柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义

朱小辉, 陈丹玲, 刘良, 赵姣, 张乐. 柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义[J]. 岩石学报, 2014, 30(3): 822-834.
引用本文: 朱小辉, 陈丹玲, 刘良, 赵姣, 张乐. 柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义[J]. 岩石学报, 2014, 30(3): 822-834.
ZHU XiaoHui, CHEN DanLing, LIU Liang, ZHAO Jiao, ZHANG Le. Geochronology, geochemistry and significance of the Early Paleozoic back-arc type ophiolite in Lvliangshan area, North Qaidam[J]. Acta Petrologica Sinica, 2014, 30(3): 822-834.
Citation: ZHU XiaoHui, CHEN DanLing, LIU Liang, ZHAO Jiao, ZHANG Le. Geochronology, geochemistry and significance of the Early Paleozoic back-arc type ophiolite in Lvliangshan area, North Qaidam[J]. Acta Petrologica Sinica, 2014, 30(3): 822-834.

柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义

  • 基金项目:

    本文受国家基础研究规划“973”项目(2009CB825003)、国家自然科学基金项目(41072051)和中国地质调查局工作项目(1212011121137)联合资助.

详细信息

Geochronology, geochemistry and significance of the Early Paleozoic back-arc type ophiolite in Lvliangshan area, North Qaidam

More Information
  • 岩石学、地球化学、年代学及Lu-Hf同位素综合研究表明在柴北缘西段绿梁山大平沟地区出露一套弧后盆地型蛇绿岩,岩石类型主要包括变质橄榄岩、变火山岩、变辉长岩及斜长花岗岩。其中变火山岩具有LREE亏损,类似N-MORB的稀土配分模式,同时又具有富集大离子亲石元素,亏损Nb、Ta等高场强元素的岛弧火山岩的地球化学特征,应形成在弧后盆地环境。斜长花岗岩为低钾准铝质花岗岩,具有LREE略微富集,HREE平坦的稀土配分型式,显示强烈Eu正异常,其εHf(t)值介于13.7~15.3之间,为变辉长岩部分熔融的产物,熔融温压条件可能为P=0.8~0.9GPa和T=~800℃。年代学研究结果表明变辉长岩的形成时代为535±2Ma,斜长花岗岩的形成时代为493±3Ma,指示本地区弧后盆地拉张时限至少介于493~535Ma之间,而柴北缘地区古大洋俯冲消减作用应早于535Ma。
  • 加载中
  • [1]

    Anderson JL. 1997. Status of thermobarometry in granitic batholiths. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1-2): 125-138

    [2]

    Barker F. 1979. Trondhjemite: Definition, environment and hypotheses of origin. In: Barker F (ed.). Trondhjemites, Dacites, and Related Rocks. Amsterdam: Elsevier, 1-12

    [3]

    Brenan JM, Shaw HF, Phinney DL et al. 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: Implications for high field strength element depletions in island-arc basalts. Earth and Planetary Science Letters, 128(3-4): 327-339

    [4]

    Chen DL, Liu L, Sun Y and Liou JG. 2009. Geochemistry and zircon U-Pb dating and its implications of the Yukahe HP/UHP terrane, the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3-4): 259-272

    [5]

    Coleman RG and Peterman ZE. 1975. Oceanic plagiogranite. Journal of Geophysical Research, 80(8): 1099-1108

    [6]

    Ferry JM and Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437

    [7]

    Flagler PA and Spray JG. 1991. Generation of plagiogranite by amphibolite anatexis in oceanic shear zones. Geology, 19(1): 70-73

    [8]

    Gao S, Ling WL, Qiu YM, Lian Z, Hartmann G and Simon K. 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimical et Cosmochimica Acta, 63(13-14): 2071-2088

    [9]

    Gao XF, Xiao PX and Jia QZ. 2011. Redetermination of the Tanjianshan Group: Geochronological and geochemical evidence of basalts from the margin of the Qaidam Basin. Acta Geologica Sinica, 85(9): 1452-1463 (in Chinese with English abstract)

    [10]

    Gerlach DC, Leeman WP and Avé Lallemant HG. 1981. Petrology and geochemistry of plagiogranite in the Canyon Mountain ophiolite, Oregon. Contributions to Mineralogy and Petrology, 77(1): 82-89

