末次冰盛期以来基于孢粉定量重建的植物多样性变化研究进展

梁琛, 李家胜, 李泉. 末次冰盛期以来基于孢粉定量重建的植物多样性变化研究进展[J]. 第四纪研究, 2024, 44(3): 837-846. doi: 10.11928/j.issn.1001-7410.2024.03.17
引用本文: 梁琛, 李家胜, 李泉. 末次冰盛期以来基于孢粉定量重建的植物多样性变化研究进展[J]. 第四纪研究, 2024, 44(3): 837-846. doi: 10.11928/j.issn.1001-7410.2024.03.17
梁琛, 李家胜, 李泉. 末次冰盛期以来基于孢粉定量重建的植物多样性变化研究进展[J]. 第四纪研究, 2024, 44(3): 837-846. doi: 10.11928/j.issn.1001-7410.2024.03.17 LIANG Chen, LI Jiasheng, LI Quan. Research progress on pollen-based floristic diversity change and its mechanism since the Last Glacial Maximum[J]. Quaternary Sciences, 2024, 44(3): 837-846. doi: 10.11928/j.issn.1001-7410.2024.03.17
Citation: LIANG Chen, LI Jiasheng, LI Quan. Research progress on pollen-based floristic diversity change and its mechanism since the Last Glacial Maximum[J]. Quaternary Sciences, 2024, 44(3): 837-846. doi: 10.11928/j.issn.1001-7410.2024.03.17

末次冰盛期以来基于孢粉定量重建的植物多样性变化研究进展

  • 基金项目:

    国家自然科学基金项目(42107471、42277454和41977395)和国家重点研发计划项目(批准号: 2022YFF0801500)共同资助

详细信息

Research progress on pollen-based floristic diversity change and its mechanism since the Last Glacial Maximum

More Information
  • 植物多样性变化及其对气候的响应机制是未来全球变化模拟和生物多样性保护决策的科学基础。对过去长时间尺度植物多样性变化的研究,可为预测未来类似幅度增温场景下生态系统的变化提供依据。国内外众多学者已在基于化石孢粉记录的过去植物多样性重建方面开展了大量工作。文章综述了多种孢粉多样性量化指数、末次冰盛期以来全球各地植物多样性变化趋势以及植物多样性的影响因素等。孢粉多样性重建指数可分为固有指数(丰富度和均匀度)和差异性指数(β指数),分别从多个侧面度量了多样性变化。末次冰盛期以来植物多样性变化可划分出5个阶段,总体呈上升趋势的背景下表现出明显的空间分异。影响过去植物多样性变化的因素主要来自气候等自然因素和人类活动等非自然扰动,表现为长时间尺度变化受到气候变化的主控,晚全新世日益增强的人类活动对植物多样性的影响已经极大地超过了气候变化驱动下的自然变率。人类世以来观测记录显示的生物多样性减少、甚至生物灭绝的主要原因应是人类活动,而非全球变暖。

  • 加载中
  • 图 1 

    典型区域基于孢粉的植物多样性定量重建结果

    Figure 1. 

    Quantitative reconstruction of floristic diversity in typical areas based on pollen assemblages. (a)Palynological richness of Ayoo core record in western Mediterranean[40]; (b)Palynological richness of Lago di Origlio Lake in Central Europe[41]; (c)Shannon Index of Xia Renna record in Altai Mountain, Xinjiang(high altitude)[42]; (d)Shannon Index of Kanas core from Altai Mountain, Xinjiang(low altitude)[42]; (e)Multi-record integration results of Alps Mountains(based on 50000 statistics)[43]; (f)Palynological richness of LLG Lake in Bolivia, South America[44]; (g)Palynological richness of ZB10-C9 peat core in the Zoige Basin, eastern Tibetan Plateau[45]; (h)Results of multi-record integration in western Tasmania, Australia[46]; (i)Multi-record integration results of Australian continent[46]; (j)Globally resolved mean surface temperatures; (k)Summer mean insolation(June-July-August)at 30°N; (l)Summer mean insolation(June-July-August)at 60°N

    图 2 

    欧洲大陆不同区域冰消期以来孢粉多样性集成结果(修改自Giesecke等[43])

    Figure 2. 

