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ABSTRACT

Extending an earlier study, the best track minimum sea level pressure (MSLP) data are assimilated for
landfalling Hurricane Ike (2008) using an ensemble Kalman filter (EnKF), in addition to data from two
coastal ground-based Doppler radars, at a 4-km grid spacing. Treated as a sea level pressure observation,
the MSLP assimilation by the EnKF enhances the hurricane warm core structure and results in a stronger
and deeper analyzed vortex than that in the GFS (Global Forecast System) analysis; it also improves the
subsequent 18-h hurricane intensity and track forecasts.

With a 2-h total assimilation window length, the assimilation of MSLP data interpolated to 10-min
intervals results in more balanced analyses with smaller subsequent forecast error growth and better intensity
and track forecasts than when the data are assimilated every 60 minutes. Radar data are always assimilated
at 10-min intervals.

For both intensity and track forecasts, assimilating MSLP only outperforms assimilating radar reflectivity
(Z) only. For intensity forecast, assimilating MSLP at 10-min intervals outperforms radar radial wind (V;)
data (assimilated at 10-min intervals), but assimilating MSLP at 60-min intervals fails to beat V; data. For
track forecast, MSLP assimilation has a slightly (noticeably) larger positive impact than V; (Z) data. When
Vi or Z is combined with MSLP, both intensity and track forecasts are improved more than the assimilation
of individual observation type.

When the total assimilation window length is reduced to 1 h or less, the assimilation of MSLP alone even
at 10-min intervals produces poorer 18-h intensity forecasts than assimilating V; only, indicating that many
assimilation cycles are needed to establish balanced analyses when MSLP data alone are assimilated; this is
due to the very limited pieces of information that MSLP data provide.
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1. Introduction

Although hurricane track forecasts have improved
significantly over the last two decades, hurricane inten-
sity forecasting remains a significant challenge (Can-
gialosi and Franklin, 2011; Rappaport et al., 2009).
The slow improvement in hurricane intensity forecast-

ing is believed to be at least partly due to limited

ability to initialize tropical cyclone (TC) vortices ac-
curately in numerical models (Rogers et al., 2006).
Convective-scale structures in TCs are believed to
have direct or indirect impact on TC intensity and
track forecasts (Fovell et al., 2009, 2010; Houze et al.,
2007; Wang, 2009).

Techniques for initializing TC vortices include
vortex bogusing (e.g., Kurihara et al., 1998; Pu and
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Braun, 2001) and direct initialization of TC vortex
by assimilating observations on the vortex scale. Re-
cently, a number of studies have demonstrated reason-
able success in assimilating airborne or ground-based
radar data for initializing TCs, and these studies typ-
ically use the three-dimensional variational (3DVAR)
(e.g., Du et al., 2012; Pu et al., 2009; Zhao and Xue,
2009; Zhao and Jin, 2008) or ensemble Kalman fil-
ter (EnKF) (e.g., Dong and Xue, 2013; Weng and
Zhang, 2012; Zhang et al., 2009) methods. While the
EnKF method is a theoretically advanced method that
makes use of flow-dependent background error covari-
ance derived from a forecast ensemble, Dong and Xue
(2013; DX12 hereafter) also found that when start-
ing from the GFS (Global Forecast System) analysis
background, it takes 5 to 6 EnKF cycles of 10-min
intervals, assimilating full volume radial velocity and
reflectivity data from two coastal Doppler radars, to
bring the minimum central pressure of a category 3
hurricane to within 5 hPa of the observed best track
value. Even with a total of 13 analysis cycles at 10
min apart, the final minimum pressure error remained
at nearly 5 hPa. Often, the minimum central pressure
in TCs is difficult to analyze accurately without direct
surface pressure observations.

Best track minimum sea level pressure (MSLP)
has been used as observational data and assimilated
into numerical models to help improve the TC inten-
sity analysis in recent research studies. Hamill et al.
(2011) assimilated the so-called TCVital observations
every 6 h using EnKF in a global forecast model. Here,
TCVital is a human-synthesized dataset including the
best track estimates of TC minimum central pressure
and center location. Despite clearly better track fore-
casts of TCs in their study compared to operational
benchmarks, the resolution of their global model was
insufficient to accurately predict the TC intensities;
in fact, it was difficult for the global model to main-
tain the initially intense T'Cs initialized using TCVital
data in their study. Torn and Hakim (2009) and Wu
et al. (2010) assimilated hurricane positions in real
data studies. Torn (2010) also assimilated best track
TC position and MSLP data along with other conven-
tional observations every 6 h in a mesoscale model at
a 36-km horizontal grid spacing using EnKF, although
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the study did not specifically evaluate the impact of
TC position and intensity observations. Earlier, in a
proof of concept study, Chen and Snyder (2007) as-
similated vortex intensity in terms of maximum vor-
ticity using EnKF in a simple two-dimensional (2-D)
barotropic model and found improvement to the vor-
tex intensity and track analysis and forecast. So far,
according to our knowledge, the TCVital type of data
has not been assimilated into a hurricane prediction
model at a cloud-resolving resolution with or without
radar data using EnKF'. It remains an open question
as to the kind of impact one can achieve with TCVi-
tal data in such situations. Most recently, Zhao et al.
(2012) performed an experiment assimilating MSLP
data into a convection-resolving model for a typhoon,
in addition to ground-based radar data using a SDVAR
method; the impact of the MSLP assimilation was lost
very quickly (in less than 1 h) in their study due to
the univariate nature of their analysis method — there
was no temperature analysis increment to balance the
pressure increment in their analyses. Given the mul-
tivariate nature of the EnKF method, it is hoped that
EnKF can do a much better job in assimilating MSLP
data on the convective scale.

In this paper, the impact of assimilating MSLP
data into Hurricane Tke (2008) using EnKF is exam-
ined. The best track MSLP data are assimilated alone
or in addition to the Doppler radar data, with the con-
figurations of the EnKF radar assimilation being the
same as in DX12. The rest of this paper is organized as
follows. Section 2 introduces the model, observations,
and EnKF experiment setup. The analysis increments
and the change to the hurricane intensity during the
analysis cycles are presented and discussed in Section
3. The impacts of MSLP assimilation on the intensity
and track forecasts are discussed in Section 4. Results
from several sensitivity experiments are discussed in
Section 5, and a summary is provided in Section 6.

2. The case, prediction model, observations,

and EnKF experiment design

2.1 Hurricane Ike and model configurations

Hurricane Ike (2008) is the third costliest land-
falling hurricane in the US history. It made landfall



NO.3

near Galveston, Texas at 0700 UTC 13 September
2008. More details of Ike near its landfall can be found
in DX12. This study focuses on the analyses and fore-
casts of Ike shortly before and after its landfall.

The prediction model used in this study is the
Advanced Regional Prediction System (ARPS; Xue et
al., 2000, 2003). The physical domain is defined by a
515x515x53 grid with a 4-km horizontal grid spacing.
A vertical grid stretching scheme with a hyperbolic
tangent function is used (Xue et al., 1995); the mean
vertical grid spacing is 625 m and the minimum verti-
cal spacing is 50 m at the surface. The Lin et al. (1983)
ice microphysics scheme is used along with the 1.5-
order TKE-based sub-grid-scale turbulence and PBL
parameterizations. Details on these physics options
can be found in Xue et al. (2001, 2003). Other details
on physics and computational options are the same as
those used in DX12.

2.2 Observations

The best track MSLP data from the US National
Hurricane Center are assimilated between 0400 and
0600 UTC 13 September in the first set of experi-
ments at intervals of either 10 or 60 min (Table 1).
MSLP data, including their values and locations, at
such intervals are obtained through linear interpola-
tion between times when best track observations are
available. The observed MSLP values changed only
slightly within the 2-h data assimilation (DA) window.
Radar observations are assimilated alone or together
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with the MSLP data in the experiments to investi-
gate their relative impacts. As in DX12, radial wind
(V;) or reflectivity (Z) data from two coastal WSR-
88D radars at Houston-Gavelston, Texas (KHGX) and
Lake Charles, Louisiana (KLCH) are assimilated, al-
ways at 10-min intervals in this study. Details on the
radar observations and their assimilation can be found
in DX12.

