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Newtonian Jerky Dynamics and Inertial Instability
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ABSTRACT

Newtonian jerky dynamics is applied to inertial instability analysis to study the nonlinear features of
atmospheric motion under the action of variable forces. Theoretical analysis of the Newtonian jerky function
is used to clarify the criteria for inertial instability, including the influences of the meridional distributions
of absolute vorticity (ζg) and planetary vorticity (the β effect). The results indicate that the meridional
structure of absolute vorticity plays a fundamental role in the dynamic features of inertial motion. Including
only the β effect (with the assumption of constant ζg) does not change the instability criteria or the dynamic
features of the flow, but combining the β effect with meridional variations of ζg introduces nonlinearities
that significantly influence the instability criteria.

Numerical analysis is used to derive time series of position, velocity, and acceleration under different sets
of parameters, as well as their trajectories in phase space. The time evolution of kinematic variables indicates
that a regular wave-like change in acceleration corresponds to steady wave-like variations in position and
velocity, while a rapid growth in acceleration (caused by a rapid intensification in the force acting on the
parcel) corresponds to track shifts and abrupt changes in direction. Stable limiting cases under the f - and
β-plane approximations yield periodic wave-like solutions, while unstable limiting cases yield exponential
growth in all variables. Perturbing the value of absolute vorticity at the initial position (ζ0) results in
significant changes in the stability and dynamic features of the motion. Enhancement of the nonlinear term
may cause chaotic behavior to emerge, suggesting a limit to the predictability of inertial motion.
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1. Introduction

The concepts of the distance, velocity (the first
time derivative of distance), and acceleration (the
second time derivative of distance) vectors are of
paramount importance in understanding particle kine-
matics. Newton’s second law formulates particle
movements according to dynamical concepts such as
force, momentum, and energy. The time derivative
of acceleration (i.e., the third time derivative of dis-
tance), which is called jerk, attracted very little in-
terest before the 1970s. Schot (1978) comprehensively
reviewed the concept of jerk and its practical applica-
tions for designing intermittent-motion and transition

curves.
Early dynamical research of jerk sometimes even

misunderstood the concept. French (1971) concluded
that the basic dynamics of an object influenced by
a specified force had no relationship with second- or
higher-order derivatives of velocity. However, Appell’s
equations of motion and the concept of acceleration
energy that emerged at the end of the 20th century
highlighted the importance of the dynamics of variable
accelerated motion (Mei et al., 1991). Huang (1981)
introduced jerk into the Chinese literature and pro-
posed the concept of force variability, which connects
jerk to the change of the force. In answer to the ques-
tion “what is the simplest jerk function that gives
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chaos?” asked by Gottlieb (1996), Sprott (1997a)
established the theory of jerky dynamics by trans-
forming three first-order ordinary differential equa-
tions (ODEs) into a third-order, one-dimensional, au-
tonomous ODE system, and promoted the application
of this theory to chaos research. Linz (1997) inves-
tigated three restrictions on the jerk function to en-
sure that jerky dynamics can be derived from classical
Newtonian equations, in the process formulating the
Newtonian jerky dynamics (which expresses the ex-
plicit physical meaning of jerky motion).

It is well known that the forces acting on an air
parcel change with time and space in atmospheric dy-
namics. A momentum equation with constant force
is therefore unable to completely describe the com-
plex evolution of the atmosphere. Sudden changes
in weather systems are always associated with adjust-
ments of the large-scale circulation and/or the redistri-
bution of internal meteorological quantities in dynam-
ics. These changes could equivalently be considered
as the variability of external and/or internal forces in
nature. The elementary equations of atmospheric mo-
tion can be regularly transformed into a second-order
ODE of velocity, which is essentially a jerk equation.
This analysis suggests that Newtonian jerky dynamics
has promising applications in atmosphere science.

In this paper, we attempt to further understand
the nonlinear aspects of atmospheric motion using
Newtonian jerky dynamics. We propose this frame-
work as an operative option for investigating the evo-
lution of the atmosphere under the actions of variable
forces. Inertial instability is one of the most important
dynamical mechanisms in atmospheric science. This
mechanism has been widely studied in the context of
the genesis and development of weather systems (e.g.
Emanuel, 1979, 1982). In Section 2, we review the def-
initions of the jerk function and Newtonian jerky dy-
namics, and then apply Newtonian jerky dynamics to
the inertial motion. We obtain the criteria for inertial
instability in the context of the meridional gradient of
perturbation kinetic energy. We then present theoret-
ical and numerical analyses of the nonlinear inertial
motion equation and its instability criteria in Sections
3 and 4. The results are summarized in Section 5.

