青藏高原东北缘柳坪新生代苦橄玄武岩地球化学及其大陆动力学意义

赖绍聪, 秦江锋, 赵少伟, 朱韧之. 青藏高原东北缘柳坪新生代苦橄玄武岩地球化学及其大陆动力学意义[J]. 岩石学报, 2014, 30(2): 361-370.
引用本文: 赖绍聪, 秦江锋, 赵少伟, 朱韧之. 青藏高原东北缘柳坪新生代苦橄玄武岩地球化学及其大陆动力学意义[J]. 岩石学报, 2014, 30(2): 361-370.
LAI ShaoCong, QIN JiangFeng, ZHAO ShaoWei, ZHU RenZhi. Geochemistry and its continental dynamic implication of the Cenozoic sodic picritic basalt from the Liuping area, northeastern margin of the Tibetan Plateau[J]. Acta Petrologica Sinica, 2014, 30(2): 361-370.
Citation: LAI ShaoCong, QIN JiangFeng, ZHAO ShaoWei, ZHU RenZhi. Geochemistry and its continental dynamic implication of the Cenozoic sodic picritic basalt from the Liuping area, northeastern margin of the Tibetan Plateau[J]. Acta Petrologica Sinica, 2014, 30(2): 361-370.

青藏高原东北缘柳坪新生代苦橄玄武岩地球化学及其大陆动力学意义

  • 基金项目:

    本文受国家自然科学基金项目(41072052)和国家自然科学基金重大计划项目(41190072)联合资助.

Geochemistry and its continental dynamic implication of the Cenozoic sodic picritic basalt from the Liuping area, northeastern margin of the Tibetan Plateau

  • 柳坪苦橄玄武岩出露在青藏高原东北缘特殊的构造部位,位于青藏、华北和扬子三大构造域的交接转换区域。岩石形成年龄在23~7.1Ma之间,属于新近纪火山岩。岩石SiO2介于41.72%~42.82%之间,Na2O>K2O,K2O/Na2O平均0.51,为一套典型的幔源钠质碱性玄武岩类。岩石微量及稀土元素具板内火山岩特征,Th、Rb等元素呈较明显的富集状态,而岩石显著的低K2O特征(0.48%~0.90%)明显不同于青藏高原北缘新生代钾质-超钾质火山岩系列。岩石87Sr/86Sr(0.704158~0.704668)、143Nd/144Nd(0.512831~0.513352)、206Pb/204Pb(18.729871~18.779184)、207Pb/204Pb(15.591395~15.602454)和208Pb/204Pb(39.097372~39.181458)等同位素变化特征具有显著的混源属性,投影点位于EMI、EMⅡ、BSE及PREMA等典型地幔储库的过渡部位,并可能存在HIUM地幔源的部分参与,明显不同于单一地幔源局部熔融形成的玄武岩的同位素组成特征。表明新生代期间青藏东缘西秦岭-松潘地区受青藏、扬子及华北三大构造体系域的控制,西秦岭-松潘构造结处于从下部地幔到上部陆壳物质的总体汇聚拼贴阶段,地幔具有显著的混合特征。柳坪苦橄玄武岩正是在这种特定的构造背景下,由于新生代青藏高原软流圈地幔物质向东的流动,诱发西秦岭-松潘构造结多源混合的地幔橄榄岩局部熔融而形成。
  • 加载中
  • [1]

    Dong X, Zhao ZD, Mo XX et al. 2008. Geochemistry of the Cenozoic kamafugites from west Qinling and its constraint for the nature of magma source region. Acta Petrologica Sinica, 24(2): 238-248 (in Chinese with English abstract)

    [2]

    Frey FA, Greend H and Roys D. 1978. Integrated models of basalt petrogenesis: A study of quartz tholeⅡtes to olivine melilitites from southeastern Austlalia utilizing geochemical and experimental petrological data. Journal of Petrology, 19(3): 463-513

    [3]

    Hart SR. 1988. Heterogeneous mantle domains: Signatures, genesis and mixing chronologies. Earth and Planetary Science Letters, 90(3): 273-296

    [4]

    Hofmann AW. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385(6613): 219-229

    [5]

    Hugh RR. 1993. Using Geochemical Data. Singapore: Longman Singapore Publishers, 234-240

    [6]

    Jiang YH, Jiang SY, Ling HF and Dai BZ. 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, East Tibet: Geochemical and Sr-Nd-Pb-Hf isotopic constraints. Earth and Planetary Science Letters, 241(3-4): 617-633

    [7]

    Lai SC and Liu CY. 2001. Enriched upper mantle and eclogitic lower crust in north Qiangtang, Qinghai-Tibet Plateau: Petrological and geochemical evidence from the Cenozoic volcanic rocks. Acta Petrologica Sinica, 17(3): 459-468 (in Chinese with English abstract)

    [8]