In this study, we treat the best track MSLP data
as regular sea level pressure observations located at the
best track vortex center location, similar to Hamill et
al. (2011). A simple pressure reduction equation (Eq.
(1) of Benjamin and Miller (1990)) is applied as the

observation operator for the sea level pressure:

To + vz \9/8
) (1)

P, =Py (T
where P, is the sea level pressure, Py and T are the
pressure and temperature at the first model level above
the surface, z is the height of the first model level, v is
the environmental temperature lapse rate (taken as 9.8
K km™1), g is the gravitational acceleration, and R is
the gas constant. A bi-linear horizontal interpolation
is used to project the sea level pressure from the model
grid onto the best track position. The observational
error of MSLP in the human-synthesized TCVital
dataset can range from 0.75 to 2 hPa (Tong Mingjing,
In this study, the
observation error of MSLP is assumed to be 1 hPa,
smaller than 2 hPa used in Hamill et al. (2011). The

2010, personal communication).

Table 1. List of experiments assimilating MSLP and/or radar observations plus the control experiment

Experiment Assimilated observation type MSLP DA cycle interval Assimilation window length
CNTL None N/A N/A
P60W2h MSLP 60 min 2h
P10W2h MSLP 10 min 2h
VrW2h Vi N/A 2h
VrP60W2h Vr & MSLP 60 min 2h
VrP10W2h V; & MSLP 10 min 2 h
ZW2h Z N/A 2h
ZP60W2h Z & MSLP 60 min 2h
ZP10W2h 7 & MSLP 10 min 2 h
P10W1h MSLP 10 min 1h
VrWih Vi N/A 1h
VrP10W1h Vi & MSLP 10 min 1h
P10W30m MSLP 10 min 30 min
Vrw30m Vi N/A 30 min
VrP10W30m Vi & MSLP 10 min 30 min
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choice of the relatively small MSLP observation error
is partially based on the observation that the analyzed
MSLP without MSLP data is always positively biased
(i.e., the analyzed hurricane is too weak) in this case,
and a smaller MSLP observation error is expected to
“push” the minimum pressure closer to the best track
observation. Also we note that frequent assimilation
of time interpolated best track data has an effect that
is somewhat similar to the nudging method, where the
model state is “nudged” towards the observations or
an analysis persistently over a time period. In our
case, the model state is constrained by the best track
observations at multiple time levels through EnKF
data assimilation. Such frequent assimilation and the
associated model adjustments during the assimilation
cycles are expected to increase/accelerate the impact
of the very limited number of MSLP data within a
relatively short period of time. The model grid, the
radar locations, and radar data coverage are shown in
Fig. 1, along with the best track from 0300 UTC 13
to 0000 UTC 14 September.
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Fig. 1. The model grid, best track (denoted by black

dots), and radar coverage for Tke. The positions of two
radars are denoted by black squares.
of Houston-Gavelston, Texas (KHGX) and Lake Charles,
Louisiana (KLCH) radars are for a maximum range of
460 km. Best track covers 0300 UTC 13 to 0000 UTC
14 September and hurricane locations are plotted every
3 h.

The range circles
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2.3 EnKF experiment design

The ensemble square-root filter (EnSRF) of
Whitaker and Hamill (2002) forms the basis of our
EnKF assimilation system; the initial implementation
of the EnSRF for the ARPS system is described in
Xue et al. (2006) and the generation of ensemble ini-
tial conditions follows DX12.

Briefly, the forecast ensemble is created by adding
mesoscale and convective-scale perturbations in two
steps. In the first step, a single 4-h forecast is run
from the analysis at 1800 UTC 12 September of GFS
of the National Centers for Environmental Predic-
tion (NCEP) interpolated to the 4-km model grid;
mesoscale perturbations are added to the 4-h forecast
valid at 2200 UTC in the entire model domain to cre-
ate an ensemble of 32 members. The perturbations are
created by smoothing Gaussian random perturbations
with zero mean using a 2-D recursive filter (Purser et
al., 2003), with a horizontal de-correlation scale of 100
km (e.g., Huang, 2000; Jung et al., 2012). The per-
turbations are scaled to have standard deviations of 2
m s~ ! for u and v, 1 K for 6, and 1 hPa for p. For q.,
the relative standard derivation is 10% of the unper-
turbed value, to avoid excessively large absolute per-
turbations at the upper levels. Other state variables
are not perturbed in this step. Six-hour-long ensem-
ble forecasts are then carried out from these perturbed
initial conditions to develop evolved background error
covariance structures on the mesoscale.

In the second step, at 0400 UTC 13 Septem-
ber, additional convective-scale perturbations with a
smaller horizontal de-correlation scale of 12 km and
a vertical de-correlation scale of 4 km are added to
the ensemble forecast fields, but only in regions where
observed Z exceeds 10 dBZ. These perturbations are
created by applying a fifth-order-correlation smooth-
ing function after Tong and Xue (2008). The standard
deviations are 2 m s~! for the wind components, 2 K
for 6, 10% for q,, and 1 g kg—' for all microphysical
variables. These perturbations are found to yield best
analysis and forecast results for the Ike case through
many assimilation experiments in DX12 and are there-
fore used here too.

The lateral boundary conditions are from the
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6-hourly operational GFS analyses with 3-hourly fore-
casts interleaved in between, available on the 0.5
degree grid. They are also perturbed by adding
mesoscale perturbations created in the same way as
in step one. Within ARPS, linear time interpolations
are performed between the boundary condition times.

In the first set of experiments (Table 1), MSLP
and /or radar observations are assimilated in a 2-h win-
dow from 0400 to 0600 UTC 13 September 2008, which
is the same as in DX12. After the assimilation, an
18-h deterministic forecast is carried out from 0600
UTC 13 to 0000 UTC 14 September from the ensem-
ble mean analysis. In a control experiment (CNTL)
used for reference, a forecast of the same length is
started from GFS 0600 UTC analysis without any ad-
ditional radar or MSLP data. Schematics for three
experiments, corresponding to VrP10W2h/ZP10W2h,
VrP60W2h/ZP60W2h, and CNTL in Table 1, are
shown in Fig. 2. Table 1 gives a full list of experi-
ments. In the experiment names, letters Vr, Z, and
P denote the assimilation of V;, Z, and MSLP data,

Covective-scale
perturbations

Mesoscale

GFS analysis IC p_crlurhalions

-
Single spin-up forecast | Ensemble spin-up forecast

Mesoscale
perturbations

Covective-scale

GFS analysis 1C perturbations

Single spin-up forecast | Ensemble spin-up forecast

1800 UTC 2200 UTC
12 Sep 12 Sep 13 Sep

Radar data
EnKF DA cycles

0400 UTC  Radar data
EnKF DA cycles
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respectively. Numbers “10” and “60” following letter
P in the names indicate the time interval (in minute)
at which MSLP data are assimilated. The number
following letter W denotes the total length of assimi-
lation window in hour or minute. In all cases, radar
data assimilation interval is 10 min. For example, in
experiment VrP10W30m, V; and MSLP data are as-
similated together within a 30-min assimilation win-
dow at 10-min intervals.

Covariance inflation and localization are applied
in the EnKF to alleviate the effects of sampling and
other sources of error (e.g., model errors) within the
ensemble assimilation system. A horizontal covariance
localization radius of 300 km is used for MSLP assim-
ilation, chosen roughly based on the size of the back-
ground vortex. Since there is only one MSLP obser-
vation at the analysis time and the MSLP is a vortex-
scale parameter, a large horizontal localization radius
is reasonable to ensure that the impact of the MSLP
assimilation extends to the entire vortex. A vertical

localization radius of 10 km for MSLP is determined

MSLP data

(a)
VrP10W2h/

N ZP10W2h

Deterministic forecast
from ensemble mean analysis

MSLP data

(b)

VrP60W2h/
JE—-
] ’-h\" ZP60W2h
Deterministic forecast

from ensemble mean analysis

GFS analysis I1C

(©
CNTL
T —————
Deterministic forecast
from ensemble mean analysis

0600 UTC 0000 UTC
13 Sep 14 Sep

Fig. 2. Schematics showing the flowcharts for experiments that assimilate (a) radar and MSLP data every 10 min
for 2 h, (b) radar data every 10 min but MSLP data every 60 min for 2 h, and (c) reference forecast NoDA that does

not assimilate any radar or MSLP data. The downward arrows denote MSLP DA times and the upward dashed arrows

denote radar DA times. Ensemble forecasts are shown as thick horizontal arrows while single deterministic forecasts are

shown as thin horizontal arrows. The ensemble DA experiments contain a 4-h single spin-up forecast period starting

from GF'S analysis at 1800 UTC 12 September 2008, which is followed by a 6-h ensemble spin-up period with mesoscale
perturbations added at 2200 UTC 12 September. Convective-scale perturbations are added at 0400 UTC 13 September,

the beginning time of EnKF DA cycles. A single deterministic forecast starts from ensemble mean analysis at 0600 UTC