2. The jerk function and inertial motion equa-

tions

2.1 Definition of the jerk function

The jerk vector may be defined as

J = a′ = V ′′ = r′′′, (1)

where a(t), V (t), and r(t) are functions of time (t),
and indicate the acceleration, velocity, and distance
vectors, respectively. The prime denotes the time
derivative d/dt. In general, the jerky motion can be
determined by a scalar real ordinary differential equa-
tion that is (1) third-order, (2) explicit (i.e., linear in
the highest derivative), and (3) autonomous (i.e., not
explicitly dependent on time). This equation takes the
form

r′′′ = J(r, r′, r′′), (2)

where r′ and r′′ are the time derivative forms of ve-
locity and acceleration, respectively, and J is the so-
called jerky dynamics (Gottlieb, 1996). Sprott (1997b)
formulated the general second-degree polynomial jerk
function as

J = (λ1 + λ2r + λ3r
′ + λ4r

′′)r′′

+(λ5 + λ6r + λ7r
′)r′ + (λ8 + λ9r)r + λ10. (3)

The specific form of Eq. (3) is found by setting the
coefficients λ1–λ10 and identifying the dynamic char-
acteristics of the solutions. These dynamic character-
istics include motion under the action of variable forces
and the possibility of chaos.

Not all jerky dynamics have explicit physical
meaning. In the recognition, Linz (1997) defined New-
tonian jerky dynamics as the subclass of all jerky dy-
namics that can be derived by taking the derivative of
a one-dimensional Newtonian equation with respect
to time (Linz, 1998). Newtonian jerky dynamics is re-
lated to the one-dimensional motion of a point particle
of mass under the influence of an underlying force, and
can be used to seek the physical relationships between
the motion and the variability of the force. Additional
restrictions of Newtonian jerky dynamics are discussed
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by Linz (1997). Given a particle of constant mass m

acted upon by a complicated force vector F , the total
time derivative of the Newton equation can be written
as

r′′′ =
1
m

d
dt

F =
1
m

(
r′ ∂F

∂r
+ r′′ ∂F

∂r′ +
∂F

∂t

)
. (4)

As discussed by Linz (1997), three criteria for relat-
ing the jerk function to an underlying force should be
met: (1) the total and partial time derivatives of F

cannot explicitly depend on time; (2) terms that are
quadratic (or even more nonlinear) in r′′ cannot en-
ter into the time-independent J ; and (3) Schwarz’s

theorem (
∂2F

∂r∂r′ =
∂2F

∂r′∂r
) must be satisfied to en-

sure the integrability of J . Linz (1997) also exam-
ined several famous nonlinear models, including the
well-known Lorenz model (Lorenz, 1963) based on the
simplified form of the convection equations derived by
Saltzman (1962).

The original form of the model proposed by
Lorenz (1963) is

x′ = −σx + σy, (5a)

y′ = −xz + τx − y, (5b)

z′ = xy − bz, (5c)

with σ, τ , and b representing control parameters.
The jerk function can be obtained by the elimination
method as

x′′′ = J = − [(σ + b + 1) − (ln x)′] x′′

− [
b(σ + 1) + x2 − (σ + 1)(ln x)′

]
x′

+
[
σb(τ − 1) − σx2

]
x. (6)

Comparing Eq. (6) to Eq. (4), we find that the jerk
function does not explicitly depend on time, and there-
fore fulfills criterion (1) above. However, Eq. (6) sat-
isfies neither criterion (2) nor criterion (3) due to the
presence of the logarithmic derivatives (ln x)′ and the

inequality between
∂2F

∂r∂r′ and
∂2F

∂r′∂r
. This analysis

shows that the Lorenz model is not Newtonian jerky.

2.2 Equations for inertial motion

Inertial motion and its instability were first inves-
tigated by Rayleigh (1916), who discussed atmospheric
motion under the co-action of the pressure gradient

and Coriolis forces. The results of these fundamental
investigations have been widely used to explain the
genesis and enhancement of convection (e.g., Tomas
and Webster, 1997), the development of tropical cy-
clones (e.g., Schubert and Hack, 1982), and the forma-
tion of secondary eyewalls (e.g., Rozoff et al., 2012).
The governing equations of inertial motion are fun-
damentally nonlinear, but most current tools for dy-
namic analysis still rely on linearization. In this sec-
tion, we apply Newtonian jerky dynamics to the two-
dimensional equations of inertial motion to further our
understanding of nonlinear atmospheric dynamics.

