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ABSTRACT

The purpose of this paper is to study the dynamical mechanism of error growth in the numerical weather prediction.
The error is defined in the sense of generalized energy, simply called energy error. From the spectral form of the primi-
tive equations, we have derived the evolution equations of error in detail. The analyses of these equations have shown
that the error growth rate is determined by the tangent linear equations. The nonlinear advection caused by the error
perturbation itself contributes nothing to the error growth rate, and only redistributes the error. Furthermore, an ap-
proach to calculation of the error growth rate has been developed, which can also be used to study the local instability of
time—~independent basic state as well as time—dependence basic state. This approach is applied to well-known Lorenz’s

system, and the results are indicative of the correctness and significance of the theoretical analyses.
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I. INTRODUCTION

Up to now, no clear dynamical mechanism has been proposed to explain the continual
growth of the initial error in the numerical weather prediction (NWP). Early in 1963, Lorenz re-
vealed that the general behavior of a deterministic system might be nonperiodic and nonperiodic
variation is essentially sensitive to the error in initial state. Therefore, the notion of
predictability has been introduced (Lorenz 1965). Because of the continual growth of the error
in initial state, two states differing initially by a small “observational error” will evolve into two
states differing as greatly as randomly chosen states within a finite time interval. Evidently, the
NWP can not provide useful information beyond this time interval, i.e., unpredictability. Many
previous studies aimed at quantitatively determining the upper limit of the range of theoretical
predictability (Charney et al. 1966; Smagrinsky 1963; Leith 1965) and the lower limit of the
range of realistic predictability for the atmospheric prediction model (Lorenz 1982). These stud-
ies have shown that the general range of predictability is about two weeks with present—day ac-
curacy in the observing state of the atmosphere. Because the growth rate of error is in agreement
with the baroclinic instability of normal mode to some extent, it is suggested that the error
growth is caused by the baroclinic instability (Lorenz 1981). In addition, the nonlinear processes
are emphasized. Chou (1986) has proposed an important type of the mechanism of error
growth. When the controllable parameters vary across some special points in the phase
parameter space, called bifurcation points, the small error in initial state can lead the final state
to go into an attraction basin of the incorrect attractor. These studies have increased our
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understanding of underlying physics of error growth, but have yet not given a clear physical or
dynamical depiction.

The recent studies on predictability have provided us with two new facts: first, increase of
the resolution and complexity of the numerical prediction model causes decrease of the upper
limit of the range of theoretical predictability (Lorenz 1982); second, the range of predictability
for a particular prediction highly depends on flow patterns itself, and some special patterns pos-
sess much larger range of predictability, for example, blocking high (Gilchrist 1986; Miyakoda
et al. 1986) and PNA patterns with the positive index (Palmer 1988). There is still a strong need
for dynamical study to give explanation to these facts.

In this study, the evolution equation of error has been derived in detail. The notion of local
instability of trajectory has been introduced and an approach for its calculation is developed.
The relationship between the error growth and local instability of trajectory is discussed, and the
dynamical mechanism of error growth is then described.

II. PROGNOSTIC EQUATION

In Chou’s researches (1983; 1986), the dynamic equation governing the large scale atmos-
pheric motion can be written in a simple operator form:

B2 +(W+Lyp=¢ (1)
where the state vector ¢ = (v, v,, 0, ®, T)T . The superscript “7” denotes a transpose, and
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where ® and T are the spatial means of potent1al height and temperature respectively, varying
only with the pressure p. ® and T are the deviations with respect to them. ¢ is diabatic heating
rate and we have £=(0, 0, 0, 0, R% / c? CP)T. Others are the same as commonly used.