    Regional pollen type richness through time based on pollen diagrams from Europe(modified from Giesecke et al.[43]). Comparisons are made at a sample size of 50000 identifications using rarefaction based on all accepted types. Line shapes indicate regions: (a) Meridional/Sub meridional(circle); (b) Alps(square); (c) Temperate Continental(black line); (d) Temperate Oceanic(black dotted); (e) Boreal(triangular)

  • [1]

    Nolan C, Overpeck J T, Allen J R M, et al. Past and future global transformation of terrestrial ecosystems under climate change[J]. Science, 2018, 361(6405): 920-923. doi: 10.1126/science.aan5360

    [2]

    Mcdowell N G, Allen C D, Anderson-Teixeira K, et al. Pervasive shifts in forest dynamics in a changing world[J]. Science, 2020, 368(6494): eaaz9463. doi: 10.1126/science.aaz9463.

    [3]

    Tierney J E, Poulsen C J, Montañez I P, et al. Past climates inform our future[J]. Science, 2020, 6517(370): eaay3701. doi: 10.1126/science.aay3701.

    [4]

    Blonder B, Moulton D E, Blois J, et al. Predictability in community dynamics[J]. Ecology Letters, 2017, 20(3): 293-306. doi: 10.1111/ele.12736

    [5]

    Mckenney D W, Pedlar J H, Lawrence K, et al. Potential impacts of climate change on the distribution of North American trees[J]. Bioscience, 2007, 57(11): 939-948. doi: 10.1641/B571106

    [6]

    IPCC. Climate Change 2022: Mitigation of Climate Change(AR6)[R]. Switzerland Interlaken, 2022: 1-35.

    [7]

    Bradley Raymond S. Quaternary Paleoclimatology: Methods of Paleoclimatic Reconstruction[M]. Boston: Allen & Unwin, 1985: 11-38.

    [8]

    Chen F H, Dong G H, Zhang D J, et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. [J]. Science, 2015, 347(6219): 248-250. doi: 10.1126/science.1259172

    [9]

    Smol J P, Birks H J B, Last W M E. Tracking Environmental Change Using Lake Sediments Volume 3: Terrestrial, Algal and Siliceous Indicators[M]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2001: 1-149.

    [10]

    Liu S, Stoof-Leichsenring K R, Kruse S, et al. Holocene vegetation and plant diversity changes in the North-Eastern Siberian treeline region from pollen and sedimentary ancient DNA[J]. Frontiers in Ecology and Evolution, 2020, 8: 560243. doi: 10.3389/fevo.2020.560243.

    [11]

    Epp L S, Boessenkool S, Bellemain E P, et al. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems[J]. Molecular Ecology, 2012, 21(8): 1821-1833. doi: 10.1111/j.1365-294X.2012.05537.x

    [12]

    Yoccoz N G, Brathen K A, Gielly L, et al. DNA from soil mirrors plant taxonomic and growth form diversity[J]. Molecular Ecology, 2012, 21(15): 3647-3655. doi: 10.1111/j.1365-294X.2012.05545.x

    [13]

    Birks H J B, Line J M. The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data[J]. The Holocene, 1992, 2(1): 1-10. doi: 10.1177/095968369200200101

    [14]

    Meltsov V, Poska A, Odgaard B V, et al. Palynological richness and pollen sample evenness in relation to local floristic diversity in Southern Estonia[J]. Review of Palaeobotany and Palynology, 2011, 166 (3-4): 344-351. doi: 10.1016/j.revpalbo.2011.06.008

    [15]

    Weng C, Hooghiemstra H, Duivenvoorden J F. Challenges in estimating past plant diversity from fossil pollen data: Statistical assessment, problems, and possible solutions[J]. Diversity & distributions, 2006, 12(3): 310-318.