13 September, the ending time of EnKF DA cycles.
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to be close to being optimal through a number of sen-
sitivity experiments; such a radius is reasonable be-
cause the surface pressure is directly linked to tem-
perature perturbations in the tropospheric air col-
umn. The localization radius for radar observations
is 12 km horizontally and 4 km vertically, as used in
DX12 and is consistent with earlier studies of storm-
scale EnKF radar data assimilation (Jung et al., 2008;
Tong and Xue, 2008).

ance inflation of 5% is applied to the state variables

Prior multiplicative covari-

within the regions influenced (through EnKF updat-
ing) by the radar and/or MSLP data. Posterior ad-
ditive covariance inflation is applied to the state vari-
ables in regions covered by assimilated radar obser-
vations; the magnitudes of the additive perturbations
are the same as those used in DX12. In experiments
assimilating both radar and MSLP, radar observations
are assimilated first, and MSLP data second. Those
state variables having the strongest dynamic link to
the MSLP observation, including wind components,
potential temperature, and pressure, are updated by
MSLP. The updating of state variables by radar obser-
vations (V; and/or Z) follows DX12. The reflectivity
data are used to update only pressure and the mix-
ing ratios of cloud water (q.), ice (g;), rain water (g.),
snow (gs), and hail (gy) while the radial velocity data
update all of the eleven state variables, i.e., u, v, and
w, potential temperature 6, p, mixing ratio of water
vapor ¢y, and all microphysical variables. DX12 found
that such settings yielded the best hurricane analysis
and forecast.

As found in DX12, whenever V; is assimilated to-
gether with Z, the analyses and forecasts are very sim-
ilar to corresponding experiments assimilating V; only.
Thus, for brevity, the experiments assimilating both V;

and Z are not shown in this paper.

3. Impact of MSLP observations on hurricane

analysis

3.1 Analysis increments

The wind and potential temperature analysis in-
crements are plotted in Fig. 3 for P60W2h at 0500
UTC 13 September, the first time that the MSLP data
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are analyzed in this experiment; this is to illustrate the
impact of assimilating MSLP observation. The incre-
ment is defined as the difference in the state variables
before and after the assimilation of MSLP observation.
Figure 3 shows that after analyzing MSLP observa-
tion, a strong cyclonic circulation increment around
the MSLP data location (B in Fig. 3a) is evident at
1 km above the mean sea level (MSL) (Fig. 3a), indi-
cating an enhancement to the background vortex that
is too weak. The center of the increment circulation
is not co-located with the background vortex center,
determined by the background MSLP (A in Fig. 3a),
suggesting that the assimilation of MSLP observation
is trying to change the vortex center location as well.
The results suggest that the covariance between the
pressure and wind fields derived from the ensemble is
providing important information to enable the MSLP
data to properly influence the wind fields in the EnKF,
resulting in dynamically consistent multivariate anal-
yses. A reduction in pressure is also noted at 1 km
above MSL in the vortex region, as shown by the pres-
sure increment in Fig. 3a. The reduction is greater
than 10 hPa above the MSLP location, and decreases
outward.

The analysis increments of potential temperature
at 1 km above MSL are plotted in Fig. 3b. While
the potential temperature increment pattern is more
complex than the pressure increment pattern, the in-
crements are all positive in the vortex region, with
a maximum value of about 5 K at this level, indicat-
ing that MSLP data assimilation has strengthened the
warm core of the cyclone. Positive increments of po-
tential temperature extend upward to the mid tropo-
sphere, with an 1-K increment at the 5-km level above
the MSLP data location (Fig. 3d). The 10-km ver-
tical localization radius used allows for the enhance-
ment to the warm core in a deep layer. Increments of
wind, pressure, and potential temperature generally
decrease with height (figure omitted) as expected, but
they do reach the mid troposphere, indicating rather
deep vertical correlation between surface pressure and
these variables.

Vertical velocity (w) analysis increments, repre-

senting changes in regions of updrafts and subsidence
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are plotted along with the background wind vectors in
Fig. 3c, for a vertical cross-section through the fore-
cast background vortex center (A in Fig. 3a) and the
MSLP observation location (B in Fig. 3a). The pos-
itive increments of w reflect the enhancement of up-
draft surrounding the MSLP location. Since the north-
west quadrant of the vortex is already over the land
at this time and the vortex in that region has started
to weaken, the positive increments of w are broader
and stronger on the southeast side (right of B in Fig.

3c). There is a region of negative increments inside
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the eye (almost directly over B, the location of MSLP
observation), suppressing the weak updraft found in
the background vortex (as indicated by the wind vec-
tors) and correctly establishing descending motion in
the eye region. The increments in temperature and
wind fields are physically reasonable; they are consis-
tent with the fact that the background vortex is too
weak, and the decreased central pressure at 1-km alti-
tude by the MSLP data is accompanied by enhanced
warm core and eyewall updrafts as well as downward

motion in the eye region.
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Fig. 3. Increments of (a) horizontal wind component and pressure (every 200 Pa) at 1 km, (b) potential temperature
(every 1 K) at 1 km, (c) vertical velocity w (every 0.2 m s~ ') in the east-west cross-section along line CD in (a), and (d)
potential temperature in the same vertical cross-section as (c), at 0500 UTC 13 September of experiment P60W2h. A
and B denote the position of the background vortex center and the position of the MSLP observation, respectively. The

background wind vectors are also plotted in (c).



386

3.2 Impact of MSLP data on hurricane inten-

sity during the analysis cycles

To investigate the impact of MSLP data on the
analyzed hurricane intensity during the assimilation
process, the MSLP values of the analyzed hurricane
before and after each analysis are plotted in Fig. 4.
The best track MSLP data are linearly interpolated to
10-min interval analysis times for comparison. In our
study, the MSLP value at each time is assimilated as
a regular surface pressure observation located at the
best track vortex center, while the MSLP in the anal-
ysis is determined from the analyzed mean sea level
pressure field and this analyzed MSLP is not neces-
sarily at the best track vortex center.

ACTA METEOROLOGICA SINICA
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We first examine the forecast and analysis MSLPs
when only MSLP data are assimilated. When MSLP
observations are assimilated at 60-min intervals in
P60W2h over a 2-h window (at hours 1 and 2 into
the window), the analyzed MSLP decreases by about
14 hPa, to 957 hPa, during the first analysis at 0500
13 UTC September (Fig. 4a). In the forecast over the
next hour without additional data assimilation, the
model MSLP increases to 964 hPa by 0600 UTC. The
second analysis of MSLP data at 0600 UTC reduces
the model MSLP to 954 hPa, 3 hPa higher than the
best track observation.

When MSLP is assimilated at 10-min intervals
in P10W2h, the analyzed MSLP is decreased by more

975
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Fig. 4. The analyzed and forecast MSLP during the assimilation cycles of different experiments with (a) 60-min and

(b) 10-min assimilation intervals for MSLP, compared to the best track.



NO.3

than 10 hPa during each of the first two analysis cy-
cles (Fig. 4b).

the assimilation of MSLP always reduces the analyzed

Over the 2-h assimilation window,

MSLP and the magnitude of reduction decreases grad-
ually with cycle as the model MSLP becomes closer to
the observed values. There is always an increase in
MSLP in the ensuing forecast, but the amount of in-
crease decreases with the number of cycles, suggesting
an increasing level of consistency among model state
variables as the model state is continually adjusted
through the cycles. At 0520 UTC, the analyzed MSLP
actually becomes about 2 hPa lower than the observed
value interpolated to this time. Since the analyzed
MSLP is not necessarily at the same position as the
MSLP observation, this “over-correcting” behavior in
P10W2h at 0520 UTC is possible because of unreliable
spatial covariance causing under-shooting of analyzed
pressure away from the MSLP data location. At the
end of the assimilation window, the analyzed MSLP in
P10W2h is almost exactly the same as the best track
value of roughly 951 hPa. Therefore, frequent assimi-
lation of MSLP observations at 10-min intervals is able
to improve the intensity of the model TC in terms of
MSLP, making it approach the best track intensity af-
ter 6 assimilation cycles.