We assume that the basic flow is directed in the
zonal direction, fulfills geostrophic balance, and is con-
stant with time. These assumptions mean that the
geostrophic velocity (ug, vg) and geopotential height

(Φ) satisfy the equations ug =
1
f

∂Φ
∂x

, vg = 0, and

∂ug

∂t
= 0, where f is the Coriolis parameter (often

taken as a constant f0 under the f -plane approxima-
tion). The equations of two-dimensional motion for a
parcel in this flow are

du

dt
− fv = 0, (7a)

dv

dt
+ f(u − ug) = 0. (7b)

As discussed by Dutton (1995), u and v represent the
zonal and meridional velocity, respectively. A north-
ward displacement δy from an initial position y0 will
increase the eastward speed from its initial value of
ug(y0). Under a linear approximation, the eastward
speed of the parcel at y0 + δy is u = ug(y0) + fδy.

Furthermore, ug = ug(y0) + δy
∂ug

∂y
. Equation (7b)

can then be written as

dv

dt
=

d2y

dt2
= −fζgδy, (8)

where ζg = f−∂ug/∂y is the vertical component of the
geostrophic absolute vorticity. For an initial perturba-
tion v0 > 0, the movement of the parcel at y0 + δy can
be classified into three categories based on the value of
ζg: (1) unstable motion (dv/dt > 0 with negative ζg);
(2) stable oscillations (dv/dt <0 with positive ζg); and
(3) neutral states (ζg = 0 and dv/dt = 0). The same re-
sults are obtained for a southward displacement. This



NO.3 ZHONG Wei and WU Rongsheng 403

is classical dynamical analysis of inertial instability;
however, this simple approach is only valid with the
linear approximation near y0 and the assumption that
−fζg is constant in Eq. (8). Here, we employ New-
tonian jerky dynamics to investigate the more general
case with complicated spatial structures of absolute
vorticity and/or significant displacements in latitudes.

The kinematic meridional velocity and accelera-
tion can be defined as y′ = v, y′′ = dv/dt = a. Substi-
tution into Eqs. (7a) and (7b) yields the jerky function
for inertial motion.

y′′′ = γy′y′′ + μy′. (9)

Two control parameters appear in Eq. (9). The pa-
rameter γ = β/f is the ratio of the meridional gra-
dient of planetary vorticity to the value of planetary
vorticity, and can be thought of as representing the
influence of the curvature of the earth on the iner-
tial motion. Two approximations may be made to
simplify the treatment: γ = 0 (the f -plane approx-
imation), or γ = β/f0, in which both β (= 10−11

m−1 s−1) and f0 (= 10−5 s−1) are set to be con-
stants (the β-plane approximation). The parameter
μ = f(∂ug/∂y−f) = −fζg represents the structure of
the vertical component of geostrophic absolute vortic-
ity, which reflects the structure of the underlying flow.
Classical analysis of inertial motion typically assumes
that μ is constant. Here, we analyze the conditions
for inertial instability associated with more compli-
cated meridional distributions of ζg. Under the f - or
β-plane approximation, this parameter can be simpli-
fied to μ = −f0ζg. The dynamical features of Eq. (9)
depend strongly on the control parameters γ and μ,
or more specifically the meridional variability of plan-
etary and absolute vorticity. Equation (9) satisfies the
three criteria outlined by Linz (1997). This jerk func-
tion, which is derived directly from the atmospheric
momentum equation, is therefore Newtonian jerky.

In typical classical analyses of inertial motion, the
initial conditions for the distance, velocity, and accel-
eration of the parcel satisfy

⎧⎪⎨
⎪⎩

y|t=0 = 0,

y′|t=0 = v0,

y′′|t=0 = 0.

(10)

Since the acceleration y′′ = (d/dy)(y′2/2), the jerk
y′′′ = y′(d2/dy2)(y′2/2). Given the additional condi-
tion that y′ �= 0, the jerky function of Eq. (9) can be
written as

d2E

dy2
− γ

dE

dy
− μ = 0, (11)

where E = y′2/2 is the zonal perturbation kinetic en-
ergy. The Newtonian jerky dynamics of inertial mo-
tion in the form of a third-order ODE that depends on
time is thereby transformed into a second-order ODE
of the zonal perturbation kinetic energy equation that
depends on position. We can then modify Eq. (10) to
derive suitable initial conditions for Eq. (11):⎧⎪⎨

⎪⎩
y|t=0 = 0,

E|y=0 = v2
0/2,

(dE/dy)|y=0 = y′′|y=0 = 0.

(12)

The criteria y′′ = dv/dt for estimating the instabil-
ity of inertial motion then takes the equivalent form
y′′ = dE/dy in Eq. (11). This means that the sign
of dE/dy determines the stability of the inertial mo-
tion. If dE/dy > 0, the zonal perturbation kinetic
energy increases with meridional distance; the parcel
is then unstable and accelerates away from its initial
position. By contrast, if dE/dy < 0, the parcel is sta-
ble and oscillates around its initial position. The key
to obtaining the dynamic features of the general equa-
tions of inertial motion is therefore to seek the solution
of dE/dy under different sets of control parameters.