    [16]

    Fredh D, Broström A, Zillén L, et al. Floristic diversity in the transition from traditional to modern land-use in Southern Sweden A.D. 1800-2008[J]. Vegetation History and Archaeobotany, 2012, 21(6): 439-452. doi: 10.1007/s00334-012-0357-z

    [17]

    Blarquez O, Finsinger W, Carcaillet C, et al. Assessing paleo-biodiversity using low proxy influx[J]. PLoS One, 2013, 8(6): e65852. doi: 10.1371/journal.pone.0065852.

    [18]

    Giesecke T, Ammann B, Brande A. Palynological richness and evenness: Insights from the taxa accumulation curve[J]. Vegetation History and Archaeobotany, 2014, 23(3): 217-228. doi: 10.1007/s00334-014-0435-5

    [19]

    Matthias I, Semmler M S S, Giesecke T, et al. Pollen diversity captures landscape structure and diversity[J]. Journal of Ecology, 2015, 103(4): 880-890. doi: 10.1111/1365-2745.12404

    [20]

    Flenley J R, Bermingham E, Dick C, et al. Palynological Richness and the Tropical Rainforest[M]. Chicago: University of Chicago Press, 2005: 72-77.

    [21]

    Birks H J B, Felde V A, Bjune A E, et al. Does pollen-assemblage richness reflect floristic richness?A review of recent developments and future challenges[J]. Review of Palaeobotany and Palynology, 2016, 228: 1-25. doi: 10.1016/j.revpalbo.2015.12.011.

    [22]

    Birks H J B, Felde V A, Seddon A W. Biodiversity trends within the Holocene[J]. The Holocene, 2016, 26(6): 994-1001. doi: 10.1177/0959683615622568

    [23]

    Felde V A, Peglar S M, Bjune A E, et al. Modern pollen-plant richness and diversity relationships exist along a vegetational gradient in Southern Norway[J]. The Holocene, 2016, 26(2): 163-175. doi: 10.1177/0959683615596843

    [24]

    Fyfe R M, Twiddle C, Sugita S, et al. The Holocene vegetation cover of Britain and Ireland; Overcoming problems of scale and discerning patterns of openness[J]. Quaternary Science Reviews, 2013, 73: 132-148. doi: 10.1016/j.quascirev.2013.05.014.

    [25]

    Nielsen A B, Odgaard B V, Giesecke T, et al. Quantitative landscape dynamics in Denmark through the last three millennia based on the landscape reconstruction algorithm approach[J]. Vegetation History and Archaeobotany, 2010, 19(4): 375-387. doi: 10.1007/s00334-010-0249-z

    [26]

    Xiao X, Shen J, Wang S, et al. The plant diversity and its relationship with paleoenvironment since 2.78 Ma revealed by pollen records in the Heqing deep drilling core[J]. Chinese Science Bulletin, 2008, 53(23): 3686-3698. doi: 10.1007/s11434-008-0439-6

    [27]

    Birks H J B, Lotter A F, Juggins S, et al. Tracking Environmental Change Using Lake Sediments: Data Handling and Numerical Techniques[M]. Dordrecht Netherlands: Springer, 2012: 172-182.

    [28]

    Olszewski T D. Diversity partitioning using Shannon's entropy and its relationship to Rarefaction[J]. The Paleontological Society Papers, 2010, 16: 95-116. doi: 10.1017/S1089332600001832.

    [29]

    Palazzesi L, Barreda V D, Cuitiño J I, et al. Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift[J]. Nature Communications, 2014, 5(1): 3558. doi: 10.1038/ncomms4558.

    [30]

    Smith B, Wilson J B. A consumer's guide to evenness indices[J]. Oikos, 1996, 76(1): 70. doi: 102307/3545749.

    [31]

    Hurlbert S H. The nonconcept of species diversity: A critique and alternative parameters[J]. Ecology, 1971, 52(4): 577-586. doi: 10.2307/1934145

    [32]

    Colombaroli D, Beckmann M, van Der Knaap W O, et al. Changes in biodiversity and vegetation composition in the central Swiss Alps during the transition from pristine forest to first farming[J]. Diversity & distributions, 2013, 19(2): 157-170.