    [11]

    Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269

    [12]

    Koepke J, Feig ST, Snow J and Freise M. 2004. Petrogenesis of oceanic plagiogranites by partial melting of gabbros: An experimental study. Contributions to Mineralogy and Petrology, 146(4): 414-432

    [13]

    Koepke J, Berndt J, Feig ST and Holz F. 2007. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology, 153(1): 67-84

    [14]

    Li F, Wu ZL, Li BZ and Wang LF. 2006. Revision of the Tanjianshan Group on the northern margin of the Qaidam Basin. Northwestern Geology, 39(3): 83-90 (in Chinese with English abstract)

    [15]

    Li WX and Li XH. 2003. Adakitic granites within the NE Jiangxi ophiolites, South China: Geochemical and Nd isotopic evidence. Precambrian Research, 112(1-4): 29-44

    [16]

    Li WX and Li XH. 2003. Rock types and tectonic significance of the granitoids rocks within ophiolites. Advance In Earth Sciences, 18(3): 392-397(in Chinese with English abstract)

    [17]

    Mattinson CG, Wooden JL, Liou JG, Bird DK and Wu CL. 2006. Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP Terrane, western China. American Journal of Science, 306(9): 683-711

    [18]

    Meng FC, Zhang JX, Yang JS and Xu ZQ. 2003. Geochemical characteristics of eclogites in Xitieshan area, North Qaidam of northwestern China. Acta Petrologica Sinica, 19(3): 435-442 (in Chinese with English abstract)

    [19]

    Pan GT, Li XZ, Wang LQ, Ding J and Chen ZL. 2002. Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions. Geological Bulletin of China, 21(11): 701-707 (in Chinese with English abstract)

    [20]

    Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983

    [21]

    Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81

    [22]

    Pedersen RB and Malpas J. 1984. The origin of oceanic plagiogranites from the Karmoy ophiolite, western Norway. Contributions to Mineralogy and Petrology, 88(1-2): 36-52

    [23]

    Peters T and Kamber BS. 1994. Peraluminous potassium-rich granitoids in the Semail ophiolite. Contributions to Mineralogy and Petrology, 118(3): 229-238

    [24]

    Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263

    [25]

    Shervais JW. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59(1): 101-118

    [26]

    Song SG, Yang JS and Niu YL. 2004. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, northern Tibetan Plateau, NW China. American Mineralogist, 89(8-9): 1330-1336

    [27]

    Song SG, Zhang LF, Niu YL, Su L, Song B and Liu DY. 2006. Evolution from oceanic subduction to continental collision: A case study from the northern Tibetan Plateau based on geochemical and geochronological data. Journal of Petrology, 47(3): 435-455

    [28]

    Song SG, Niu YL, Zhang LF and Zhang GB. 2009. Time constraints on orogenesis from oceanic subtraction to continental subduction, collision, and exhumation: An example from North Qilian and North Qaidam HP-UHP belts. Acta Petrologica Sinica, 25(9): 2067-2077 (in Chinese with English abstract)

    [29]

    Song SG, Su L, Li XH, Zhang GB, Niu YL and Zhang LF. 2010. Tracing the 850Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, NW China. Precambrian Research, 183(4): 805-816

    [30]

    Sun SS. 1980. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Philosophical Transactions of the Royal Society A: Mathematical and Physical Sciences, 297(1431): 409-445

    [31]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345

    [32]

    Vielzeuf D and Schmidt MW. 2001. Melting relations in hydrous systems revisited: Application to metapelites, metagreywackes and metabasalts. Contributions to Mineralogy and Petrology, 141(3): 251-267

    [33]

    Wang HC, Lu SN, Yuan GB, Xin HT, Zhang BH, Wang QH and Tian Q. 2003. Tectonic setting and age of the "Tanjianshan Group" on the northern margin of the Qaidam Basin. Geological Bulletin of China, 22(7): 487-493 (in Chinese with English abstract)

    [34]

    Wang HC, Lu SN, Mo XX, Li HK and Xin HT. 2005. An Early Paleozoic collisional orogen on the northern margin of the Qaidam basin, northwestern China. Geological Bulletin of China, 24(7): 603-612 (in Chinese with English abstract)