3. Theoretical analysis

The simplified Newtonian jerky equation of zonal
perturbation kinetic energy enables us to solve Eq.
(11) theoretically. In this section, we use this ap-
proach to gain further insight into inertial stability
under more complicated control parameter regimes.

3.1 Inertial motion under the f-plane approxi-

mation

Under the f -plane approximation, γ = 0 and Eqs.
(9) and (11) can be simplified as

y′′′ = μy′, (13a)

d2E

dy2
= μ. (13b)
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Equation (13) is linear if μ is a constant, yield-

ing the criterion y′′ =
dE

dy
= μy +

v2
0

2
. We follow the

classical analysis by assuming that the initial pertur-
bation in the meridional direction y is positive (north-
ward). The stability of the system is then determined
solely by the sign of μ (an initial southward perturba-
tion yields the same result). This result is identical to
that obtained from classical analysis of inertial insta-
bility: the system is stable when the absolute vorticity
is negative (positive μ) and unstable when the abso-
lute vorticity is positive (negative μ).

The dynamic features of this system change when
μ is defined as a function of y. We define μ as a
quadratic polynomial with the form μ = c0+c1y+c2y

2

for simplicity, where c0, c1, and c2 are constants. Al-
though Eq. (13b) still retains its linear features, Eq.
(13a) has nonlinear terms when one (or both) of c1

and c2 is (are) non-zero. The meridional distribution
of the absolute vorticity is determined by the choices
for c0, c1, and c2. If c1 and/or c2 are/is non-zero, the
meridional gradient in the absolute vorticity is non-
zero and analogous to the β effect (Montgomery and
Kallenbach, 1997). This difference leads to significant
changes in the dynamic behavior of the system.

For the sake of discussion, we define some of the
parameters of the ambient flow based on the relation-
ship between μ and ζg. Specifically, we define the
meridional gradient of absolute vorticity ζy = dζg/dy

as −dμ/(f0dy), the second-order derivative of abso-
lute vorticity ζyy = d2ζg/dy2 as −d2μ/(f0dy2), the
absolute vorticity at the initial position ζ0 = ζg|y=0

as −(μ/f0)|y=0, and the meridional gradient of the
initial absolute vorticity ζy0 as −(dμ/f0dy)|y=0. The
constants c0, c1, and c2 are given by⎧⎪⎨

⎪⎩
c0 = −f0ζ0,

c1 = −f0ζy0,

c2 = −f0ζyy/2.

(14)

Substituting from Eqs. (14) and (12), the theo-

retical solutions of Eq. (13b) are

E = −f0

(
ζyy

24
y4 +

ζy0

6
y3 +

ζ0

2
y2 +

v2
0

2

)
, (15a)

dE

dy
= −f0y

2

(
ζyy

3
y2 + ζy0y + 2ζ0

)
. (15b)

Equation (15a) indicates that the system state
is determined not only by the structure of the ambi-
ent flow (ζyy, ζy0, and ζ0), but also by the meridional
displacement y. Table 1 lists the criteria for inertial in-
stability associated with various configurations of the
flow parameters. If the meridional displacement y is
assumed to be positive, then two limiting cases are
obtained that are qualitatively independent of y. The
first case is that all of the flow parameters are posi-
tive (ζyy > 0, ζy0 > 0, and ζ0 > 0). This case results
in stable motion (dE/dy < 0). In other words, if the
(quadratic) absolute vorticity has a minimum, and the
absolute vorticity and its gradient are positive at the
initial position, then the motion is inertially stable.
The second case is that all of the flow parameters are
negative (ζyy < 0, ζy0 < 0, and ζ0 < 0). This case
results in unstable motion, meaning that the parcel
would accelerate away from its initial position. Out-
side of these two limiting cases, the dynamic features
are uncertain. All three parameters are determined by
the distribution of ζg, with ζyy and ζy0 dependent on
the shape of the distribution and ζ0 simply the value
of ζg at the initial position. The simplest approach is
to retain the shape of ζg and change the sign of ζ0.
In this case, dE/dy may change sign as y varies. In
Section 4, we perform numerical calculations to show
the uncertainty in this condition.

We primarily consider cases for which the flow
parameters are non-zero, as these represent the most
common situation. If one or more of the flow param-
eters are zero, the distribution of absolute vorticity
becomes monotonic or constant. These cases can be
considered by setting the relevant parameters to zero.