    [33]

    Sheldon A L. Equitability indices: Dependence on the species count[J]. Ecology, 1969, 50(3): 466-467. doi: 10.2307/1933900

    [34]

    Jost L. The relation between Evenness and Diversity[J]. Diversity, 2010, 2(2): 207-232. doi: 10.3390/d2020207

    [35]

    Whittaker R H. Vegetation of the Siskiyou Mountains, Oregon and California[J]. Ecological Monographs, 1960, 30(4): 407. doi: 102307/1948435.

    [36]

    Cody M L. Towards a Theory of Continental Species Diversities: Bird Distributions over Mediterranean Habitat Gradients[M]. Harvard: Ecology and Evolution of Communities, Belknap Press, 1975: 214-257.

    [37]

    Harrison S, Ross S J, Lawton J H. Beta diversity on geographic gradients in Britain[J]. The Journal of Animal Ecology, 1992, 61(1): 151-158. doi: 10.2307/5518

    [38]

    Anderson M J, Ellingsen K E, Mcardle B H. Multivariate dispersion as a measure of beta diversity[J]. Ecology Letters, 2006, 9(6): 683-693. doi: 10.1111/j.1461-0248.2006.00926.x

    [39]

    Legendre P, Borcard D, Peres-Neto P R. Analyzing beta diversity: Partitioning the spatial variation of community composition data[J]. Ecological Monographs, 2005, 75(4): 435-450. doi: 10.1890/05-0549

    [40]

    Morales-Molino C, García-Antón M. Vegetation and fire history since the Last Glacial Maximum in an inland area of the western Mediterranean Basin(Northern Iberian Plateau, NW Spain)[J]. Quaternary Research, 2014, 81(1): 63-77. doi: 10.1016/j.yqres.2013.10.010

    [41]

    Colombaroli D, Tinner W. Determining the long-term changes in biodiversity and provisioning services along a transect from Central Europe to the Mediterranean[J]. The Holocene, 2013, 23(11): 1625-1634. doi: 10.1177/0959683613496290

    [42]

    张东良. 全新世西风模态下中亚干旱区孢粉类型多样性变化特征——以阿尔泰山为例[J]. 干旱区研究, 2022, 39(3): 667-675. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ202203001.htm

    Zhang Dongliang. Changes of pollen taxa diversity in the arid Central Asia under the Holocene Westerlies Mode: A case study of the Altai Mountains[J]. Arid Zone Research, 2022, 39(3): 667-675. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ202203001.htm

    [43]

    Giesecke T, Wolters S, Van Leeuwen J F N, et al. Postglacial change of the floristic diversity gradient in Europe[J]. Nature Communications, 2019, 10(1): 5422. doi: 10.1038/s41467-019-13233-y.

    [44]

    Whitney B S, Mayle F E, Burn M J, et al. Sensitivity of Bolivian seasonally-dry tropical forest to precipitation and temperature changes over glacial-interglacial timescales[J]. Vegetation History and Archaeobotany, 2014, 23(1): 1-14. doi: 10.1007/s00334-013-0395-1

    [45]

    Liang C, Zhao Y, Qin F, et al. Complex responses of vegetation diversity to Holocene climate change in the eastern Tibetan Plateau[J]. Vegetation History and Archaeobotany, 2019, 28(4): 379-390. doi: 10.1007/s00334-018-0697-4

    [46]

    Adeleye M A, Haberle S G, Gallagher R, et al. Changing plant functional diversity over the last 12, 000 years provides perspectives for tracking future changes in vegetation communities[J]. Nature Ecology & Evolution, 2023, 7(2): 224-235.