The lower boundary conditions are taken at p=P

v, =v,=w=0, (8)
Lo, -, ©

where P=1000 hPa. The orographic effect has been ignored.
The upper boundary conditions can be written as

29T

hmp v, = llmp v, = llmcu— llmp g—p— = 0. (10)

-0 ad]

We have chosen an inner product

@, ¢,)=1 0 0,dQ, (11)

where Q denotes the entire atmosphere. We can get easily
(¢,, No,)= —(9,, No)), (12)
(¢, No)=0, (13)
(o, Bp)=0, (9,, Bo,)=(Bo,, ¢,), (14)
(¢, Lo)=0, (¢, Lo, )=(Lo,, ¢,). (15)

Equations (12)—(15) indicate that N is an anti—adjoint operator, but L and B are positive
self—adjoint operators.

It should be pointed out: N varies as a function of ¢, and is a nonlinear operator; L is a
linear operator; B is a linear and constant operator.

We may let e, e,, e,, == be a complete orthonormal basis, which satisfies horizontally
periodic condition and vertically homogeneous boundary conditions (8)—(10). So a given state
vector can be expanded
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P=20.e, (16)
where
(L i=j
_fne‘.ede—{O’ iy (17
®, =_|.n(peid§2, (18)

¢, is the spectral coefficient and also a vector.
Substituting (16) into (1), we have

B%(Z(piei) +(N+L)Zcp‘ei =Y¢e.. (19)
Using Galerkin approximation, we get
do, o —-¥ (20)
BE_ + i YT éi’
where
. (I)iz <N2(piei’ei>, (21)
Y, =< ZL‘P,-e,-’e,- > (22)
and
<fi, f,> = f.[fdQ. (23)

After some mathematical manipulations, we can obtain the prognostic equation in spectral
form:

do,
B +EN,0,+3L,0, ¢, (24)

where N and L, are matrices corresponding to matrix operators N and L respectively, and
we have

i = (Nmm] )’ (25)
i = (L mnij )’ (26)
N, andL . aregiven by , .
Nmnij =< Nmnlj’ el > 4 (27)
me’j =< Lmnij’ ei > ) (28)

Considering that N is an anti—adjoint operator and L a self—adjoint operator, it is easily
shown
= — N =-N (29)

mnij nmij ? mnij nmji ®

L =1L L =L (30)

mnij nmij® mnij nmji *
It is noteworthy that N p varies as the function of ¢,, so N p is a nonlinear operator. But
L, isa linear operator. Eqs.(26) and (27) indicate that the spectral expression of continuous
equation (1) does not change the properties of the operator N and L, which is just the advan-
tage of the Galerkin approximation.
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III. TRAJECTORY INSTABILITY AND LOCAL INSTABILITY EXPONENT

Supposing that Eq.(1) is truncated at the total mode—number I, and considering that ¢ is a
5—dimensional vector, an M—dimensional phase space is generated, where M=1XxJ and J=35.
A state of the model atmosphere at future time ¢ is defined by a point in this phase space. The
time evolution of the state starting from the initial state B is described by a curve which is
called as a trajectory.

Generally, the trajectory C is called stable if a trajectory lying in a sufficiently small neigh-
borhood of the trajectory C initially tends to keep in a small neighborhood of the trajectory C.
This definition of instability of a trajectory can be stated mathematically: The trajectory C is cal-
led stable if for a given &> 0, there exists n> 0 such that a representative point R of another tra-
jectory lying in the neighborhood # of the trajectory C at time 7 keeps in the neighborhood #(e)
of the trajectory C for all 1> 7. If there exists no such #, then the trajectory C is said to be
unstable. Furthermore, we can define asymptotic stability. The trajectory is called
asymptotically stable if it is stable and the distance between point R and trajectory C tends to be
zero for t—oo,

There are two methods to analyze the trajectory instability: local and global methods. The
global method requires to find a Lyapunov function, and the complexity of the governing equa-
tions for the model atmosphere obstructs the use of this method. The local method is extensively
employed, which requires only to find all eigenvalues of the linear part of the governing equa-
tion.