Next, we examine the cases when V; data are as-
similated alone, or together with MSLP data. In ex-
periment VrW2h that assimilates V; data only at 10-
min intervals, the MSLP is reduced by about 5 hPa in
the first analysis at 0410 UTC, while in later cycles the
decrease by analysis is small and occasionally negative
(e.g., at 0430 UTC). Much of the MSLP reduction is
achieved during the forecast step in the earlier cycles,
indicating that the model pressure field is adjusting
to the improved wind field, not surprisingly because
of the assimilation of a large number of V; data (Fig.
4a). In VriP60W2h, the addition of MSLP observation
at 0500 UTC further decreases the MSLP by about 1
hPa compared to ViwW2h (Fig. 4a), but the impact is
small in the ensuing cycles. At 0600 UTC, the second
assimilation of MSLP data results in a final analyzed
MSLP in VrP60W2h that is about 2 hPa lower than in
VrW2h. Therefore, the impact of assimilating MSLP
data at hourly intervals when Doppler radial velocity
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data from two radars are assimilated at 10-min inter-
vals, in terms of the analyzed MSLP, is minimal in this
case.

In VrP10W2h, the MSLP data are also assimi-
lated at 10-min intervals together with V; data, the an-
alyzed MSLPs are always lower than those of VrW2h,
and MSLP errors generally grow slower during the
forecast step than in P10W2h (Fig. 4b). In VrW2h,
the surface pressure reduction is achieved almost en-
tirely through model adjustment while in VrP10W2h,
the assimilation of MSLP provides direct help, result-
ing in much faster pressure reduction and more accu-
rate final analysis of MSLP (Fig. 4b). In P10W2h,
while the MSLP is reduced similarly as in ViP10W2h,
the error growth is much larger in the forecast steps,
especially during the earlier cycles; this is because of
the larger mutual adjustments among the pressure,
wind, and other state variables when no other direct
observations are assimilated.

We now look at the cases when Z (instead of
V;) data are assimilated alone or together with MSLP
data. In experiment ZW2h, the model MSLP is
changed little by the Z assimilation before 0540 UTC
(Fig. 4a). Reductions of 2 to 3 hPa in MSLP are
achieved in the last three analysis cycles, likely a re-
sult of improved cross-covariance between the micro-
physical and pressure fields in the ensemble (as dis-
cussed in DX12). In ZP60W2h, MSLP is assimilated
at 0500 and 0600 UTC; at 0500 UTC, an additional
MSLP reduction of 14 hPa is achieved by assimilat-
ing MSLP data (Fig. 4a). While the storm weakens
quickly to approximately 963 hPa in MSLP during the
subsequent 10-min forecast, the MSLP in the forecast
is much lower than that of ZW2h, and remains so un-
til the end of the assimilation window. Between 0510
and 0600 UTC, the assimilation of Z data every 10
min causes very little change to MSLP, and it remains
more or less constant; at 0600 UTC, the second anal-
ysis of MSLP data further reduces the minimum pres-
sure by 10 hPa to reach 953 hPa, only 3 hPa higher
than the observed. Still, relatively rapid error growth
in the subsequent forecast is expected with the very
limited number of MSLP analysis cycles in this case;

this fact will be discussed further later.
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The MSLP values in ZP10W2h are very similar
to those of P1I0W2h before 0450 UTC (Fig. 4b). In
the last few cycles, the analyzed MSLP in ZP10W2h
is closer to that of best track, and slightly higher than
that of P1I0W2h. Comparing ZP10W2h and P10W2h
indicates that the assimilation of Z in addition to
MSLP does not seem to further improve the intensity
analysis. During some of the cycles (e.g., 0450-0530
UTC), the analysis and forecast MSLP in ZP10W2h
are slightly worse than P10W2h while in some other
cycles (e.g., 0520 UTC), P10W2h over-analyzes the
intensity somewhat. But in general, the assimilation
of MSLP data every 10 min with and without Z data
results in analyzed MSLP values that are close to the
best track data after several analysis cycles (Fig. 4b).
Given the apparent effectiveness of MSLP data in an-
alyzing the minimum surface pressure of a hurricane,
does it mean that we no longer need radar or other
types of high-resolution observations? We will exam-
ine the analyzed hurricane structures next, which will

help answer this question.
3.3 Analyzed hurricane structures

Figure 5 shows the wind, sea level pressure, and
temperature fields of GFS analysis, and the final
EnKF analyses of ViW2h, P10W2h, and VrP10W2h
at the surface and in the west-east vertical cross-
sections through the individual vortex center of each
experiment. For brevity, only experiments with MSLP
assimilated every 10 min are shown here. With V; data
from two coastal radars assimilated, the hurricane in
Vrw2h (Figs. 5c and 5d) is much stronger than that
in the GFS analysis (Figs. 5a and 5b), with both lower
center pressure and larger radial pressure gradient. In
all three DA experiments, and in the GFS analysis, the
maximum wind is always on the east side of the vor-
tex. The vortex of VrW2h is much deeper than that
of the GF'S analysis, as shown by the strong wind ex-
ceeding 48 m s~! extending to 6.4 km vertically (Fig.
5d). The maximum wind in VrW2h is approximately
59.5 m s~ !, which is much larger than the 44.5 m s—!
in GFS analysis. The warm core is also much stronger
and deeper in VrW2h than in the GFS analysis. When
Z is assimilated in ZW2h, the final analyzed storm is
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also stronger than in the GFS analysis, but weaker
than in P10W2h (figure omitted here; cf. DX12 Figs.
6b, 6f, and 6j).

In P10W2h, the minimum central pressure is even
lower than in VrW2h (Fig. 5e). The wind field of
P10W2h, having a maximum of 55.7 m s~ !, is stronger
and deeper than that of GFS analysis, but weaker than
that of Vr'W2h (Fig. 5f). Strong winds of greater than
48 m s~! extend to around 3.6 km above the surface
in P10W2h (Fig. 5f), shallower than that in VrW2h
(Fig. 5d). The warm core in P10W2h is stronger than
in the GFS analysis, but not as deep as in VrW2h. It
is clear that the assimilation of MSLP data is more
effective in reducing the surface pressure while the as-
similation of V, data is more effective in establishing
the strong vortex circulation.

The analyzed minimum central pressure of
VrP10W2h is close to that of PI0OW2h and lower than
that of ViW2h (Fig. 5g), and its vortex is stronger
and deeper than in VrW2h with a maximum speed of
61.7 m s~! and the region with wind speed exceeding
48 m s~ ! extends to 7 km above the surface (Fig. 5h).
The warm core in VrP10W2h is as deep as in VrW2h.
In ZP10W2h, the final analysis is similar to P10W2h
(figure omitted).

The right column of Fig. 5 also shows the tem-
perature field in the vertical cross-sections. It is clear
that VrW2h (Fig. 5d) and VrP10W2h (Fig. 5h) pro-
duce more realistic warm-core temperature structures
than in P1I0W2h (Fig. 5f); this is perhaps not too
surprising because MSLP data do not directly provide
information on the vertical structures of the hurricane.
5, the vortex structure in P10W2h

appears relatively smooth; by comparison,

In Fig.
more
convective-scale structures are analyzed when V; ob-
servations are assimilated and such convective-scale
structures can be important for hurricane prediction.
The assimilation of MSLP does help strengthen the
vortex although it tends not to introduce convective-
scale structures. When both types of observations are
assimilated together, the hurricane acquires a lower
central pressure and stronger and deeper vortex circu-
lations than when V; or MSLP is assimilated individ-

ually.
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Fig. 5. The analyzed surface horizontal wind speed (shaded) and sea level pressure at 0600 UTC 13 September from
(a) GFS analysis, (¢) Vt'W2h, (e) PI0W2h, and (g) VrP10W2h. (b), (d), (f), and (h) show the east-west cross-section of

