL, Liu TG and Peng SS. 2012. Trace elements in sphalerite in Laochang Pb-Zn polymetallic deposit, Lancang, Yunnan Province. Acta Petrologica Sinica, 28(5): 1362-1372 (in Chinese with English abstract)

    [113]

    Yuan B, Mao JW, Yan XH, Wu Y, Zhang F and Zhao LL. 2014. Sources of metallogenic materials and metallogenic mechanism of Daliangzi ore field in Sichuan Province: Constraints from geochemistry of S, C, H, O, Sr isotope and trace element in sphalerite. Acta Petrologica Sinica, 30(1): 209-220 (in Chinese with English abstract)

    [114]

    Zhang H, Sun WD, Yang XY, Liang HY, Wang BH, Wang RL and Wang YX. 2011. Geochronology and metallogenesis of the Shapinggou giant porphyry molybdenum deposit in the Dabie Orogenic Belt. Acta Geologica Sinica, 85(12): 2039-2059 (in Chinese with English abstract)

    [115]

    Zhang Q. 1987. Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits. Chinese Journal of Geochemistry, 6(2): 177-190

    [116]

    Zhang Q, Liu ZH, Zhan XZ and Shao SX. 2003. Specialization of ore deposit types and minerals for enrichment of Indium. Mineral deposits, 22(3): 309-316 (in Chinese with English abstract)

    [117]

    Zhang Q, Liu ZH, Zhan XZ and Shao SX. 2004. Trace element geochemistry of Meng'entaolegai Ag-Pb-Zn-In deposit, Inner Mongolia, China. Acta Mineralogica Sinica, 24(1): 39-47 (in Chinese with English abstract)

    [118]

    Zhao C, Ni P, Wang GG, Chen H and Cai YT. 2014. The fluid inclusions study on Zhilingtou molybdenum deposit in Southwest Zhejiang Province. Geological Journal of China Universities, 20(1): 38-49 (in Chinese with English abstract)

    [119]

    Zhou TF, Zhang LJ, Yuan F, Fan Y and Cooke DR. 2010. LA-ICP-MS in situ trace element analysis of pyrite from the Xinqiao Cu-Au-S deposit in Tongling, Anhui, and its constraints on the ore genesis. Earth Science Frontiers, 17(2): 306-319 (in Chinese with English abstract)

    [120]

    Zou ZC, Hu RZ, Bi XW, Ye L, Wu LY, Feng CX and Tang YY. 2012. Trace element geochemistry of the Liziping Pb-Zn deposit, the Lanping Basin, Northwest Yunnan Province, China. Geochimica, 41(5): 482-496 (in Chinese with English abstract)

    [121]

    Zwahlen C, Cioldi S, Wagner T, Rey R and Heinrich C. 2014. The porphyry Cu-(Mo-Au) deposit at Altar (Argentina): Tracing gold distribution by vein mapping and LA-ICP-MS mineral analysis. Economic Geology, 109(5): 1341-1358

    [122]

    金露英, 李光明, 李真真, 宋国学, 秦克章, 孟昭君, 吕克鹏, 阚学胜. 2012. 大兴安岭北段岔路口斑岩钼多金属矿床高氟高氧化成矿流体特征. 矿床地质, 31(增刊): 663-664

    [123]

    金露英, 秦克章, 孟昭君, 李光明, 宋国学, 李真真, 吕克鹏, 阚学胜, 赵超. 2014. 大兴安岭北段岔路口巨型钼(锌铅)矿床脉体特征、产状及其对成矿的指示. 矿床地质, 33(4): 742-760

    [124]

    李法岭. 2011. 河南大别山北麓千鹅冲特大隐伏斑岩型钼矿床地质特征及成矿时代. 矿床地质, 30(3): 457-468

    [125]

    李厚民, 陈毓川, 叶会寿, 王登红, 郭保健, 李永峰. 2008. 东秦岭-大别地区中生代与岩浆活动有关钼(钨)金银铅锌矿床成矿系列. 地质学报, 82(11): 1468-1477

    [126]

    李厚民, 王登红, 张长青, 陈毓川, 李立兴. 2009. 陕西几类重要铅锌矿床的矿物微量元素和稀土元素特征. 矿床地质, 28(4): 434-448

    [127]

    李占轲. 2013. 华北克拉通南缘中生代银-铅-锌矿床成矿作用研究. 博士学位论文. 武汉: 中国地质大学,1-197

    [128]

