岩浆通道成矿系统

苏尚国, 汤中立, 罗照华, 邓晋福, 伍光英, 周美夫, 宋晨, 肖庆辉. 岩浆通道成矿系统[J]. 岩石学报, 2014, 30(11): 3120-3130.
引用本文: 苏尚国, 汤中立, 罗照华, 邓晋福, 伍光英, 周美夫, 宋晨, 肖庆辉. 岩浆通道成矿系统[J]. 岩石学报, 2014, 30(11): 3120-3130.
SU ShangGuo, TANG ZhongLi, LUO ZhaoHua, DENG JinFu, WU GuangYing, ZHOU MeiFu, SONG Chen, XIAO QingHui. Magmatic Conduit Metallogenic System[J]. Acta Petrologica Sinica, 2014, 30(11): 3120-3130.
Citation: SU ShangGuo, TANG ZhongLi, LUO ZhaoHua, DENG JinFu, WU GuangYing, ZHOU MeiFu, SONG Chen, XIAO QingHui. Magmatic Conduit Metallogenic System[J]. Acta Petrologica Sinica, 2014, 30(11): 3120-3130.

岩浆通道成矿系统

  • 基金项目:

    本文受国家自然科学基金项目(41272105)、中国地质调查局项目(12120114085501)、教育部博士学科点基金和国家自然科学基金中俄合作基金联合资助.

Magmatic Conduit Metallogenic System

  • 全球最主要的岩浆铜镍硫化物矿床基本特征是:(1)矿石与围岩边界平直,呈侵入接触关系;(2)"矿浆"在岩浆成矿系统的晚期上侵就位;(3)矿体赋存于岩浆通道中.已有的成矿模型不能同时解释这三个基本特征,暗示必须进一步理解岩浆铜镍硫化物矿床的形成机制.最近几年我们的研究发现岩浆铜镍硫化物矿床中典型矿石具有如下特征:(1)矿石中存在流体晶矿物组合,它们既不同于岩浆岩中的矿物组合,也不同于变质岩中的矿物组合,推测是从流体中直接结晶的产物;(2)铜镍硫化物矿床中不同部位矿体中矿石存在显著的成分变化,前锋端矿石以富Ni为特点,尾端矿石富含Cu、Pt、Pd.据此,本文提出了"岩浆通道成矿系统"的新模型,试图整合解释岩浆铜镍硫化物矿床中的各种观测事实.所谓岩浆通道成矿系统,系指岩浆演化晚期,"矿浆"运移和就位的空间及其相关成矿要素的组合.该模型强调:(1)深部岩浆房在岩浆矿床的形成过程中起着非常重要的作用,"矿浆"定位于岩浆成矿系统演化的晚期;(2)矿浆具有整体的流动性,因而提出了"岩浆通道前进方向"的概念;(3)所谓的"矿浆"实际为富含矿熔体-流体流,后者因失去挥发份而呈"矿浆"状,以大的流体体积和流体/熔体比值为特征.数值模拟表明,往硫化物矿浆加入挥发份流体可以显著提高矿浆的上升能力.当加入的挥发份流体达到30vol.%时,受到质疑的密度问题将不复存在,矿浆具有快速上升到浅部地壳的能力.但是,如此富含挥发份的矿浆也不再是传统概念上的矿浆,而是含矿熔体-流体流.此外,由于流体超压等原因,含矿熔体-流体流利用先存的构造薄弱面快速上升,形成岩浆通道,并在有利的部位卸载成矿金属形成矿体.因此,矿体常常侵入切割围岩.
  • 加载中
  • [1]

    Campbell IH and Naldrett AJ. 1979. The influence of silicate: Sulfide ratios on the geochemistry of magmatic sulfides. Economic Geology, 74(6): 1503-1506

    [2]

    Chai G and Naldrett AJ. 1992. Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit, Northwest China. Economic Geology, 87:1475-1495

    [3]

    Chen LM, Song XY, Keays RR and Tian YL. 2013. Segregation and fractionation of magmatic Ni-Cu-PGE sulfides in the western Jinchuan intrusion, northwestern China: Insights from platinum group element geochemistry. Economic Geology, 108(8): 1793-1811

    [4]

    Evans-Lamswood DM, Butt DP, Jackson RS, Lee DV, Muggridge MG, Wheeler RI and Wilton DHC. 2000. Physical controls associated with the distribution of sulfides in the Voisey's Bay Ni-Cu-Co deposit, Labrador. Economic Geology, 95(4): 749-769