    [35]

    Whitehead J, Dunning GR and Spray JG. 2000. U-Pb geochronology and origin of granitoid rocks in the Thetford Mines ophiolite, Canadian Appalachians. Geological Society of America Bulletin, 112(6): 915-928

    [36]

    Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343

    [37]

    Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30

    [38]

    Wu CL, Yang JS, Xu ZQ, Wooden JL, Ireland T, Li HB, Shi RD, Meng FC, Chen SY, Persing H and Meibom A. 2004. Granitic magmatism on the Early Paleozoic UHP belt of northern Qaidam, NW China. Acta Geologica Sinica, 78(5): 658-674 (in Chinese with English abstract)

    [39]

    Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)

    [40]

    Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569

    [41]

    Xiong XL, Adam J and Green TH. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218(3-4): 339-359

    [42]

    Xu JF, Castillo PR, Chen FR, Niu HC, Yu XY and Zhen ZP. 2003. Geochemistry of Late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, Northwest China: Implications for back-arc mantle evolution. Chemical Geology, 193(1-2): 137-154

    [43]

    Xu ZQ, Yang JS, Wu CL, Li HB, Zhang JX, Qi XX, Song SG and Qiu HJ. 2006. Timing and mechanism of formation and exhumation of the northern Qaidam ultrahigh-pressure metamorphic belt. Journal of Asian Earth Sciences, 28(2-3): 160-173

    [44]

    Yang JS, Song SG, Xu ZQ et al. 2001. Discovery of coesite in the North Qaidam Early Paleozoic Ultrahigh-High Pressure (UHP-HP) metamorphic belt, NW China. Acta Geolgica Sinica, 75(2): 175-179 (in Chinese with English abstract)

    [45]

    Yang JS, Zhang JX, Meng FC, Shi RD, Wu CL, Xu ZQ, Li HB and Chen SY. 2003. Ultrahigh pressure eclogites of the North Qaidam and Altun mountains, NW China and their protoliths. Earth Science Frontiers, 10(3): 291-313 (in Chinese with English abstract)

    [46]

    Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 357-370

    [47]

    Yuan HL, Gao S, Dai MN, Zong CL, Günther D, Fontaine GH, Liu XM and Diwu CR. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 247(1-2): 100-118

    [48]

    Zhang GB, Song SG, Zhang LF, Niu YL and Shu GM. 2005. Ophiolite-type mantle peridotite from Shaliuhe, North Qaidam UHPM belt, NW China and its tectonic implications. Acta Petrologica Sinica, 21(4): 1049-1058 (in Chinese with English abstract)

    [49]

    Zhang GB, Song SG, Zhang LF and Niu YL. 2008. The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China: Evidence from petrology, geochemistry and geochronology. Lithos, 104: 99-118

    [50]

    Zhang GB, Ellis DJ, Christy AG, Zhang LF, Niu YL and Song SG. 2009a. UHP metamorphic evolution of coesite-bearing eclogite from the Yuka terrane, North Qaidam UHPM belt, NW China. European Journal of Mineralogy, 21(6): 1287-1300

    [51]

    Zhang GB, Zhang LF, Song SG and Niu YL. 2009b. UHP metamorphic evolution and SHRIMP geochronology of a coesite-bearing meta-ophiolitic gabbro in the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3-4): 310-322

    [52]

    Zhang GB and Zhang LF. 2011. Rodingite from oceanic lithology of Shaliuhe terrane in North Qaidam UHPM belt and its geological implication. Earth Science Frontiers, 18(2): 151-157 (in Chinese with English abstract)

    [53]

    Zhang JX, Yang JS, Mattinson CG, Xu ZQ, Meng FC and Shi RD. 2005. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China: Petrological and isotopic constraints. Lithos, 84(1-2): 51-76

    [54]

    Zhang JX, Meng FC, Li JP and Mattinson CG. 2009c. Coesite in eclogite from the North Qaidam Mountains and its implications. Chinese Science Bulletin, 54(6): 1105-1110

    [55]