    Lai SC, Liu CY and O'Reilly SY. 2001. Petrogenesis and its significance to continental dynamics of the Neogene high-potassium calc-alkaline volcanic rock association from north Qiangtang, Tibetan Plateau. Science in China (Series D), 44(Suppl.1): 45-55

    [9]

    Lai SC, Liu CY and Yi HS. 2003. Geochemistry and petrogenesis of Cenozoic andesite-dacite association from the Hoh Xil region, Tibetan Plateau. International Geology Review, 45(11): 998-1019

    [10]

    Lai SC, Qin JF and Li YF. 2007. Partial melting of thickened Tibetan crust: Geochemical evidence from Cenozoic adakitic volcanic rocks. International Geology Review, 49(4): 357-373

    [11]

    Lai SC, Qin JF, Li YF et al. 2007. Geochemistry and petrogenesis of the alkaline and caic-alkaline series Cenozoic volcanic rocks from Huochetou mountain, Tibetan Plateau. Acta Petrologica Sinica, 23(4): 709-718 (in Chinese with English abstract)

    [12]

    Lai SC, Qin JF and Rodeny G. 2011. Petrochemistry of granulite xenoliths from the Cenozoic Qiangtang volcanic field, northern Tibetan Plateau: Implications for lower crust composition and genesis of the volcanism. International Geology Review, 53(8): 926-945

    [13]

    Liu Y, Liu XM, Hu ZC et al. 2007. Evaluation of accuracy and long-term stability of determination of 37 trace elements in geological samples by ICP-MS. Acta Petrologica Sinica, 23(5): 1203-1210 (in Chinese with English abstract)

    [14]

    Liu YJ, Cao LM, Li ZL et al. 1984. Element Geochemistry. Beijing: Science Press, 50-372 (in Chinese)

    [15]

    Marty B and Dauphas N. 2003. The nitrogen record of crust-mantle interaction and mantle convection from Archean to present. Earth and Planetary Science Letters, 206(3-4): 397-410

    [16]

    Miyashiro A. 1978. Nature of alkalic volcanic rock series. Contributions to Mineralogy and Petrology, 66(1): 91-104

    [17]

    Mo XX, Zhao ZD, Deng JF et al. 2006. Petrology and geochemistry of postcollisional volcanic rocks from the Tibetan Plateau: Implications for lithosphere heterogeneity and collision-induced asthenospheric mantle flow. In: Dilek Y and Pavlides S (eds.). Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia. Washington: The Geological Society of America, 507-530

    [18]

    Mo XX, Zhao ZD, Deng JF et al. 2007. Migration of the Tibetan Cenozoic potassic volcanism and its transition to eastern basaltic province: Implications for crustal and mantle flow. Geoscience, 21(2): 255-264 (in Chinese with English abstract)

    [19]

    Pearce JA. 1983. The Role of Sub-continental Lithosphere in Magma Genesis at Destructive Plate Margins. In: Hawks W (ed.). Continental Basalts and Mantle Xenoliths. London: Nantwich Shiva Press, 230-249

    [20]

    Shi DN, Shen Y, Zhao WJ and Li AB. 2009. Seismic evidence for a Moho offset and south-directed thrust at the easternmost Qaidam-Kunlun boundary in the Northeast Tibetan Plateau. Earth and Planetary Science Letters, 288(1-2): 329-334

    [21]

    Spurlin MS, Yin A, Horton BK, Zhou JY and Wang JH. 2005. Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity east-central Tibet. Geological Society of America Bulletin, 117(9): 1293-1317

    [22]

    Su BX, Zhang HF, Wang QY et al. 2007. Spinel-garnet phase transition zone of Cenozoic lithospheric mantle beneath the eastern China and western Qinling and its T-P condition. Acta Petrologica Sinica, 23(6): 1313-1320 (in Chinese with English abstract)

    [23]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345

    [24]

    Tegner C, Lesher CE, Larsen LM et al. 1998. Evidence from the rare-earth element record of mantle melting for cooling of the Tertiary Iceland plume. Nature, 395(6702): 591-594

    [25]

    Wang YL, Yu XH, Wei YF et al. 2007. The Globule segregations in the Cenozoic Kamafugite and an inversion of mantle fluid, western Qinling, Gansu Province. Geoscience, 21(2): 307-317 (in Chinese with English abstract)

    [26]

    Wilson M. 1989. Igneous Petrogenesis: A Global Tectonic Approach. London: Unwin Hyman Press, 295-323

    [27]

    Wood DA, Joron JL, Treuil M et al. 1979. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contributions to Mineralogy and Petrology, 70(3): 319-339

    [28]

    Yu XH, Mo XX, Martin F et al. 2001. Cenozoic kamafugite volcanism and tectonic meaning in West Qinling area, Gansu Province. Acta Petrologica Sinica, 17(3): 366-377 (in Chinese with English abstract)

    [29]

    Yu XH, Mo XX, Su SG et al. 2003. Discovery and significance of Cenozoic volcanic carbonatite in Lixian, Gansu Province. Acta Petrologica Sinica, 19(1): 105-112 (in Chinese with English abstract)