    [5]

    Gao YL, Tang ZL, Song XY, Tian YL and Meng YZ. 2009. Study on genesis of the concealed Cu-rich ore body in the Jinchuan Cu-Ni deposit and its prospecting in depth. Acta Petrologica Sinica, 25(12): 3379-3395 (in Chinese with English abstract)

    [6]

    Hawley JE. 1965. Upside-down zoning at Frood, Sudbury, Ontario. Economic Geology, 60(3): 529-575

    [7]

    Lesher CM and Campbell IH. 1993. Geochemical and fluid dynamic modeling of compositional variations in Archean komatiite-hosted nickel sulfide ores in Western Australia. Economic Geology, 1993, 88 (4): 804-816

    [8]

    Li C, Naldrett AJ and Ripley EM. 2001. Critical factors for the formation of a Ni-Cu deposit in evolved magmatic system: Lessons from a comparison of the Pants Lake and Voisey's Bay sulfide occurrences in Labrador. Mineralium Deposita, 36(1): 85-92

    [9]

    Li C, Naldrett AJ and Ripley EM. 2007. Controls on the Fo and Ni contents of olivine in sulfide-bearing mafic/ultramafic intrusions: Principles, modeling, and examples from Voisey's Bay. Earth Science Frontiers, 14 (5): 177-183

    [10]

    Li C, Ripley EM and Naldrett AJ. 2009. A new genetic model for the giant Ni-Cu-PGE sulfide deposits associated with the Siberian flood basalts. Economic Geology, 104(2): 291-301

    [11]

    Lightfoot PC. 2007. Advances in Ni-Cu-PGE sulphide deposit models and implications for exploration technologies. In: Milkereit B (ed.). Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 629-646

    [12]

    Lightfoot PC, Keays RR, Evans-Lamswood D and Wheeler R. 2012. S saturation history of Nain Plutonic Suite mafic intrusions: Origin of the Voisey's Bay Ni-Cu-Co sulfide deposit, Labrador, Canada. Mineralium Deposita, 47(1-2): 23-50

    [13]

    Liu PP, Qin KZ, Su SG et al.. 2010. Characteristics of multiphase sulfide droplets and their implications for conduit style mineralization of Tulargen Cu-Ni deposit, eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 26(2): 523-532 (in Chinese with English abstract)

    [14]

    Luo ZH, Lu XX, Guo SF, Sun J, Chen BH, Huang F and Yang ZF. 2008. Metallogenic systems on the transmagmatic fluid theory. Acta Petrologica Sinica, 24(12): 2669-2678 (in Chinese with English abstract)

    [15]

    Luo ZH, Lu XX, Chen BH, Li ML, Liang T, Huang F and Yang ZF. 2009. Introduction to Metallogeny by Transmagmatic Fluids. Beijing: Geological Publishing House, 1-177 (in Chinese with English abstract)

    [16]

    Luo ZH, Liu JQ, Zhao CP, Guo ZF, Chen LL, Li XH and Li DP. 2011. Deep fluid and magmatic activity: Deep processes of Tongchong Volcanic Group. Acta Petrologica Sinica, 27(8): 2855-2862 (in Chinese with English abstract)

    [17]

    Luo ZH, Yang ZF, Dai G, Chen LL and Zhou JL. 2013. Crystal populations of igneous rocks and their implications in genetic mineralogy. Geology in China, 40(1): 176-181 (in Chinese with English abstract)

    [18]

    Luo ZH, Zhou JL, Liu C and Su SG. 2014. Post-supereruption/-superintrusion metallogenesis. Acta Petrologica Sinica, 30(11): 3131-3154 (in Chinese with English abstract)

    [19]

    Maier WD, Li CS, and de Waal SA. 2001. Why are there no major Ni-Cu sulfide deposits in large layered mafic-ultramafic intrusions? The Canadian Mineralogist, 39 (2): 547-556

    [20]

    Naldrett AJ, Lightfoot PC, Fedorenko V et al.. 1992. Geology and geochemistry of intrusions and flood basalts of the Noril'sk region, USSR, with implications for the origin of the Ni-Cu ores. Economic Geology, 87(4): 975-1004

    [21]