    [47]

    Berglund B E, Gaillard M, Björkman L, et al. Long-term changes in floristic diversity in southern Sweden: Palynological richness, vegetation dynamics and land-use[J]. Vegetation History and Archaeobotany, 2008, 17(5): 573-583. doi: 10.1007/s00334-007-0094-x

    [48]

    Bjune A E, Helvik I, Birks H J B. The Fagus sylvatica forests in the Larvik region, south-eastern Norway: Their origin and history[J]. Vegetation History and Archaeobotany, 2013, 22(3): 215-229. doi: 10.1007/s00334-012-0371-1

    [49]

    Seppa H. Postglacial trends in palynological richness in the Northern Fennoscandian tree-line area and their ecological interpretation[J]. The Holocene, 1998, 8(1): 43-53. doi: 10.1191/095968398674096317

    [50]

    Carcaillet C, Richard P J H, Bergeron Y, et al. Resilience of the boreal forest in response to Holocene fire-frequency changes assessed by pollen diversity and population dynamics[J]. International Journal of Wildland Fire, 2010, 19(8): 1026-1039. doi: 10.1071/WF09097

    [51]

    Felde V A, Grytnes J A, Bjune A E, et al. Are diversity trends in western Scandinavia influenced by post-glacial dispersal limitation?[J]. Journal of Vegetation Science, 2018, 29(3): 360-370. doi: 10.1111/jvs.12569

    [52]

    Feurdean A, Parr C L, Tantau I, et al. Biodiversity variability across elevations in the Carpathians: Parallel change with landscape openness and land use[J]. The Holocene, 2013, 23(6): 869-881. doi: 10.1177/0959683612474482

    [53]

    Li Q. Spatial variability and long-term change in pollen diversity in Nam Co catchment(central Tibetan Plateau): Implications for alpine vegetation restoration from a paleoecological perspective[J]. Science China: Earth Sciences, 2018, 61(3): 270-284. doi: 10.1007/s11430-017-9133-0

    [54]

    Burrough S L, Willis K J. Ecosystem resilience to Late-Holocene climate change in the Upper Zambezi Valley[J]. The Holocene, 2015, 25(11): 1811-1828. doi: 10.1177/0959683615591355

    [55]

    Mottl O, Flantua S G A, Bhatta K P, et al. Global acceleration in rates of vegetation change over the past 18000 years[J]. Science, 2021, 372(6544): 860-864. doi: 10.1126/science.abg1685

    [56]

    李泉. 青藏高原中部纳木错流域孢粉多样性的时空变化及其对高寒植被恢复的启示[J]. 中国科学: 地球科学, 2018, 48(3): 315-330. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201803005.htm

    Li Quan. Spatial variability and long-term change in pollen diversity in Nam Co catchment(central Tibetan Plateau): Implications for alpine vegetation restoration from a paleoecological perspective[J]. Science China: Earth Science, 2018, 48(3): 315-330. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201803005.htm

    [57]

    Nogué S, Santos A M C, Birks H J B, et al. The human dimension of biodiversity changes on islands[J]. Science, 2021, 372(6541): 488-491. doi: 10.1126/science.abd6706

    [58]

    Stehli F G, Douglas R G, Newell N D. Generation and maintenance of gradients in taxonomic diversity[J]. Science, 1969, 164(3882): 947-949. doi: 10.1126/science.164.3882.947

    [59]

    Gaston K J. Global patterns in biodiversity[J]. Nature, 2000, 405(6783): 220-227. doi: 10.1038/35012228

    [60]

    Jablonski D, Belanger C L, Berke S K, et al. Out of the tropics, but how?Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(26): 10487-10494. http://dx.doi.org/10.1073/pnas.1308997110

    [61]

    De Blasio F V, Liow L H, Schweder T, et al. A model for global diversity in response to temperature change over geological time scales, with reference to planktic organisms[J]. Journal of Theoretical Biology, 2015, 365: 445-456. doi: 10.1016/j.jtbi.2014.10.031.

    [62]

    吴建国, 吕佳佳. 土地利用变化对生物多样性的影响[J]. 生态环境, 2008, 17(3): 1276-1281. doi: 10.3969/j.issn.1674-5906.2008.03.077

    Wu Jianguo, Lü Jiajia. Effects of land use change on the biodiversity[J]. Ecology and Environment, 2008, 17(3): 1276-1281. doi: 10.3969/j.issn.1674-5906.2008.03.077

    [63]

    Mooney H A, Duraiappah A, Larigauderie A. Evolution of natural and social science interactions in global change research programs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(Suppl. 1): 3665-3672.