    李真真. 2014. 大兴安岭北段岔路口巨型斑岩钼矿高氟高氧化岩浆-流体演化与成矿作用. 博士学位论文. 北京: 中国科学院大学, 1-246

    [129]

    李真真, 李光明, 孟昭君, 秦克章, 宋国学, 金露英, 阚学胜, 王进, 张夏楠. 2014. 大兴安岭岔路口巨型斑岩钼矿床角砾岩相的划分、特征及成因. 矿床地质, 33(3): 607-624

    [130]

    刘悟辉. 2007. 黄沙坪铅锌多金属矿床成矿机理及其预测研究. 博士学位论文. 长沙: 中南大学, 1-149

    [131]

    刘英俊, 曹励明, 李兆麟. 1984. 元素地球化学. 北京: 地质出版社, 1-548

    [132]

    毛光周, 华仁民, 高剑峰, 赵葵东, 龙光明, 陆慧娟, 姚军明. 2006. 江西金山金矿床含金黄铁矿的稀土元素和微量元素特征. 矿床地质, 25(4): 412-426

    [133]

    孟昭君, 秦克章. 1997. 内蒙甲-查银多金属矿田地质特征、成矿中心与隐伏矿体预测. 有色金属矿产与勘查, 6(1): 24-30

    [134]

    孟昭君, 阚学胜, 李宪臣, 王建平, 张瑞忠, 吕克鹏, 孙振江, 石耀军, 张佳南, 王宏燕, 韩龙, 张国玉. 2011. 大兴安岭北东段森林覆盖区岔路口巨型斑岩钼多金属矿床的发现过程及意义. 中国地质, 38(6): 1504-1517

    [135]

    王之田, 秦克章. 1988. 乌奴格吐山下壳源斑岩铜钼矿床地质地球化学特征与成矿物质来源. 矿床地质, 7(4): 3-15

    [136]

    徐松. 2012. 滇西老厂银铅锌多金属矿床地质及地球化学特征研究. 硕士学位论文. 昆明: 昆明理工大学, 1-72

    [137]

    颜代蓉. 2013. 湖北阳新阮家湾钨-铜-钼矿床和银山铅-锌-银矿床地质特征及矿床成因. 博士学位论文. 武汉: 中国地质大学, 1-139

    [138]

    叶霖, 高伟, 杨玉龙, 刘铁庚, 彭绍松. 2012. 云南澜沧老厂铅锌多金属矿床闪锌矿微量元素组成. 岩石学报, 28(5): 1362-1372

    [139]

    袁波, 毛景文, 闫兴虎, 吴越, 张锋, 赵亮亮. 2014. 四川大梁子铅锌矿成矿物质来源与成矿机制: 硫, 碳, 氢, 氧, 锶同位素及闪锌矿微量元素制约. 岩石学报, 30(1): 209-220

    [140]

    张红, 孙卫东, 杨晓勇, 梁华英, 王波华, 王瑞龙, 王玉贤. 2011. 大别造山带沙坪沟特大型斑岩钼矿床年代学及成矿机理研究. 地质学报, 85(12): 2039-2059

    [141]

    张乾, 刘志浩, 战新志, 邵树勋. 2003. 分散元素铟富集的矿床类型和矿物专属性. 矿床地质, 22(3): 309-316

    [142]

    张乾, 刘志浩, 战新志, 邵树勋. 2004. 内蒙古孟恩陶勒盖银铅锌铟矿床的微量元素地球化学. 矿物学报, 24(1): 39-47

    [143]

    赵超, 倪培, 王国光, 陈辉, 蔡逸涛. 2014. 浙西南治岭头斑岩钼矿体流体包裹体研究. 高校地质学报, 20(1): 38-49

    [144]

    周涛发, 张乐骏, 袁峰, 范裕, Cooke DR. 2010. 安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约. 地学前缘, 17(2): 306-319

    [145]

    邹志超, 胡瑞忠, 毕献武, 叶霖, 武丽艳, 冯彩霞, 唐永永. 2012. 滇西北兰坪盆地李子坪铅锌矿床微量元素地球化学特征. 地球化学, 41(5): 482-496

  • 加载中
计量
  • 文章访问数:  6509
  • PDF下载数:  5891
  • 施引文献:  0
出版历程
收稿日期:  2014-11-20
修回日期:  2015-02-10
刊出日期:  2015-08-31

目录