Table 1. Criteria for inertial instability under the f -plane approximation

Stable case (dE/dy < 0) Unstable case (dE/dy > 0) Uncertain case (only considering the effects of ζ0)

ζyy ζyy > 0 ζyy < 0 ζyy > 0 ζyy < 0

ζy0 ζy0 > 0 ζy0 < 0 ζy0 > 0 or ζy0 < 0

ζ0 ζ0 > 0 ζ0 < 0 ζ0 < 0 ζ0 > 0
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Taking the meridional structure of ζg into consid-
eration, Eq. (13a) can be rewritten as

y′′′ = c0y
′ + c1yy′ + c2y

2y′. (16)

Equation (16) may then be compared with the sim-
plest chaotic dissipative system described by Sprott
(1997b). Although no y′′ term appears on the right
hand side of Eq. (16), the nonlinear terms yy′ and y2y′

may generate chaos. The form of the solution is de-
termined by the parameters c0, c1, and c2, which cor-
respond to the physical atmospheric parameters ζyy,
ζy0, and ζ0.

The expression of E in Eq. (15a) indicates that
the paths in the y′−y phase plane are closed oval-type
curves:

y′ = ±
√
−f0

(
ζyy

12
y4 +

ζy0

3
y3 + ζ0y2 + v2

0

)
. (17)

The solution y(t) is then obtained implicitly as an in-
verse function through the quadrature (omitted here),
and the time period of the motion is

t = ±f
−1/2
0

y∫
y0

(
−ζyy

12
y4 − ζy0

3
y3

−ζ0y
2 − v2

0

)−1/2

dy. (18)

We can use Eq. (18) to investigate whether the phase
plane plots yielded by this system (Sprott, 1997b) are
period-1 (limit cycle) orbits, period-doubling orbits,
or chaotic orbits. The results of this investigation are
presented in Section 4.

3.2 Inertial motion under the β-plane approxi-

mation

Changes in the Coriolis parameter must be taken
into account if the parcel is displaced a significant dis-
tance. In this case, we should employ the β-plane
approximation with a non-zero constant γ in Eqs. (9)
and (11).

To recover the nonlinear term γy′y′′, we start with
the simple ambient flow described by a constant μ.
The theoretical solutions of Eqs. (11) and (12) are

E =
μ

γ2
eγy − μ

γ
y +

γ2v2
0 − 2μ

2γ2
, (19a)

dE

dy
=

μ

γ
(eγy − 1). (19b)

Usually γ = β/f0 > 0 and (eγy −1) > 0, in which case
the sign of dE/dy is determined solely by the sign of μ

as in the classical inertial instability analysis discussed
above. Furthermore, if both control parameters (μ and
γ) are constants, the jerk function depends only on y′

and y′′. This jerk function can then be written as a
second-order autonomous ODE in y′, and cannot ex-
hibit chaos (Gottlieb, 1998).

The theoretical solutions of Eq. (11) for the more
complex ambient flow with μ = c0 + c1y + c2y

2 (with
the constants set as in Eq. (14)) are

E = −v2
0

2
− f0

γ4
(ζyy + γζy0 + γ2ζ0)eγy

+
f0

6γ
(y3ζyy + 3y2ζy0 + 6yζ0)

+
f0

γ2

(
ζyy

2
y2 + yζy0 + ζ0

)

+
f0

γ3
(yζyy + ζy0) +

f0

γ4
ζyy, (20a)

dE

dy
=

f0

γ3

[
ζyy

2
γ2y2 + (ζyy + γζy0)γy

+(ζyy + γζy0 + γ2ζ0)(1 − eγy)
]
, (20b)

where (1 − eγy) < 0. The criteria for instability ac-
cording to Eq. (20a) are listed in Table 2. A sta-
ble limiting case results when ζyy <0, ζy0 � −ζyy/γ,
and ζ0 � −(γζy0 + ζyy)/γ2. These three conditions
are equivalent to (1) the (quadratic) absolute vortic-
ity has a maximum in the direction of the initial dis-
placement, (2) the meridional gradient of the absolute
vorticity is less than |ζyy|/γ, and (3) the absolute vor-
ticity at the initial position is positive and greater than
|γζy0+ζyy|/γ2. An unstable limiting case results when
none of these three conditions is met. The stability or
instability of all other cases depends not only on the
structure of the ambient flow, but also on the merid-
ional displacement y. In Section 4, we provide numer-
ical results for cases in which the shape of the absolute
vorticity distribution is retained while the sign of ζ0 is
changing.