    [64]

    Reitalu T, Bjune A E, Blaus A, et al. Patterns of modern pollen and plant richness across Northern Europe[J]. The Journal of Ecology, 2019, 107(4): 1662-1677. doi: 10.1111/1365-2745.13134

    [65]

    Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693. doi: 10.1126/science.1059412

    [66]

    Currie D J, Mittelbach G G, Cornell H V, et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness[J]. Ecology Letters, 2004, 7(12): 1121-1134. doi: 10.1111/j.1461-0248.2004.00671.x

    [67]

    Kreft H, Jetz W. Global patterns and determinants of vascular plant diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(14): 5925-5930.

    [68]

    Vázquez Rivera H, Currie D J. Contemporaneous climate directly controls broad-scale patterns of woody plant diversity: A test by a natural experiment over 14, 000 years[J]. Global Ecology and Biogeography, 2015, 24(1): 97-106. doi: 10.1111/geb.12232

    [69]

    Jaramillo C, Rueda M J, Mora G. Cenozoic plant diversity in the Neotropics[J]. Science, 2006, 311(5769): 1893-1896. doi: 10.1126/science.1121380

    [70]

    Hooghiemstra H, Ran E T H. Late Pliocene-Pleistocene high resolution pollen sequence of Colombia: An overview of climatic change[J]. Quaternary International, 1994, 20(2): 63-80.

    [71]

    Hooghiemstra H, Melice J L, Berger A, et al. Frequency spectra and paleoclimatic variability of the high-resolution 30-1450 ka Funza I pollen record(Eastern Cordillera, Colombia)[J]. Quaternary Science Reviews, 1993, 12(2): 141-156. doi: 10.1016/0277-3791(93)90013-C

    [72]

    Fonty E, Sarthou C, Larpin D, et al. A 10-year decrease in plant species richness on a neotropical inselberg: Detrimental effects of global warming?[J]. Global Change Biology, 2009, 15(10): 2360-2374. doi: 10.1111/j.1365-2486.2009.01923.x

    [73]

    Gedan K B, Bertness M D. Experimental warming causes rapid loss of plant diversity in New England salt marshes[J]. Ecology Letters, 2009, 12(8): 842-848. doi: 10.1111/j.1461-0248.2009.01337.x

    [74]

    Klein J A, Harte J, Zhao X Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau[J]. Ecology Letters, 2004, 7(12): 1170-1179. doi: 10.1111/j.1461-0248.2004.00677.x

    [75]

    Seifert L I, Weithoff G, Gaedke U, et al. Warming-induced changes in predation, extinction and invasion in an ectotherm food web[J]. Oecologia, 2015, 178(2): 485-496. doi: 10.1007/s00442-014-3211-4

    [76]

    Zhang J, Nielsen S E, Stolar J, et al. Gains and losses of plant species and phylogenetic diversity for a northern high-latitude region[J]. Diversity and Distributions, 2015, 21(12): 1441-1454. doi: 10.1111/ddi.12365

    [77]

    Karrow P F, Bloom A L, Haas J N, et al. The Fernbank interglacial site near Ithaca, New York, USA[J]. Quaternary Research, 2009, 72(1): 132-142. doi: 10.1016/j.yqres.2009.02.008

    [78]

    Watrin J, Lézine A, Hély C. Plant migration and plant communities at the time of the "green Sahara"[J]. Comptes Rendus Geoscience, 2009, 341(8): 656-670.

    [79]

    杨肖肖. 末次盛冰期以来黄土高原植被与多样性变化及其古气候意义[D]. 北京: 中国科学院大学博士学位论文, 2017: 1-212.

    Yang Xiaoxiao. Changes of Vegetation and Diversity in the Loess Plateau since the Last Glacial Maximum and Their Paleoclimatic Implications[D]. Beijing: The Doctoral Thesis of University of Chinese Academy of Sciences, 2017: 1-212.