In the following, we shall introduce the concept of local instability of trajectory. Consider a
trajectory o(1)(@ (1), @,(1), **, ¢, (1)), and another trajectory in its neighborhood

e,(D=0,()+¢, ), 31
where ¢ (¢) denotes a small perturbation. From Eq. (24), the evolution of a small perturbation
can be determined by the linearized equation

de, — _
By *LN,o + LN, 9, +LLye, =LF e, (2
where F is a matrix,and F = (3¢, / 96/,).

Considering that B is symmetrical and N_ ; is anti-symmetrical, add Eq.(32) right—multip-

lied by e]T to the transposed (32) left—multiplied by ¢, :
d T T — —T T
dr 2 (si Be, ) + Z; (3,- N o +o N e ) +22{:; (5.- L,-,-E,-)
=Yy (E‘.TFUEJ. —¢ F e, ) (33)

In fact, Y, (eiTBe‘) is the perturbation energy in some sense, and c?_t Y (siTle) deter-

mines the rate of amplitude change of the perturbation ¢. From these, we can give definitions:

trajectory is called locally stable at some point ¢(f) in the phase space if (% Y (s‘.TBei) <0;

i
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trajectory called locally unstable if 4 3 (s’.TBsi ) >0; trajectory called neutral if 4 y <s,T Be, >

dr £ dr 5
=0.
Letx=(®,, ®,, """, @, ), we can obtain
T —_ T

—Z;(ei N’ij(pj>=x Ax, (34)
—ZZZ(BK.TLUEJ.) =x' Dx, (35)
SY (e Fye, ) =x"Fx. (36)

Thus, Eq.(33) becomes
%Hx||2=xT(A+AT+D+F+FT)x, (37)

where x| =3 (eiTBe,, ) From the symmetry of L, it follows that D is symmetrical. Let H

=A+A +D+F+F .Hisa symmetrical matrix with the order M.
It is a fundamental theorem of linear algebra that the eigenvector of a symmetrical matrix
such as H can be chosen to form a complete orthonormal basis and the eigenvalues are all real.
LetE ,E,, E, denote the eigenvectorsand 1 ,4,,+=:, 4, the associated eigenvalues,
and suppose that the eigenvalues are arranged so that 4, >4, >+ >4, . Any given state vector
x can be expanded into the eigenvectors:

x=YxE.. (38)

Substituting (38) into Eq.(37), we get
d 2w 2
3 Il —’;i,.x,.- (39)

Hereafter, we refer to 4,(i =1, 2, **+, M) as a characteristic exponent of local instability of
trajectory for the phase space point ¢(z), and refer to the sub—space spanned by the eigenvector
associated positive eigenvalues as a characteristic sub—space of local instability of trajectory.
From (39), we can give the criteria for local instability of trajectory:

(1) Trajectory is locally stable if all eigenvalues are negative.

(2) Trajectory is locally unstable if there exist positive eigenvalues. Furthermore, it is abso-
lutely unstable if eigenvalues are all positive, or conditionally unstable if at least one of
eigenvalues is negative.

Here, we can give an estimation of the perturbation amplitude. We get from (39)

d 2 2
- s .
Y lxll” <4, lxl (40)

.
lxl < llx, ||exp<j 7‘d1>. (41)
’0

The analyses above provide us with criteria for local instability of trajectory and with the
method of finding characteristic exponents. In the following section, we shall indicate that the

Thus
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local trajectory instability determines the growth rate of error.
IV. ERROR EVOLUTION

We start from (24). Consider a trajectory ¢(¢) which describes a correct solution for equa-
tion (24). The trajectory with error may be written:
o(1) = (1) + &), 42)
where £(¢) is the difference between the correct trajectory and the trajectory with error. We can
obtain the governing equation for &(¢)

de. _ _
B~ +)Ne + ;N’U(pj + ;N &t ;Lijsi =& + ;Fijsi. (43)

J

Comparing (43) with (32), we can see that two new terms have been introduced, i.e.,

nonlinear term of error ) N’ ,€; and term of heating error &,
I

Through the processes similar to that in the previous section, we can obtain the evolution
equation of error

G X(erme )+ » (e7¥,3, +5J,TN’;£‘.>+22;<31TLU£J_)
ZZZ(E‘TFUE‘ —gJTF'_jgi)+2£’,s,.T. (44)
The equalltion
Z; (siTN’Us] - szN:si ) =0 (45)

has been considered in obtaining (44). Eq.(45) is of importance, which shows that the nonlinear
advection caused by the error perturbation itself contributes nothing to the error growth rate,
and only redistributes the error.