The preceding analysis indicates that inclusion or
exclusion of the β effect does not affect the stability
or dynamic features of inertial motion if the absolute
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Table 2. Criteria for inertial instability under the β-plane approximation

Stable case (dE/dy <0) Unstable case (dE/dy >0) Uncertain case (only considering the effects of ζ0)

ζyy ζyy <0 ζyy >0 ζyy <0 ζyy >0

ζy0 ζy0 � −ζyy/γ ζy0 � −ζyy/γ ζy0 � −ζyy/γ or ζy0 � −ζyy/γ

ζ0 ζ0 � −(γζy0 + ζyy)/γ2 ζ0 � −(γζy0 + ζyy)/γ2 ζ0 � −(γζy0 + ζyy)/γ2 ζ0 � −(γζy0 + ζyy)/γ2

vorticity distribution is constant; however, the non-
linear term γy′y′′ exerts a significant influence on the
stability criteria if the absolute vorticity varies in the
meridional direction. Figure 1 shows the meridional
profiles of ζg in stable and unstable cases under the
f - and β-plane approximations. Under the f -plane
approximation, if ζg increases with a meridional dis-
placement from a positive initial value, the system is
inertially stable. By contrast, the system is inertially
unstable if ζg decreases with a meridional displace-
ment from a negative initial value. Under the β-plane
approximation, the ζyy criterion for stability (or insta-
bility) changes signs. The criteria for ζy0 and ζ0 are
more complicated, with threshold values that depend
on the parameters ζyy, ζy0, and γ. The requirements
for the stable and unstable limiting cases are quite
strict. Violation of any of the requirements shown in
Fig. 1 (or listed in Tables 1 and 2) leads to uncertainty
in the inertial stability of the system. This uncertainty
is analyzed numerically in the next section.

4. Numerical results

In this section, we calculate numerical solutions
to the Newtonian jerky equations that complement
the theoretical discussion in Section 3. The kinematic
definitions of the perturbation meridional velocity (v)
and acceleration (a) enable them to be expressed as
dy/dt and d2y/dt2, respectively. The 3rd-order ODE
for the solitary variable y (Eq. (9)) can be converted
to a group of closed ODEs for y, v, and a:

dy

dt
= v,

d2y

dt2
= a,

d3y

dt3
= γva + μv, (21)

The parameter γ is set to either 0 (under the f -plane
approximation) or a constant β/f0 (under the β-plane
approximation). As in Section 3, the parameter μ is
defined as a second-order polynomial in y. This en-
sures that the equation of inertial motion is nonlinear
even under the f -plane approximation. The numerical
results are obtained using the MatlabTM function

Fig. 1. A sketch of the absolute vorticity (ζg) with meridional displacement (y) in the stable (solid line) and unstable

(dashed line) cases under (a) the f -plane approximation and (b) the β-plane approximation.
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ode45. The ordinary atmospheric momentum equa-
tions based on Newton’s second law consist of only
two equations: a kinematic equation defining the ve-
locity and a dynamic equation describing the rate of
change in this velocity under the influence of forces.
This system cannot produce chaos because it only in-
cludes a two-dimensional phase space (Sprott, 1997b).
Gottlieb (1996) pointed out that Newtonian jerky dy-
namics provides a topological geometric foundation for
establishing the relationship between chaotic motion
and variable forces.

We have designed eight numerical experiments to
test the stability of the flow under different sets of
parameters. The values of the parameters for each ex-
periment are listed in Tables 3 and 4. The planetary
vorticity and its meridional gradient are approximated

as f0 = 10−5 s−1 and β = 10−11 m−1 s−1 (β = 0 un-
der the f -plane approximation). We use the initial
conditions set out in Eq. (10) and prescribe an initial
northward perturbation velocity (v0) of 1 m s−1 at the
initial position y0 = 0. We use the criteria for the β-
plane approximation to calculate the threshold values
for the parameters ζy0 and ζ0 (Table 4).

The f -plane approximation is appropriate for
mesoscale or smaller scale atmospheric motions. The
parameter values listed in Table 3 are therefore speci-
fied to ensure an apparent and reasonable change in ζg

within 200 km (Figs. 2a and 3a). The ambient flow,
instability criteria, and time series of perturbations in
the stable (test FS) and unstable (test FU) limiting
cases are shown in Figs. 2 and 3, respectively.

Table 3. Parameters for numerical tests under the f -plane approximation

Stable case Unstable case Uncertain case

Test FS Test FU Test FC1 Test FC2

ζyy 8e–15 –8e–15 8e–15 –8e–15

ζy0 5.5e–10 –5.5e–10 5.5e–10 –5.5e–10

ζ0 3e–5 –3e–5 [–1, –1.5, –2, –2.5, –3]e–5 [4, 3.5, 3, 2.5, 2]e–5

Table 4. Parameters for numerical tests under the β-plane approximation

Stable case Unstable case Uncertain case
Threshold

Test BS Test BU Test BC1 Test BC2

ζyy –8e–17 8e–17 –8e–17 8e–17 0

ζy0 4e–11 –4e–11 4e–11 –4e–11 8e–11

ζ0 4.2e–5 –4.2e–5 [2.5, 2, 1, –2, –2.5]e–5 [–9, –6, –3, 0.5, 3]e–6 4e–5

Fig. 2. (a) The meridional distributions of absolute vorticity (ζg; s−1) and the meridional gradient of perturbation

kinetic energy (dE/dy). (b) The time series of distance (y; km), velocity (v; m s−1), and acceleration(a; m s−2) for test

FS.
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Fig. 3. As in Fig. 2, but for test FU.