    [80]

    Currie D J, Paquin V. Large-scale biogeographical patterns of species richness of trees[J]. Nature, 1987, 329(6137): 326-327. doi: 10.1038/329326a0

    [81]

    Francis A P, Currie D J. A globally consistent richness-climate relationship for angiosperms[J]. The American Naturalist, 2003, 161(4): 523-536. doi: 10.1086/368223

    [82]

    Steinbauer M J, Grytnes J, Jurasinski G, et al. Accelerated increase in plant species richness on mountain summits is linked to warming[J]. Nature, 2018, 556(7700): 231-234. doi: 10.1038/s41586-018-0005-6

    [83]

    Root T L, Price J T, Hall K R, et al. Fingerprints of global warming on wild animals and plants[J]. Nature, 2003, 421(6918): 57-60. doi: 10.1038/nature01333

    [84]

    Zhao S, Ding Z. Changes in plant diversity on the Chinese Loess Plateau since the Last Glacial Maximum[J]. Chinese Science Bulletin, 2014, 59(31): 4096-4100. doi: 10.1007/s11434-014-0541-x

    [85]

    Kardol P, Campany C E, Souza L, et al. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem[J]. Global Change Biology, 2010, 16(10): 2676-2687. doi: 10.1111/j.1365-2486.2010.02162.x

    [86]

    Svenning J C, Sandel B. Disequilibrium vegetation dynamics under future climate change[J]. American Journal of Botany, 2013, 100(7): 1266-1286. doi: 10.3732/ajb.1200469

    [87]

    Normand S, Ricklefs R E, Skov F, et al. Postglacial migration supplements climate in determining plant species ranges in Europe[J]. Proceedings of the Royal Society B: Biological Sciences, 2011, 278(1725): 3644-3653. doi: 10.1098/rspb.2010.2769

    [88]

    Yue Y, Zheng Z, Huang K, et al. A continuous record of vegetation and climate change over the past 50, 000 years in the Fujian Province of eastern subtropical China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365-366: 115-123. doi: 10.1016/j.palaeo.2012.09.018.

    [89]

    Birks H J B, Birks H H. Biological responses to rapid climate change at the Younger Dryas-Holocene transition at Kråkenes, Western Norway[J]. The Holocene, 2008, 18(1): 19-30. doi: 10.1177/0959683607085572

    [90]

    Scheffer M, Carpenter S, Foley J A, et al. Catastrophic shifts in ecosystems[J]. Nature, 2001, 413(6856): 591-596. doi: 10.1038/35098000

    [91]

    Bush M B, Silman M R, Urrego D H. 48, 000 years of climate and forest change in a biodiversity hot spot[J]. Science, 2004, 5659(303): 827-829.

    [92]

    Hooghiemstra H, van Der Hammen T. Quaternary ice-age dynamics in the Colombian Andes: Developing an understanding of our legacy[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359(1442): 173-181. doi: 10.1098/rstb.2003.1420

    [93]

    Nelson B W, Ferreira C A C, Da Silva M F, et al. Endemism centres, refugia and botanical collection density in Brazilian Amazonia[J]. Nature, 1990, 345(6277): 714-716. doi: 10.1038/345714a0

    [94]

    翁成郁. 巽他区域地质气候环境演变与陆地生物多样性形成与变化[J]. 地球科学进展, 2017, 32(11): 1163-1173. doi: 10.11867/j.issn.1001-8166.2017.11.1163

    Weng Chengyu. The influences of geological history, climatic variations and the environment changes on the terrestrial biodiversity of Sunda Region[J]. Advances in Earth Science, 2017, 32(11): 1163-1173. doi: 10.11867/j.issn.1001-8166.2017.11.1163

    [95]

    Falcucci A, Maiorano L, Boitani L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation[J]. Landscape Ecology, 2007, 22(4): 617-631. doi: 10.1007/s10980-006-9056-4

    [96]

    Li L. Impact of Human Activities on Vegetation diversity in agricultural ecosystems: Evidence from Fengqiu County, China[J]. Journal of Resources and Ecology, 2010, 1(4): 353-360.