Compare (44) with (33). If the terms of heating error are ignored, i.e., ¢ =0, (44) is the
same as (33). It follows from this that it is the local instability of trajectory that determines the
growth rate of error and the instability is linear. These conclusions make it possible for us to
give a clear physical depiction: The growth rate of error is determined by local instability of tra-
jectory and the given error vector; the error will grow if the error vector possesses a projection
on the unstable characteristic subspace, or the error will tend to reduce if the error vector has no
projection on the unstable characteristic subspace; the largest growth rate of error is realized
when the error vector is set equal to the eigenvector associated with the largest eigenvalue.

It should be pointed out that the local instability of trajectory is a necessary condition but
not a sufficient condition for the error growth. This is because the error growth depends not on-
ly the local instability of trajectory but also the characteristic of the error vector itself. But the
absolute instability is the sufficient condition for error growth.

The results above also suggest that the growth rate of error will vary with the different posi-
tions on the trajectory associated with the exact solution. From this, we can explain the fact that
the persistent flow patterns possess larger range of predictability. In fact, the persistent flow pat-
terns are more stable. It can also give an explanation for the decrease of the upper limit of the
range of theoretical predictability with the increase of the resolution of the numerical weather
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prediction model. As well-known, the instability strength of a given model atmosphere state
strongly depends on the resolution of the model. Higher resolution will allow stronger
instability. Therefore, the model with higher resolution will reduce the upper limit of theoretical
predictability.

V. APPLICATION TO LORENZ’S SYSTEM

Lorenz’s system has been extensively studied (for example, see Chou’s review (1990)). In
the following, we will discuss the local instability of trajectory when the attractors are both fixed
points and chaos, and the effect of local instability of trajectory on the error growth.

1. Error Evolution and Criterion for Local Instability

As well-known, equations of Lorenz’s system are
dx

& oy —ox. o
d
a%=yx—y—xz, 47)
%% = —bz+xy. (48)
Let X =(x,y, z) ", they can be written in an operator form:
% =LX+ NX, (49)
where
00 0 —-0 ¢ 0
N=[0 0 —xi, L={ v -1 0 I (50)
0x 0 0 0 -5

As can be seen, N is anti—symmetrical and nonlinear operator, but L is linear and constant
operator. We easily obtain the evolution equation of error:

$=X(L+LT+B+BT)X, (51)
where
0 00
B=| -z 0 0. (52)
y 00

Equation (48) also indicates that the growth rate of error is only determined by the tangent
linear equation.

LetC=L+L +B+ B" . From the discussion in Section III, it is obvious that the trajec-
tory is locally stable if the eigenvalues of matrix C are all negative or locally instable if at least
one of eigenvalues is positive.

2. In the Attraction Basin of the Attractor at a Fixed Point

With the analyses of local instability of trajectory which is located in the attraction basin of
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the attractor at a fixed point, we shall show that the strong local instability of trajectory can oc-
cur even in part of the attraction basin of the attractor, so that rapid growth of error can occur.