    [30]

    Yu XH, Zhao ZD, Mo XX et al. 2004. Trace elements, REE and Sr, Nd, Pb isotopic geochemistry of Cenozoic kamafugite and carbonatite from West Qinling, Gansu Province: Implication of plume-lithosphere interaction. Acta Petrologica Sinica, 20(3): 483-494 (in Chinese with English abstract)

    [31]

    Yu XH, Zhao ZD, Mo XX et al. 2005. 40Ar/39Ar dating for Cenozoic kamafugite from western Qinling in Gansu Province. Chinese Science Bulletin, 50(23): 2638-2643 (in Chinese)

    [32]

    Zhang GW, Guo AL and Yao AP. 2004. Western Qinling-Songpan continental tectonic nodein China's continental tectonics. Earth Science Frontiers, 11(3): 23-32 (in Chinese with English abstract)

    [33]

    Zhang XC. 1995. The volcanisn of Kang-Dian rift zone and characteristics of its alkalic (sodic) volcanic rock series. Yunnan Geology, 14(2): 81-98 (in Chinese with English abstract)

    [34]

    Zheng HF, Xie HS, Xu YS et al. 1996. Origin of the sodic and potassic intermediate-acid magmas: Melting experiments on basaltic rocks at high pressures. Acta Mineralogica Sinica, 16(2): 109-117 (in Chinese with English abstract)

    [35]

    Zindler A and Hart SR. 1986. Chemical geodynamics. Annual Review Earth Planetary Sciences, 14(1): 493-573

    [36]

    董昕, 赵志丹, 莫宣学等. 2008. 西秦岭新生代钾霞橄黄长岩的地球化学及其岩浆源区性质. 岩石学报, 24(2): 238-248

    [37]

    赖绍聪, 刘池阳. 2001. 青藏高原北羌塘榴辉岩质下地壳及富集型地幔源区——来自新生代火山岩的岩石地球化学约束. 岩石学报, 17(3): 459-468

    [38]

    赖绍聪, 秦江锋, 李永飞等. 2007. 青藏高原新生代火车头山碱性及钙碱性两套火山岩的地球化学特征及其物源讨论. 岩石学报, 23(4): 709-718

    [39]

    刘晔, 柳小明, 胡兆初等. 2007. ICP-MS测定地质样品中37个元素的准确度和长期稳定性分析. 岩石学报, 23(5): 1203-1210

    [40]

    刘英俊, 曹励明, 李兆麟等. 1984. 元素地球化学. 北京: 科学出版社, 50-372

    [41]

    莫宣学, 赵志丹, 邓晋福等. 2007. 青藏新生代钾质火山活动的时空迁移及向东部玄武岩省的过渡: 壳幔深部物质流的暗示. 现代地质, 21(2): 255-264

    [42]

    苏本勋, 张宏福, 王巧云等. 2007. 中国东部及西秦岭地区新生代岩石圈地幔中的相转变带及其温压条件. 岩石学报, 23(6): 1313-1320

    [43]

    王永磊, 喻学惠, 韦玉芳等. 2007. 甘肃西秦岭新生代钾霞橄黄长岩中的球状分凝体及地幔流体反演. 现代地质, 21(2): 307-317

    [44]

    喻学惠, 莫宣学, Martin F等. 2001. 甘肃西秦岭新生代钾霞橄黄长岩火山作用及其构造含义. 岩石学报, 17(3): 366-377

    [45]

    喻学惠, 莫宣学, 苏尚国等. 2003. 甘肃礼县新生代火山喷发碳酸岩的发现及意义. 岩石学报, 19(1): 105-112

    [46]

    喻学惠, 赵志丹, 莫宣学等. 2004. 甘肃西秦岭新生代钾霞橄黄长岩和碳酸岩的微量、稀土和Pb-Sr-Nd同位素地球化学: 地幔柱-岩石圈交换的证据. 岩石学报, 20(3): 483-494

    [47]

    喻学惠, 赵志丹, 莫宣学等. 2005. 甘肃西秦岭新生代钾霞橄黄长岩的40Ar/39Ar同位素定年及其地质意义. 科学通报, 50(23): 2638-2643

    [48]

    张国伟, 郭安林, 姚安平. 2004. 中国大陆构造中的西秦岭-松潘大陆构造结. 地学前缘, 11(3): 23-32

    [49]

    张学诚. 1995. 康滇裂谷带火山活动及其碱性(钠质)火山岩系特征. 云南地质, 14(2): 81-98

    [50]

    郑海飞, 谢鸿森, 徐有生等. 1996. 钠质与钾质中酸性岩浆的成因——玄武质岩的高压熔融实验研究. 矿物学报, 16(2): 109-117

  • 加载中
计量
  • 文章访问数:  7630
  • PDF下载数:  8271
  • 施引文献:  0
出版历程
收稿日期:  2013-05-24
修回日期:  2013-06-29
刊出日期:  2014-02-28

目录