horizontal wind and temperature through the individual vortex center of each experiment.
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Individual cross-section shown earlier may not be
representative of the vortex structure. Azimuthally
averaged radius-height wind fields and temperature
anomalies of the final analysis at 0600 UTC are plotted
in Fig. 6, together with those of the GF'S analysis. The
azimuthal-mean horizontal winds in all three DA ex-
periments are substantially stronger than those in the
GFS analysis. In P10W2h, the maximum azimuthal-
mean wind exceeds 42 m s~! while the maximum tem-
perature anomaly is over 12°C and is located at 1-2 km

above the surface (Figs. 6e and 6f). The latter very
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Fig. 6. Azimuthally averaged radius-height plots of

horizontal winds from (a) GFS analysis, (c) VrW2h, (e)
P10W2h, and (g) VrP10W2h. (b), (d), (f), and (h) show
the radius-height plots of temperature anomaly of each ex-

periment.
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strong temperature anomaly centered in the lower tro-
posphere is not consistent with commonly observed
or simulated structures within TCs (Emanuel, 2005;
Wang, 2002) where the largest anomaly is usually
found in the mid-troposphere. With MSLP data being
the only data source in this case, the vertical spread-
ing of observational information depends strongly on
the spatial error covariance, which tends to be less re-
liable than direct observations; this may be the reason
for the unrealistically-strong warm core at the low lev-
els found in P10W2h. In VrW2h, the horizontal wind
fields have much larger horizontal gradients in the eye-
wall region than in the GF'S analysis, with roughly ver-
tical isotachs in the eyewall and a maximum wind of
over 48 m s~! (Figs. 6c and 6d). The maximum tem-
perature anomaly is about 6°C and is located at 6-8 km
above the surface, a structure that is more consistent
In VrP10W2h,
the structures of horizontal winds and temperature

with typical observed TC structures.

anomaly are similar to those of VrW2h, except that
the region with wind speeds exceeding 42 m s! is
about 2.5 km deeper than in ViW2h (Figs. 6g and 6h).
In general, the assimilation of V; and/or MSLP data
significantly enhance the axisymmetric vortex circula-
tion and warm core structure. The vortex structure
obtained by assimilating V; data is more realistic than
assimilating MSLP only and assimilating both V; and

MSLP data gives the strongest hurricane vortex.

3.4 Sensitivity to model variable updating in

EnKF

During the assimilation of MSLP, the model state
variables such as pressure, wind, and potential temper-
ature are updated. We examine here how the impacts
of state variable updating evolve with time, which will
help us understand which model variables are most
important in maintaining the storm strength during
the analysis-forecast cycles and how the model ad-
justs to the updated fields in the subsequent fore-
cast. Towards this goal, a set of experiments is per-
formed based on experiment P60W2h. In these exper-
iments, MSLP assimilation is performed at 0500 UTC
using the ensemble forecast background of P60W2h,
but each experiment updates only a single or a sub-

set of state variables. A 20-min forecast is launched
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from the ensemble mean analysis from each of the
experiments, which will be compared to the fore-
cast launched from the ensemble mean forecast at
0500 UTC, essentially from the forecast background
without further DA. The model variable updated by
MSLP is indicated by the experiment name: ExpT
only updates potential temperature while ExpWTP
updates wind, potential temperature (#), and pres-
sure. The minimum value of surface pressure differ-
ence between the control forecast and the forecasts
with MSLP DA (surface pressuresorecast with DA Minus
surface pressureforecast without DA ) 1S used as a pressure
impact index (PI) to measure the impact of DA on the
model surface pressure. A more negative PI indicates
a greater impact, i.e., the forecast storm is stronger.

The PIs of the experiments are plotted in Fig. 7
at 0, 10, and 20 min after the DA time. At the initial
time (0500 UTC), the PIs of the experiments in which
pressure is updated by the MSLP data (ExpP, ExpTP,
and ExpWTP) are all about —14.3 hPa, but are zero
in all other experiments (since the pressure is not up-
dated). After 10 min, the large impact on pressure
in ExpP decreases to —0.3 hPa, and to —0.15 hPa by
20 min, indicating that the initial impact from MSLP
DA is almost completely lost in this case. Clearly, up-
dating pressure only when assimilating MSLP data is
ineffective; this is consistent with the results of Zhao
et al. (2012) where univariate analysis of the MSLP
data using the 3DVAR method was also found ineffec-
tive.

The PIs of ExpW and ExpT increase from zero
at the initial time to —5.1 and —2.3 hPa, respectively,
at 10 min of forecast, clearly due to the adjustment of
model pressure to the wind or potential temperature
field updated by the MSLP data. Updating the model
wind field appears to have a larger impact than updat-
ing 0 on the forecast pressure. By 20 min, the PI of
ExpW increases slightly (more negative) while that of
ExpT decreases slightly, but the changes are less than
1 hPa in both cases. Updating both wind and 6 in
ExpWT leads to a more negative PI during the fore-
cast than updating wind or 6 individually, giving Pls
of —6.7 and —6.9 hPa at 10- and 20-min forecast times,

respectively, and these values are very close to those
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of ExpWTP. At the same time, the PIs of ExpTP and
ExpT are very similar at the corresponding times (Fig.
7) while the PIs of ExpWP (figure omitted) are very
similar to those of ExpW. These results indicate that
even though MSLP contains pressure information, the
updating of wind and temperature fields when using
the data is much more important than updating pres-
sure itself; in fact, updating pressure itself has little
impact on the subsequent forecasting with or without
updating other state variables; the improvement to the
analyzed MSLP is in a sense superficial in absence of
In the model, the
pressure field adjusts quickly to the temperature and

support of other state variables.

wind fields, apparently through hydrostatic and gradi-
ent wind balance adjustments. Such results also point
to us the importance of cross-variable covariance de-
rived from the ensemble, which is responsible for the
EnKF updating of state variables rather than pressure
when assimilating the MSLP data.

4. Impact on forecast

4.1 Intensity forecast

The 18-h forecast MSLPs for all DA experiments
are plotted in Fig. 8, along with those of CNTL fore-
cast, and they are compared to the best track data.
The best track MSLP is 951 hPa at 0600 UTC 13
September, one hour before landfall; after landfall, the
MSLP gradually increases, and it is 980 hPa by 0000
UTC 14 September (Fig. 8). Overall, all of the DA
experiments predict lower MSLPs than CNTL before

Q min 10 min 20 min
0t 3
—200
B ExpW
—400 -
B ExpT
—600
= O ExpP
A, —800
O ExpWT
A 4
1000 B ExpTP
—1200
B ExpWTP
—1400 L

Fig. 7. Pressure impact index (PI; Pa) with time for

experiments updating various model variables.
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1800 UTC. The slower weakening between 1500 and
2100 UTC compared to the best track might be a re-
sult of model errors (DX12), leading to somewhat too
strong storms after 1800 UTC.

The MSLP of P60W2h at 0600 UTC is around
955 hPa, slightly lower than that of Viw2h (Fig. 8a).
However, the MSLP of P60W2h increases much faster
than the best track and VrW2h during the first 3-h
forecast, and is 5 hPa higher than VrW2h at 0900
UTC. During the following forecast, the MSLPs of
P60W2h are always higher than those of ViW2h. The
MSLP of VrP60W2h is 2 hPa lower than that of
VrW2h at 0600 UTC, but becomes similar afterwards.
When Z is assimilated in addition in ZP60W2h, the
final analyzed MSLP is slightly lower than in P60W2h
but the predicted MSLPs become similar after 0900
UTC.

With MSLP data assimilated every 10 min in
P10W2h (Fig. 8c), the final analyzed MSLP is quite
close to the best track. The predicted MSLP is similar
to that of VrW2h after 0600 UTC, and is higher than
the best track before 1800 UTC. All three experiments
assimilating MSLP at 10-min intervals are quite sim-
ilar to one another, with differences in MSLP being

always smaller than 2 hPa. Starting with a slightly

higher MSLP than the other two at 0600 UTC, the in-
tensity forecast of VrP10W2h during the 18-h forecast
is generally the best among all the DA experiments
conducted in this study in terms of MSLP.

It appears that the assimilation of MSLP at 60-
min intervals is insufficient to establish a strong and
well-balanced hurricane. MSLP error in P60W2h in-
creases quickly during the first several forecast hours.
More frequent MSLP assimilation at 10-min inter-
vals leads to a more balanced vortex and slower error
growth during subsequent forecast.