In fact, the local instability of trajectory will vary complicatedly if there exists more than
one attractor at fixed points. Some particular trajectories may be of local instability obviously.
For example, the separatrix is locally unstable, which refers to the mechanism for error growth
found by Chou (1990). But the local instability can lead to rapid growth of error even within the
attraction basin of the attractor, which is strong enough to cause the loss of predictability in
some sense. Figure la shows the time evolution of the largest instability exponent for y=18.0
(where ¢ =10.0, b=8 / 3, the same in the following) and initial state (1.0, 2.0, 3.0). For this case,
there exist three steady solutions of Lorenz’s system, and two of them are stable. It can be seen
that the strong local instability occurs within the calculation period. Figure 2b shows the time
evolution of the root—mean—square (RMS) difference between two trajectories for initial states
(1.0, 2.0, 3.0) and (2.0, 3.0, 4.0). The large error can be found from 2.0 to 5.0 time units, the
maximums of which even exceed the RMS of the variation of the trajectory itself. So the trajec-
tory may be considerably sensitive to the initial state in part of the attraction basin of the
attractor at a fixed point so that the predictability may lose in some sense.

For y=24.0, we repeat the calculation above. In this case, there still exist two attractors at
fixed points. It can be seen from Fig.2a that the instability becomes stronger. The large error can
be found first at 5 time units. After this time, the error varies with very large amplitude which
does not reduce within a long time. Such variation of error can be well explained only by the lo-
cal instability of trajectory.

3. On Chaotic Attractor

If y=28.0, Lorenz’ s system goes into chaos, which is called as “a standard Lorenz’s
attractor”. We still take the initial state (1.0, 2.0, 3.0), but the initial state with error is (1.5, 2.5,
3.5). As we expect, the instability becomes much stronger (Fig.3a). From Fig.3b, it can be found
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Fig. 1. The time evolutions of (a) the largest instability Fig. 2. Asin Fig.1 but for y=24.0.
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y=18.0 and initial state (1.0, 2.0, 3.0) (for detailed

description, see the text).
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Fig. 3. The time evolutions of the chaotic state for y=28.0. (a) The largest local instability exponent; (b) the
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that the RMS error rapidly grows after 6 time units. It is worthy to point out that the large
error, strong local instability and rapid transition of the system state are remarkably consistent.

The analyses above have shown that the local instability of trajectory can well describe the
detailed structure of the chaotic attractor, and the growth rate of error varies greatly for the dif-
ferent positions on the chaotic attractor.

VI. CONCLUSIONS AND DISCUSSIONS

Because of the continual growth of the error in initial state, the range of predictability
commonly accepted is only about two weeks with present—day accuracy in the observing state of
the atmosphere. The extended range forecast beyond this range of predictability naturally re-
quires the deep understanding of the dynamical processes of error growth.

In present study, the error is defined in the sense of generalized energy, simply called energy
error. From the spectral form of the primitive equations, we have derived the evolution equa-
tions of error in detail. The analyses of these equations have shown that the error growth rate is
determined by the tangent linear equations. The nonlinear advection caused by the error
perturbation itself contributes nothing to the error growth rate, and only redistributes the error.
The local instability of trajectory is the most essential causes for error growth. These results
have shown that the growth rate of error highly depends on the features of the atmospheric state
itself within the forecast period. From these, it is suggested that new approaches of extended
range forecast should be found to obstruct the rapid growth of error associated with the strong
local instability of trajectory but not to distort the interesting quantities of extended range fore-
cast.

Furthermore, an approach to calculate the error growth rate has been developed, which can
also be used to study the local instability of time—independent basic state as well as time—de-
pendent basic state. This approach has been applied to the well-known Lorenz’s system. The
results indicate that the trajectory can possess local instability even within the attraction basin of
the attractor at a fixed point which may be strong enough to lead to the loss of predictability for
some period. On chaotic attractor, the local instability varies considerably with the evolution of
system’ s state. The trajectory can be even locally stable at some positions in the phase space.
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The range of predictability will be small if the local instability is strong. In contrast, the range of
predictability will be large if the local instability is weak. We think that specially the large range
of predictability for some flow pattern is only the reflection of relative weakness of the local in-
stability of trajectory.

It should be pointed out that we have not analyzed the influence of model deficiency on the
predictability. This is a very difficult but important problem which strongly requires further re-
searches.

The author are grateful to Prof. Chou Jifan for his useful comments.
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