    Naldrett AJ, Fedorenko VA and Lightfoot PC. 1995. Ni-Cu-PGE deposits of the Noril'sk region, Siberia: Their formation in conduits for flood basalt volcanism. Trans. Inst. Mining and Metall., London, 104: B18-B36

    [22]

    Naldrett AJ, Keats H, Sparkes K and Moore R. 1996. Geology of the Voisey's Bay Ni-Cu-Co deposit, Labrador, Canada. Exploration and Mining Geology, 5 (2): 169-179

    [23]

    Naldrett AJ. 1999. World class Ni-Cu-PGE deposits: Key factors in their genesis. Mineralium Deposita, 34(3): 227-240

    [24]

    Naldrett AJ. 2004. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration. Berlin, Heidelberg: Springer, 727

    [25]

    Qin KZ, Tian Y, Yao ZS, Wang Y, Mao YJ, Wang B, Xue SC, Tang DM and Kang Z. 2014. Metallogenetic conditions, magma conduit and exploration potential of the Kalatongk Cu-Ni orefield in northern Xinjiang. Geology in China, 41(3): 912-935 (in Chinese with English abstract)

    [26]

    Song XY, Xiao JF, Zhu D et al. 2010. New insights on the formation of magmatic sulfide deposits in magma conduit system. Earth Science Frontiers, 17(1): 153-163 (in Chinese with English abstract)

    [27]

    Song XY, Danyushevsky LV, Keays RR, Chen LM, Wang YS, Tian YL and Xiao JF. 2012. Structural, lithological, and geochemical constraints on the dynamic magma plumbing system of the Jinchuan Ni-Cu sulfide deposit, NW China. Mineralium Deposita, 47(3): 277-297

    [28]

    Su SG, Li C, Zhou MF et al. 2008. Controls on variations of platinum-group element concentrations in the sulfide ores of the Jinchuan Ni-Cu deposit, western China. Mineralium Deposita, 43 (6): 609-622

    [29]

    Su SG and Tang ZL. 2010. Theory and practice of magmatic conduit metallogenic system. Mineral Deposits, 29 (Suppl.1): 885-886 (in Chinese)

    [30]

    Su SG and Tang ZL. 2012. Magmatic conduit metallogenic system and its application in prospecting and exploration. Lanzhou: Abstract for 2012 Petrology and Geodynamics Symposium in China (in Chinese)

    [31]

    Su SG, Tang ZL, Wu GY et al. 2013. Magmatic conduit metallogenic system: A new model for the origin of ore-deposits. San Francisco, USA: Abstract for AGU Fall meeting

    [32]

    Su SG, Sun L and Luo ZH. 2014. Liquid mineral assemblages and its significance for the Wengeqi PGE deposit's origin, Inner-Mongolia, China. Sacramento, USA: Abstract for Goldschmidt Meeting

    [33]

    Tang ZL and Ren DJ. 1987. Types and metallogenetic models of nickel sulfide deposits in China. Acta Geologica Sinica, (4): 350-361 (in Chinese with English abstract)

    [34]

    Tang ZL. 1990. Minerogenetic model of the Jinchuan copper and nickel sulfide deposit. Geoscience, 4(4): 55-64 (in Chinese with English abstract)

    [35]

    Tang ZL. 1993. Genetic model of the Jinchuan nickel-copper deposit. Geological Association of Canada Special Paper, 40: 389-402

    [36]

    Tang ZL and Li WY. 1995. Genetic Model and Geological Characteristics of Jinchuan Cu-Ni Sulfide Deposit. Beijing: Geological Publishing House, 1-209 (in Chinese with English abstract)

    [37]

    Tang ZL, Qian ZZ and Jiang CY et al. 2006. Chinese Nickel-Copper (PGE) Sulfide Deposits and Metallogenic Prognosis. Beijing: Geological Publishing House (in Chinese with English abstract)

    [38]

    Tian YL, Bao GZ, Tang ZL and Wang YS. 2009. Geological and geochemical characteristics of the magma conduit-type orebodies of Jinchuan Cu-Ni sulfide deposit. Acta Geologica Sinica, 83(10): 1515-1525 (in Chinese with English abstract)

    [39]

    Wang J. 2013. The uprising mechanism of Cu-Ni sulfide magama in magmatic conduit metallogenic system. Master Degree Thesis. Beijing: China University of Geosciences, 1-41 (in Chinese with English summary)

    [40]