    Zhang JX, Mattinson CG, Yu SY, Li JP and Meng FC. 2010. U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: Spatially and temporally extensive UHP metamorphism during continental subduction. Journal of Metamorphic Geology, 28(9): 955-978

    [56]

    Zhang RY, Liou JG, Iizuka Y and Yang JS. 2009d. First record of K-cymrite in North Qaidam UHP eclogite, Western China. American Mineralogist, 94(2-3): 222-228

    [57]

    Zhu XH, Chen DL, Liu L, Wang C, Yang WQ, Cao YT and Kang L. 2012. Chronology and geochemistry of the mafic rocks in Xitieshan area, North Qaidam. Geological Bulletin of China, 31(12): 2079-2089 (in Chinese with English abstract)

    [58]

    高晓峰, 校培喜, 贾群子. 2011. 滩间山群的重新厘定——来自柴达木盆地周缘玄武岩年代学和地球化学证据. 地质学报, 85(9): 1452-1463

    [59]

    李峰, 吴志亮, 李保珠, 汪林峰. 2006. 柴达木盆地北缘滩间山群新厘定. 西北地质, 39(3): 83-90

    [60]

    李武显, 李献华. 2003. 蛇绿岩中的花岗质岩石成因类型和构造意义. 地球科学进展, 18(3): 392-397

    [61]

    孟繁聪, 张建新, 杨经绥, 许志琴. 2003. 柴北缘锡铁山榴辉岩的地球化学特征. 岩石学报, 19(3): 435-442

    [62]

    潘桂棠, 李兴振, 王立全, 丁俊, 陈志粱. 2002. 青藏高原及邻区大地构造单元初步划分. 地质通报, 21(11): 701-707

    [63]

    宋述光, 牛耀龄, 张立飞, 张贵宾. 2009. 大陆造山运动: 从大洋俯冲到大陆俯冲、碰撞、折返的时限——以北祁连山、柴北缘为例. 岩石学报, 25(9): 2067-2077

    [64]

    王惠初, 陆松年, 袁桂邦, 辛后田, 张宝华, 王青海, 田琪. 2003. 柴达木盆地北缘滩间山群的构造属性及形成时代. 地质通报, 22(7): 487-493

    [65]

    王惠初, 陆松年, 莫宣学, 李怀坤, 辛后田. 2005. 柴达木盆地北缘早古生代碰撞造山系统. 地质通报, 24(7): 603-612

    [66]

    吴才来, 杨经绥, 许志琴, Wooden JL, Ireland T, 李海兵, 史仁灯, 孟繁聪, 陈松永, Persing H, Meibom A. 2004. 柴达木盆地北缘古生代超高压带中花岗质岩浆作用. 地质学报, 78(5): 658-674

    [67]

    吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220

    [68]

    杨经绥, 宋述光, 许志琴等. 2001. 柴达木盆地北缘早古生代高压-超高压变质带中发现典型超高压矿物-柯石英. 地质学报, 75(2): 175-179

    [69]

    杨经绥, 张建新, 孟繁聪, 史仁灯, 吴才来, 许志琴, 李海兵, 陈松永. 2003. 中国西部柴北缘-阿尔金的超高压变质榴辉岩及其原岩性质探讨. 地学前缘, 10(3): 291-313

    [70]

    张贵宾, 宋述光, 张立飞, 牛耀玲, 舒桂明. 2005. 柴北缘超高压变质带沙柳河蛇绿岩型地幔橄榄岩及其意义. 岩石学报, 21(4): 1049-1058

    [71]

    张贵宾, 张立飞. 2011. 柴北缘沙柳河地区洋壳超高压变质单元中异剥钙榴岩的发现及其地质意义. 地学前缘, 18(2): 151-157

    [72]

    朱小辉, 陈丹玲, 刘良, 王超, 杨文强, 曹玉亭, 康磊. 2012. 柴北缘锡铁山地区镁铁质岩石的时代及地球化学特征. 地质通报, 31(12): 2079-2089

  • 加载中
计量
  • 文章访问数:  5601
  • PDF下载数:  4905
  • 施引文献:  0
出版历程
收稿日期:  2013-06-30
修回日期:  2013-12-20
刊出日期:  2014-03-31

目录