The meridional gradient of perturbation kinetic
energy dE/dy decreases monotonically toward the
north in the stable case (Fig. 2). Each of the vari-
able time series follows a wave-like pattern with a
period of approximately 100 h (∼4 days). The time
scale of these variations is consistent with the defini-
tion of inertial waves. The meridional displacement of
the parcel is limited to approximately 100 km in ei-
ther direction, and the magnitude of the perturbation
velocity is systematically less than the initial value.
The evolution of the acceleration nicely illustrates the
effects of force variability on the motion. The fluc-
tuations in the acceleration are weak and wave-like,
and oriented in the opposite direction to the fluctua-
tions in velocity. This result suggests that the force
variability caused by the meridional variation of ab-
solute vorticity acts as a restoring effect, generating
an oscillation of the air parcel. By contrast, all of the
variables increase dramatically with time in the un-
stable case (positive dE/dy). Test FS shows that a
monotonic northward increase in ζg results in stabil-
ity, while test FU shows the monotonic decrease in ζg

results in instability. These results are consistent with
the classical analysis of inertial instability.

The dynamic features of the system are more com-
plicated if some of the criteria for the stable or unsta-
ble limiting cases are not satisfied. We have designed
tests FC1 and FC2 to more fully explore these un-
certain cases under the f -plane approximation. The
parameters for these tests are listed in Table 3. We

limit ourselves to varying the value of ζ0 and investi-
gate how these cases differ from the stable and unsta-
ble limiting cases. Each test comprises five members
with different values of ζ0.

The meridional distributions of ζg and dE/dy in
test FC1 (Fig. 4a) are nearly identical to those in test
FS (Fig. 2a), except that the sign of ζg is different
at the initial position. However, the time series of the
variables have two new properties (Fig. 4b). First, the
wave-like structure of the time series shows evidence of
multiple periods. In particular, the acceleration spikes
over a relatively short time in each cycle. This rapid
growth in the acceleration is one order of magnitude
greater than the normal growth over such a short time
(∼10 h), and implies a rapid intensification in the force
acting on the air parcel. This intensification corre-
sponds to a fast transition in the velocity from the
negative extreme to the positive peak. The largest
southward displacement is nearly 400 km. The rapid
intensification of the force significantly influences the
parcel trajectory and the direction of motion.

Second, the period of each time series changes
with every cycle. One of the fundamental character-
istics of chaotic systems is their sensitivity to initial
conditions, which can be represented by the divergence
of adjacent orbits in the phase plane. If the period of
every cycle is constant, a trajectory in the phase plane
circulates along a fixed orbit (as it does in the stable
case). If the period changes with every cycle (as in Fig.
4b), the trajectories diverge into chaos with increasing
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iterations in the phase plane (Fig. 5) no matter how
close the two orbits are initially.

The ensemble members in test FC2 transition
from stability to instability with decreasing ζ0. Figure
6 shows that a smaller value of ζ0 corresponds to a

smaller meridional region with dE/dy < 0, and there-
fore a greater likelihood of instability. Accordingly,
the first two members (denoted by black and red lines
in Fig. 7) have fixed orbits in the phase plane, while
the other three members exhibit unstable behavior.

Fig. 4. As in Fig. 2, but for test FC1. The colors correspond to ζ0 = –1×10−5 s−1 (black), ζ0 = –1.5×10−5 s−1 (red),

ζ0 = –2×10−5 s−1 (blue), ζ0 = –2.5×10−5 s−1 (yellow), and ζ0 = –3×10−5 s−1 (violet).

Fig. 5. Trajectories of perturbation distance (y; km), velocity (v; m s−1), and acceleration (a; m s−2) in (a) three

dimensions, (b) the y − v phase plane, (c) the y − a phase plane, and (d) the v − a phase plane for test FC1. The colors

are the same as in Fig. 4.
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Fig. 6. As in Fig. 2, but for test FC2. The colors correspond to ζ0 = 4×10−5 s−1 (black), ζ0 = 3.5×10−5 s−1 (red), ζ0

= 3×10−5 s−1 (blue), ζ0 = 2.5×10−5 s−1 (yellow), and ζ0 = 2×10−5 s−1 (violet).

Fig. 7. As in Fig. 5, but for test FC2. The colors are the same as in Fig. 6.