    Yan HQ, Wang Q, Hu YQ et al. 2013. Striker magma and magma channel in the Jinchuan copper-nickel sulfide magmatic deposit. Geology in China, 40(3): 807-819 (in Chinese with English abstract)

    [41]

    Yang ZF. 2012. Combining quantitative textural and geochemical study to understand the solidification processes of granite porphyry in Shanggusi, East Qinling, China. Journal of Petrology, 53(9): 1807-1835

    [42]

    Зотов ИА. 1989. Трансмагматические флюиды вмагматизме и рудообразовании. Москва: Наука, 214с

    [43]

    高亚林, 汤中立, 宋谢炎, 田毓龙, 孟远志. 2009. 金川铜镍矿床隐伏富铜矿体成因研究及其深部找矿意义. 岩石学报, 25(12): 3379-3395

    [44]

    刘平平, 秦克章, 苏尚国等. 2010. 新疆东天山图拉尔根大型铜镍矿床硫化物珠滴构造的特征及其对通道式成矿的指示. 岩石学报, 26(2): 523-532

    [45]

    罗照华, 卢欣祥, 郭少丰, 孙静, 陈必河, 黄凡, 杨宗锋. 2008. 透岩浆流体成矿体系. 岩石学报, 24(12): 2669-2678

    [46]

    罗照华, 卢欣祥, 陈必河, 李明立, 梁涛, 黄凡, 杨宗锋. 2009. 透岩浆流体成矿作用导论. 北京: 地质出版社, 1-177

    [47]

    罗照华,刘嘉麒, 赵慈平, 郭正府, 程黎鹿, 李晓惠, 李大鹏. 2011. 深部流体与岩浆活动:兼论腾冲火山群的深部过程. 岩石学报, 27(8): 2855-2862

    [48]

    罗照华, 杨宗锋, 代耕, 程黎鹿, 周久龙. 2013. 火成岩的晶体群与成因矿物学展望. 中国地质, 40(1): 176-181

    [49]

    罗照华, 周久龙, 刘翠, 苏尚国. 2014. 超级喷发(超级侵入)后成矿作用. 岩石学报, 30(11): 3131-3154

    [50]

    秦克章, 田野, 姚卓森, 王勇, 毛亚晶, 王斌, 薛胜超, 唐冬梅, 康珍. 2014. 新疆喀拉通克铜镍矿田成矿条件、岩浆通道与成矿潜力分析. 中国地质, 41(3): 912-935

    [51]

    宋谢炎, 肖家飞, 朱丹等. 2010. 岩浆通道系统与岩浆硫化物成矿研究新进展. 地学前缘, 17(1): 153-163

    [52]

    苏尚国, 汤中立. 2010. 岩浆通道成矿系统的理论与实践. 矿床地质, 29(增刊1): 885-886

    [53]

    苏尚国, 汤中立. 2012. 岩浆通道成矿系统及其在找矿勘探中的应用. 兰州:2012年全国岩石学与地球动力学研讨会会议摘要

    [54]

    汤中立, 任端进. 1987. 中国硫化镍矿床类型及成矿模式. 地质学报, (4): 350-361

    [55]

    汤中立. 1990. 金川硫化铜镍矿床成矿模式. 现代地质, 4(4): 55-64

    [56]

    汤中立, 李文渊. 1995. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比. 北京: 地质出版社, 1-209

    [57]

    汤中立, 钱壮志, 姜常义等. 2006. 中国镍铜铂岩浆硫化物矿床与成矿预测. 北京: 地质出版社, 2006

    [58]

    田毓龙, 包国忠, 汤中立, 王玉山. 2009. 金川铜镍硫化物矿床岩浆通道型矿体地质地球化学特征. 地质学报, 83(10): 1515-1525

    [59]

    王俊. 2013. 岩浆通道成矿系统中铜镍硫化物矿浆上升机制. 硕士学位论文. 北京: 中国地质大学, 1-41

    [60]

    闫海卿, 王强, 胡彦强等. 2013. 金川铜镍硫化物岩浆矿床前锋岩浆与岩浆通道. 中国地质, 40(3): 807-819

  • 加载中
计量
  • 文章访问数:  7938
  • PDF下载数:  7782
  • 施引文献:  0
出版历程
收稿日期:  2014-03-31
修回日期:  2014-06-30
刊出日期:  2014-11-30

目录