    [97]

    董全民, 李青云, 马玉寿, 等. 放牧强度对夏季高寒草甸生物量和植被结构的影响[J]. 青海草业, 2002, 11(2): 8-10, 49. doi: 10.3969/j.issn.1008-1445.2002.02.003

    Dong Quanmin, Li Qingyun, Ma Yushou, et al. Effect of grazing intensity on bio-mass above ground and vegetation structure in summer alpine meadow[J]. Qinghai Prataculture, 2002, 11(2): 8-10, 49. doi: 10.3969/j.issn.1008-1445.2002.02.003

    [98]

    Brown A G. Biodiversity and pollen analysis: Modern pollen studies and the recent history of a floodplain woodland in S. W. Ireland[J]. Journal of Biogeography, 1999, 26(1): 19-32. doi: 10.1046/j.1365-2699.1999.00281.x

    [99]

    张芸, 孔昭宸, 阎顺, 等. 新疆天山北坡地区中晚全新世古生物多样性特征[J]. 植物生态学报, 2005, 29(5): 836-844. doi: 10.3321/j.issn:1005-264X.2005.05.019

    Zhang Yun, Kong Zhaochen, Yan Shun, et al. Palaeo-biodiversity at the northern piedmont of Tianshan mountains in Xinjiang during the Middle to Late Holocene[J]. Acta Phytoecologica Sinica, 2005, 29(5): 836-844. doi: 10.3321/j.issn:1005-264X.2005.05.019

    [100]

    Schwörer C, Colombaroli D, Kaltenrieder P, et al. Early human impact(5000-3000BC)affects mountain forest dynamics in the Alps[J]. Journal of Ecology, 2015, 103(2): 281-295. doi: 10.1111/1365-2745.12354

    [101]

    赵哈林, 大黑俊哉, 李玉霖, 等. 人类放牧活动与气候变化对科尔沁沙质草地植物多样性的影响[J]. 草业学报, 2008, 17(5): 1-8. doi: 10.3321/j.issn:1004-5759.2008.05.001

    Zhao Halin, Okuro Toshiya, Li Yulin, et al. Effects of human activities and climate changes on plant diversity in Horqin sandy grassland Inner Mongolia[J]. Acta Particulate Sinica, 2008, 17(5): 1-8. doi: 10.3321/j.issn:1004-5759.2008.05.001

    [102]

    Schuldt A, Assmann T, Brezzi M, et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests[J]. Nature Communications, 2018, 9(1): 2989. doi: 10.1038/s41467-018-05421-z.

    [103]

    Mcgill B J, Dornelas M, Gotelli N J, et al. Fifteen forms of biodiversity trend in the Anthropocene[J]. Trends in Ecology & Evolution, 2015, 30(2): 104-113.

    [104]

    Mcmichael C N H. Ecological legacies of past human activities in Amazonian forests[J]. The New Phytologist, 2021, 229(5): 2492-2496. doi: 10.1111/nph.16888

    [105]

    Mottl O, Grytnes J, Seddon A W R, et al. Rate-of-change analysis in paleoecology revisited: A new approach[J]. Review of Palaeobotany and Palynology, 2021, 293: 104483. doi: 10.1016/j.revpalbo.2021.104483.

    [106]

    Woodbridge J, Fyfe R, Smith D, et al. What drives biodiversity patterns?Using long-term multidisciplinary data to discern centennial-scale change[J]. Journal of Ecology, 2021, 109(3): 1396-1410. doi: 10.1111/1365-2745.13565

    [107]

    Blowes S A, Supp S R, Antao L H, et al. The geography of biodiversity change in marine and terrestrial assemblages[J]. Science, 2019, 366(6463): 339-345. doi: 10.1126/science.aaw1620

    [108]

    Pimm S L, Jenkins C N, Abell R, et al. The biodiversity of species and their rates of extinction, distribution, and protection[J]. Science, 2014, 344(6187): 1246752. doi: 10.1126/science.1246752.

  • 加载中

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2024-01-11
修回日期:  2024-03-16
刊出日期:  2024-05-30

目录