The β-plane approximation is more appropriate
than the f -plane approximation for large-scale motion.
The parameters for these tests (Table 4) are therefore
one or two orders of magnitude smaller than those used
for the previous tests (Table 3). These parameters are

specified to ensure that the range of variability in ζg is
reasonable over a scale of 2000 km (Figs. 8a and 10a).
The stable and unstable limiting cases under the β-
plane approximation (tests BS and BU) produce pat-
terns similar to those presented above (tests FS and
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FU, respectively), and are omitted here.
The results of test BC1 are shown in Figs. 8 and

9. Disturbing ζ0 from its stable configuration (i.e., test
BS) results in an inverse state of inertial motion be-
cause the term (1 − eγy) in Eq. (20b) changes sign.
The meridional variation in this term is more signif-

icant than the meridional variation in either of the
other two terms. The time series of the variables (Fig.
8b) and their trajectories in phase space (Fig. 9) indi-
cate that the system transitions from stable to unsta-
ble with larger perturbations to ζ0.

Fig. 8. As in Fig. 2, but for test BC1. The colors correspond to ζ0 = 2.5×10−5 s−1 (black), ζ0 = 2×10−5 s−1 (red), ζ0

= 1×10−5 s−1 (blue), ζ0 = –2×10−5 s−1 (yellow), and ζ0 = –2.5×10−5 s−1 (violet).

Fig. 9. As in Fig. 5, but for test BC1. The colors are the same as in Fig. 8.
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Disturbing ζ0 from its unstable limiting config-
uration yields chaotic behavior (test BC2). The time
series in Fig. 10b suggest that the ranges of variability
in all three variables are one order of magnitude larger
than those in the f -plane approximation. Moreover,

their rates of periodic change are faster than those in
Fig. 4b. The trajectories of the individual ensemble
members in phase space clearly diverge from one orbit
to the next (Fig. 11).

Fig. 10. As in Fig. 2, but for test BC2. The colors correspond to ζ0 = –9×10−5 s−1 (black), ζ0 = –6×10−5 s−1 (red),

ζ0 = –3×10−5 s−1 (blue), ζ0 = 0.5×10−5 s−1 (yellow), and ζ0 = 3×10−5 s−1 (violet).

Fig. 11. As in Fig. 5, but for test BC2. The colors are the same as in Fig. 10.
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5. Summary

Newtonian jerky dynamics are used to investigate
the dynamical features of inertial instability associated
with meridional variations of absolute and planetary
vorticity. The results reveal interesting properties of
the motion that differ from those identified using clas-
sical inertial instability analysis.

Theoretical analysis of the Newtonian jerky dy-
namics reveals that the criteria for inertial instability
are fundamentally tied to the value of dE/dy, which is
dependent on the meridional distributions of absolute
vorticity (ζg) and planetary vorticity (the β effect).
The meridional structure of ζg is a key factor in de-
termining the dynamical features of the flow. The
criteria for stability or instability under the f -plane
approximation depend not only on the meridional dis-
tribution of ζg, but also on the values of ζy and ζg at
the initial position. These characteristics of the flow
can be represented by the structural parameters ζyy,
ζy0, and ζ0. Accounting for the β effect introduces an
explicit nonlinear term (y′y′′). This nonlinear term
does not alter the instability criteria or the dynamical
features of inertial motion in the constant ζg case;
however, it exerts a significant influence on the insta-
bility criteria if ζg varies in the meridional direction.
The required value of ζyy for stability (or instability)
changes signs, and the threshold values of ζy0 and ζ0

become substantially more complicated (|ζyy|/γ and
|γζy0 + ζyy|/γ2, respectively).

We have presented a numerical analysis of the
time series of position, velocity, and acceleration as-
sociated with different values of the structural and
Coriolis parameters, as well as the trajectories of these
variables in the phase plane. Smooth changes in ac-
celeration correspond to steady wave-like variations in
position and velocity. By contrast, intensely varying
forces and associated rapid changes in acceleration
lead to track shifts and abrupt changes in direction.
The stable limiting cases under the f - and β-plane
approximations exhibit periodic wave-like behavior,
while the unstable limiting cases correspond to expo-
nential growth. We have perturbed the value of ζ0

to explore the uncertain territory between these two
limiting cases. Small perturbations to the value of

ζ0 may lead not only to inversion of the stability (or
instability) of the flow, but also to the emergence of
chaos. This result implies limits to the predictability
of inertial motion in such cases.

We have introduced Newtonian jerky dynamics
via a simple application to inertial instability. New-
tonian jerky dynamics is an effective framework for
studying the dynamical features of atmospheric mo-
tion. This framework explicitly considers both non-
linear terms and the physical meaning of force, and
therefore represents a useful tool for furthering our
understanding of atmospheric evolution under the ac-
tion of intensely varying forces.
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