The assimilation of MSLP at 10- and 60-min in-
tervals in addition to Z data significantly improves the
intensity forecast of ZW2h. Since the MSLP forecast
of VrW2h is already close to the best track, frequent
MSLP assimilation at 10-min intervals is necessary to
achieve further noticeable improvement.

The maximum surface winds of forecasts in the
experiments are plotted in Figs. 8b and 8d, and are
compared to those of best track. At 0600 UTC, the
analyzed maximum winds of the experiments assimi-
lating radar and/or MSLP data are all stronger than
those of CNTL, except that of ZW2h, which is simi-
lar. Experiments assimilating both V; and MSLP (i.e.,
VrP60W2h in Fig. 8b and VrP10W2h in Fig. 8d)
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always have the strongest analyzed maximum wind,
indicating the benefit of assimilating both V, and
MSLP observations. Although the analyzed maxi-
mum winds in P1I0OW2h and ZP10W2h are weaker
than those in P60W2h and ZP60W2h, respectively,
the forecasts of P10W2h and ZP10W2h at 0900 UTC
show stronger winds than their counterparts assimi-
lating MSLP at 60-min intervals. This is more or less
consistent with the MSLP forecasts, where the assim-
ilation of MSLP at 10-min intervals helps to build up
a more dynamically-balanced vortex, and the impact
from DA lasts longer than when MSLP is assimilated
at 60-min intervals. Generally, the maximum surface
wind forecasts are close to one another in all experi-
ments after 0900 UTC. Note that the maximum wind
can be affected by localized convective activities while
the MSLP tends to be a system-integrated more reli-
able measure of the vortex intensity (Zhu and Zhang,
2006).

In conclusion, with frequent assimilation of MSLP
data in a cloud-resolving model, hurricane intensity
forecast can be improved; such improvement was not
clearly achieved in Hamill et al. (2011) when assimilat-
ing the TCVital data into a coarser resolution global
model at a much lower frequency. The high assimi-
lation frequency is necessary to achieve sustained im-
pacts.

MSLP assimilation at 10-min intervals outper-
forms V. assimilation in terms of the MSLP forecast.
The MSLP parameter measures mainly the overall vor-
tex intensity, but does not necessarily represent well
sub-vortex convective-scale structures in a hurricane.
For this reason, we further verify the wind forecasts of
CNTL, VrW2h, P10W2h, and VrP10W2h against the
V. observations from the two coastal radars from 0600
through 0900 UTC when Ike was near the coast. The
root-mean-square differences (RMSD) between model
predicted and observed V; are plotted in Fig. 9. Such
calculations are limited to regions where observed re-
flectivity exceeds 10 dBZ.

All DA experiments show clear improvement over
CNTL when verified against V; (Fig. 9). The RMSD
against KHGX radar in CNTL grows rapidly partly
because the vortex of CNTL moves slower than the
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best track and other DA experiments from 0600 to
0900 UTC (Fig. 10a). The RMSD values for VrW2h
are 34% and 60% of those for P10W2h at 0600 UTC
when verified against KHGX and KLCH radars, re-
spectively (Fig. 9). The VrW2h analyses fit the ob-
served V; data reasonably well, whereas the analyzed
winds assimilating MSLP data only match the ob-
served V; data much worse. After 2 h of forecast, the
RMSD values of VrW2h and P10W2h become closer
as the RMSD of P10W2h decreases with time while
that of VrW2h increases with time; their differences
are less than 1 m s~! by 3 h for both radars. These
indicate that wind errors are reduced during the fore-
cast as the wind field adjusts to the improved vortex
due to MSLP DA, while wind errors that are reduced
by the assimilation of V; data increase as the forecast
error grows in general.

In a short range forecast (~3 h in our study), the
assimilation of radar observations appears to have an
advantage over the assimilation of MSLP observations
on the convective scale (as observed by radar data).
Combining V; and MSLP data clearly gives the best
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results.
4.2 Track forecast

Figure 10 shows the predicted tracks, along with
the best track and average track errors, of 18-h fore-
casts for selected experiments. The forecast vortex
center positions are determined by the MSLP and are
plotted every 3 h. Despite having a small initial posi-
tion error of just 7 km, CNTL follows the westernmost
track during the 18-h forecast, diverging from all of the
DA experiments and the best track (Fig. 10a). The
final analyzed vortex centers in the experiments as-
similating MSLP are generally closer to the best track
than those of CNTL and the experiments assimilat-
ing only radar observations. The errors in P10W2h,
VrP10W2h, and ZP10W2h are 4, 4, and 2.6 km, re-
spectively, comparable to (or even smaller than) the
horizontal grid spacing of the model. During the 18-
h forecast, the tracks of the experiments assimilating
MSLP are similar to each other, except for ZP10W2h,
which follows a more westward path at 1800 UTC.

Averaged over the 18-h forecast period, the track
errors of P6OW2h and P10W2h are generally compa-
rable to those of ViW2h (Fig. 10b); the mean er-
ror of P60W2h is 2 km larger than that of P10W2h.
The track errors of all these three experiments are
significantly smaller than the 41-km track error of
CNTL (not shown in Fig. 10b). The track errors of
VrP60W2h and VrP10W2h are both less than 10 km,
smaller than the 12-km error of VrW2h. The track
errors of ZP60W2h and ZP10W2h are only 60% of the
error of ZW2h. When MSLP is assimilated with radar
observations, the interval of MSLP assimilation (10 vs.
60 min) does not have a strong impact on the track;
the difference is always smaller than 1 km. In general,
most of the experiments assimilating MSLP observa-
tions have average track errors of less than 10 km.

Unlike intensity forecast, the track forecast ap-
pears to be relatively insensitive to the MSLP assimila-
tion interval. This may be because the initial position
errors can be quite effectively corrected in a few MSLP
DA cycles, while intensity improvement requires more
frequent assimilation cycles to “nudge” and establish

a well balanced vortex with sustainable intensity.
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5. Sensitivity of intensity forecast to assimila-

tion window length

In the previous sections, we have shown that dur-
ing the early analysis and forecast cycles, the MSLP
error grows much faster in P10W2h than in VrW2h
although the error growth rate decreases with time in
P10W2h (Fig. 4). Clearly, many MSLP DA cycles
help establish a more balanced vortex to slow down
the error growth in surface pressure. In this section,
we further examine the impact of assimilation window
length. Instead of the 2-h assimilation window used in
previous experiments, 1-h or 30-min assimilation win-
dow is used, all ending at 0600 UTC, and all of them

assimilate MSLP and/or V; data at 10-min intervals.
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Fig. 10. (a) Forecast TC centers (determined by MSLP
position) every 3 h from 0600 UTC 13 to 0000 UTC 14
September (note that the map is stretched to highlight the
difference between the tracks). (b) 18-h average track er-
rors. The average track error of CNTL is 40 km and not

shown here.
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Figure 11 shows predicted MSLPs for the experiments
using the three different window lengths, as compared
to the CNTL forecast and best track data.

With a 30-min window in P10W30m, the ana-
lyzed MSLP at 0600 UTC is 953 hPa, close to the
950 hPa of best track; it increases by 7 hPa in the
first 3 h of forecast, the largest among all experiments
(Fig. 11). In VrW30m, even though the final analyzed
MSLP is about 3 hPa higher at 0600 UTC than that in
P10W30m, the forecast MSLP at 0900 UTC is actu-
ally a couple of hectopascals lower than in P1I0W30m,
and remains lower throughout the 18-h forecast. The
assimilation of both MSLP and V; in VrP10W30m re-
sults in a MSLP analysis of about 951 hPa, and the
forecast values remain a few hectopascals lower than
those in P10W30m and VrW30m, closer to the best
track values; clearly, assimilating both V; and MSLP
data gives better intensity forecasts than assimilating
one of them.

When the assimilation window is extended to 1
h, the general behaviors of the three experiments are
similar to the 30-min case, except that the MSLP er-
rors are further reduced by 1-3 hPa in the analyses and

forecasts. In comparison, when a 2-h assimilation win-
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dow is used, P10W2h actually outperforms VrW2h,
analyzing and predicting lower MSLPs that are in bet-
ter agreement with the best track. VrP10W2h per-
forms slightly better than P10W2h in the MSLP fore-
cast.

Compared to millions of V; observations available,
there is only one MSLP observation at each analy-
sis time. The above results indicate that when using
too short assimilation windows, the assimilation of a
very limited number of MSLP data is not able to es-
tablish a balanced storm as well as the millions of V;
observations can, affecting the surface pressure predic-
tion. The differences in the MSLP forecasts among the
three V; assimilation experiments windows are much
smaller, apparently due to the large number of V; ob-
servations, while the forecasts assimilating MSLP data
are more sensitive to the window length (Fig. 11). For
this particular case, 2 h appears sufficiently long for
the MSLP assimilation performed every 10 min to pro-
duce intensity forecasts comparable to assimilating V;
data.

Assimilating both MSLP and V; always outper-
forms the assimilation of one of the observation types,

regardless the window length. The improvement is
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Fig. 11. Forecast minimum sea level pressure from sensitivity experiments varying the assimilation window length,

compared to the observed best track and CNTL.



396 ACTA METEOROLOGICA SINICA

larger for shorter windows.
6. Summary and conclusions

Best track minimum sea level pressure (MSLP)
data are treated as surface pressure measurements at
TC vortex center and assimilated using an ensemble
Kalman filter (EnKF) at a convection-permitting res-
olution. The study was partly motivated by Hamill
et al. (2011) who assimilated TCVital data, includ-
ing the best track MSLP, into a global forecast model
using EnKF; their results showed improved central
pressure analyses but the intensity forecast improve-
ment was quickly lost in the subsequent forecasts. The
low assimilation frequency and coarse model resolu-
tion were believed to be the primary reason. In this
study, interpolated MSLP data are assimilated at 60-
or 10-min intervals for a period of 30 min, 1 h, or 2 h
for Hurricane Tke (2008) before it made landfall. The
assimilation and forecast experiments used the ARPS
model and its EnKF DA system at a 4-km grid spac-
ing. In addition, the relative impacts of MSLP versus
those of radar data are examined by assimilating radial
velocity V; and/or reflectivity Z data from two coastal
operational radars individually or together with the
MSLP data. The radar data are always assimilated at
10-min intervals; the procedure for assimilating radar
data using EnKF follows Dong and Xue (2012) ex-
actly.

The first set of experiments examined MSLP DA
The

analysis of MSLP is shown to enhance the hurri-

over a 2-h window, at 60- or 10-min intervals.

cane circulation and its warm core structure and it is
achieved through cross-variable covariance estimated
by the EnKF. Through sensitivity experiments, it is
shown that the updating of wind fields when assimilat-
ing MSLP data has a more sustainable impact on the
intensity forecast than updating temperature, while
updating pressure by MSLP has little sustained im-
pact; the model pressure tends to quickly respond
to the wind and temperature fields through hydro-
static and gradient wind adjustments, not the other
way around. This further highlights the importance

of flow-dependent cross-covariance that allows for dy-
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namically consistent multi-variate analysis of the TC
vortex.

The final analyzed TC vortex is shallower, and its
structures are smoother when assimilating MSLP data
only while radar data provide more convective-scale
structures; this is not surprising because the dense ve-
locity data contain much more convective-scale infor-
mation while the smaller covariance localization radii
used for radar data also help. The analyzed warm
core in the former case is also placed too low in the
eye region. When MSLP and V; data are assimilated
together, analyses that have better overall vortex in-
tensity and convective-scale structures are obtained.

With 10-min assimilation intervals, the assimi-
lation of MSLP data alone is able to keep the ana-
lyzed MSLP lower than that obtained by assimilating
V; data only, but the MSLP forecast error growth is
faster than the V; case, apparently because of the ad-
justment of the pressure field towards the less well-
analyzed wind and temperature fields. In the case
of V; assimilation, the initially too high MSLP is de-
creased during the forecast periods, through pressure
adjustment towards the better analyzed wind fields.
The analyzed MSLP during the later cycles of the
2-h assimilation window is very close to the best track
MSLP in the MSLP-assimilation case while that in the
V;-only case remains a few hectopascals higher. When
both V; and MSLP are assimilated, errors in both ana-
lyzed and forecast MSLPs remain very low in the later
cycles.

A 60-min interval when assimilating the MSLP
data alone proves insufficient to establish a well-
balanced hurricane vortex in terms of MSLP forecast;
the MSLP in the early forecast hours increases much
more quickly than the best track (the hurricane was
weakening at this stage) while the MSLP error in the
experiment assimilating V; data alone (at 10-min in-
tervals) grows slower (even though the final analyzed
MSLP had a slightly larger error). Again, combining
MSLP and V; data has produced the lowest error in
the MSLP analysis and forecast. Assimilating reflec-
tivity data alone is able to reduce the MSLP error by
only one third in the final analysis relative to the no
DA case.
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Using 10-min MSLP assimilation intervals leads
to much better MSLP analyses and forecasts than
that using 60-min intervals, resulting in lower final
MSLP analysis and reduced initial MSLP forecast
error growth, and outperforming the forecasts assimi-
lating V; or Z only. Assimilating MSLP in addition to
Z data significantly improves the MSLP analysis and
forecast but the improvement in addition to V; data
is much less, because the assimilation of Z data is not
very effective at decreasing the MSLP error.

The forecasts are also verified against V; obser-
vations for the first 3-h forecast when Hurricane Ike
is near the coast. Not surprisingly, the much more
voluminous V; data produce more convective-scale
structures than MSLP data and the improved fit of
the forecast to V; observations due to the assimilation
of V; data lasts throughout the 3-h forecast. The fit to
the V; observations improves over time in the MSLP-
only case but the mis-fit remains slightly (about 0.5
m s~1) larger than the V; case by 3 h.

The assimilation of MSLP also improves the track
analysis and forecast. Average 18-h track forecast er-
rors with MSLP assimilation are around 11-13 km,
comparable to those obtained using V; assimilation.
Assimilation of MSLP together with V; or Z improves
track forecast more than the assimilation of V; or Z
only.

Sensitivity of the intensity forecast to the length
of the MSLP and/or V; assimilation window is also
tested. Using shorter assimilation windows of 30 min
or 1 h and 10-min assimilation intervals, MSLP fore-
cast with V; assimilation outperforms the forecast with
MSLP assimilation. Using a 2-h window, the opposite
is true. For shorter assimilation windows, combining
V; and MSLP gives even more benefits.

In summary, the assimilation of MSLP is able to
improve Hurricane Ike analyses and forecasts within a
cloud-resolving model, mostly through improvements
to the model wind and temperature fields, via cross-
covariance of surface pressure with wind and tempera-
ture in the EnKF. Because of the very limited pieces of
information in the MSLP observations, frequent anal-
yses are necessary to establish a balanced hurricane

vortex having slow intensity error growth. Compared
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to Vi data, MSLP data have less ability in producing
convective-scale structures (as verified against V; ob-
servations) and the analyzed warm-core structure is
not very realistic. The best results are obtained when
V; and MSLP data are assimilated together.

In our case, the center position of Ike never devi-
ates too far from the best track, and thus the assimila-
tion of MSLP as a regular pressure observation located
at the best track position is effective. Such treatment
can be problematic if the simulated TC center is far
from the best track. The assimilation of TC position
and intensity separately (Torn, 2010; Wu et al., 2010)
provides a possible solution to this problem.

In order to utilize ground-based radar data, we
assimilated MSLP shortly before Tke made landfall.
For a rapidly intensifying TC over the ocean, the
conclusion about the impact of MSLP assimilation
may differ. Further studies with more T'Cs that are in
various stages of development are needed to more com-
pletely understand the impacts of MSLP assimilation.
Other available observations should also be included
in the assimilation to obtain more comprehensive im-
pacts. These can be topics for future studies.

Acknowledgments. Computations were per-
formed in the National Institute of Computational
Sciences (NICS) at the University of Tennessee and
in the Texas Advanced Computing Center (TACC) at
the University of Texas at Austin. Dr. Nathan Snook

is thanked for proofreading the manuscript.

REFERENCES

Benjamin, S. G., and P. A. Miller, 1990: An alternative
sea level pressure reduction and a statistical com-
parison of geostrophic wind estimates with observed
surface winds. Mon. Wea. Rev., 118(10), 2099-
2116.

Cangialosi, J. P., and J. L. Franklin, 2011: National Hur-
ricane Center Forecast Verification Report, 77 pp.

Chen, Y. S., and C. Snyder, 2007: Assimilating vor-
tex position with an ensemble Kalman filter. Mon.
Wea. Rev., 135(5), 1828-1845.

Dong, J. L., and M. Xue, 2013: Assimilation of radial
velocity and reflectivity data from coastal WSR-88D

radars using an ensemble Kalman filter for the anal-



398 ACTA METEOROLOGICA SINICA

ysis and forecast of landfalling Hurricane Ike (2008).
Quart. J. Roy. Meteor. Soc., 139(671), 467-487.

Du, N. Z., M. Xue, K. Zhao, et al., 2012: Impact of
assimilating airborne Doppler radar velocity data
using the ARPS 3DVAR on the analysis and predic-
tion of Hurricane Tke (2008). J. Geophy. Res., 117,
D18113, doi: 10.1029/2012JD017687.

Emanuel, K. A.; 2005: Divine Wind: The History and
Science of Hurricanes.
Oxford, 296 pp.

Fovell, R. G., K. L. Corbosiero, and H. C. Kuo, 2009:

Cloud microphysics impact on hurricane track as

Oxford University Press,

revealed in idealized experiments. J. Atmos. Sci.,
66(6), 1764-1778.

——, ——, A. Seifert, et al., 2010: Impact of cloud-radiative
processes on hurricane track. Geoph. Res. Lett., 37,
L07808, doi: 10.1029/2010GL042691.

Hamill, T. M., J. S. Whitaker, M. Fiorino, et al., 2011:
Global ensemble predictions of 2009’s tropical cy-
clones initialized with an ensemble Kalman filter.
Mon. Wea. Rev., 139(2), 668-688.

Houze, R. A., Jr., S. S. Chen, B. F. Smull, et al., 2007:
Hurricane intensity and eyewall replacement. Sci-
ence, 315(5816), 1235-1239.

Huang, X.-Y., 2000: Variational analysis using spatial
filters. Mon. Wea. Rev., 128(7), 2588-2600.

Jung, Y. S., G. F. Zhang, and M. Xue, 2008: Assimilation
of simulated polarimetric radar data for a convective
storm using the ensemble Kalman filter. Part I: Ob-
servation operators for reflectivity and polarimetric
variables. Mon. Wea. Rev., 136(6), 2228-2245.

—, M. Xue, and M. J. Tong, 2012: Ensemble Kalman
filter analyses of the 29-30 May 2004 Oklahoma

tornadic thunderstorm using one- and two-moment

bulk microphysics schemes, with verification against
polarimetric radar data. Mon. Wea. Rev., 140(5),
1457-1475.

Kurihara, Y., R. E. Tuleya, and M. A. Bender, 1998:
The GFDL hurricane prediction system and its per-
formance in the 1995 hurricane season. Mon. Wea.
Rev., 126(5), 1306-1322.

Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk
parameterization of the snow field in a cloud model.
J. Climate Appl. Meteor., 22(6), 1065-1092.

Pu, Z. X., and S. A. Braun, 2001: Evaluation of bogus
vortex techniques with four-dimensional variational
data assimilation. Mon. Wea. Rev., 129(8), 2023—
2039.

VOL.27

——, X. L. Li, and J. Z. Sun, 2009: Impact of airborne
Doppler radar data assimilation on the numerical
simulation of intensity changes of Hurricane Dennis
near a landfall. J. Atmos. Sci., 66(11), 3351-3365.

Purser, R. J., W.-S. Wu, D. F. Parrish, et al., 2003: Nu-
merical aspects of the application of recursive filters
to variational statistical analysis. Part I: Spatially
homogeneous and isotropic Gaussian covariances.
Mon. Wea. Rev., 131(8), 1524-1535.

Rappaport, E. N.; J. L. Franklin, L. A. Avila, et al., 2009:
Advances and challenges at the National Hurricane
Center. Wea. Forecasting, 24(2), 395-419.

Rogers, R., S. Aberson, M. Black, et al., 2006: The in-
tensity forecasting experiment: A NOAA multiyear
field program for improving tropical cyclone inten-
sity forecasts. Bull. Amer. Meteor. Soc., 87(11),
1523-1537.

Tong, M. J., and M. Xue, 2008: Simultaneous estimation
of microphysical parameters and atmospheric state
with simulated radar data and ensemble square root
Kalman filter. Part I: Sensitivity analysis and pa-
rameter identifiability. Mon. Wea. Rev., 136(5),
1630-1648.

Torn, R. D., 2010: Performance of a mesoscale en-
semble Kalman filter (EnKF) during the NOAA
High-Resolution Hurricane Test. Mon. Wea. Rev.,
138(12), 4375-4392.

——, and G. J. Hakim, 2009: Ensemble data assimilation
applied to RAINEX observations of Hurricane Kat-
rina (2005). Mon. Wea. Rev., 137(9), 2817-2829.

Wang, Y. Q., 2002: Vortex rossby waves in a numerically
simulated tropical cyclone. Part I: Overall structure,
potential vorticity, and kinetic energy budgets. J.
Atmos. Seci., 59(7), 1213-1238.

——, 2009: How do outer spiral rainbands affect tropical
cyclone structure and intensity? J. Atmos. Sci.,
66(5), 1250-1273.

Weng, Y. H., and F. Q. Zhang, 2012: Assimilating air-
borne Doppler radar observations with an ensemble
Kalman filter for convection-permitting hurricane
initialization and prediction: Katrina (2005). Mon.
Wea. Rev., 140(3), 841-859.

Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data
assimilation without perturbed observations. Mon.
Wea. Rev., 130(7), 1913-1924.

Wu, C.-C., G.-Y. Lien, J.-H. Chen, et al., 2010: Assimi-
lation of tropical cyclone track and structure based
on the ensemble Kalman filter (EnKF). J. Atmos.
Sci., 67(12), 3806-3822.



XUE Ming and DONG Jili 399

Xue, M., K. K. Droegemeier, V. Wong, et al., 1995:

ARPS Version 4.0 User’s Guide, 380 pp. Available
at http://www.caps.ou.edu/ARPS.

——, and —, 2000: The Advanced Regional Predic-
tion System (ARPS)-A multi-scale nonhydrostatic
atmospheric simulation and prediction model. Part
I: Model dynamics and verification. Meteor. Atmos.
Physics, 75(3-4), 161-193.

——, —, et al., 2001: The Advanced Regional Pre-
diction System (ARPS)-A multi-scale nonhydro-
static atmospheric simulation and prediction tool.
Part II: Model physics and applications. Meteor.
Atmos. Phys., 76(3-4), 143-165.

D.-H. Wang, J.-D. Gao, et al., 2003: The Advanced
Regional Prediction System (ARPS), storm-scale
numerical weather prediction and data assimilation.
Meteor. Atmos. Phys., 82(1-4), 139-170.

M. J. Tong, and K. K. Droegemeier, 2006: An
OSSE framework based on the ensemble square root
Kalman filter for evaluating the impact of data from
radar networks on thunderstorm analysis and fore-
casting. J. Atmos. Ocean Tech., 23(1), 46—66.

Zhang, F. Q., Y. H. Weng, J. A. Sippel, et al., 2009:

Cloud-resolving hurricane initialization and predic-
tion through assimilation of Doppler radar observa-
tions with an ensemble Kalman filter. Mon. Wea.
Rev., 137(7), 2105-2125.

Zhao, K., and M. Xue, 2009: Assimilation of coastal

Doppler radar data with the ARPS 3DVAR and
cloud analysis for the prediction of Hurricane Ike
(2008). Geophys. Res. Lett., 36(12), L12803.

—, X. F. Li, M. Xue, et al., 2012: Short-term forecast-

ing through intermittent assimilation of data from
Taiwan Region and Mainland China coastal radars
for Typhoon Meranti (2010) at landfall. J. Geophy.
Res., 117, D06108, doi: 10.1029/2011JD017109.

Zhao, Q. Y., and Y. Jin, 2008: High-resolution radar data

assimilation for Hurricane Isabel (2003) at landfall.
Bull. Amer. Meteor. Soc., 89(9), 1355-1372.

Zhu, T., and D.-L. Zhang, 2006: Numerical simulation

of Hurricane Bonnie (1998). Part II: Sensitivity to
varying cloud microphysical processes. J. Atmos.
Sci., 63(1), 109-126.



