内蒙狼山成矿带东升庙多金属硫化物矿床硫的来源及矿化过程

高兆富, 朱祥坤, 张衎, 罗照华, 包创, 唐超. 内蒙狼山成矿带东升庙多金属硫化物矿床硫的来源及矿化过程[J]. 岩石学报, 2015, 31(12): 3725-3731.
引用本文: 高兆富, 朱祥坤, 张衎, 罗照华, 包创, 唐超. 内蒙狼山成矿带东升庙多金属硫化物矿床硫的来源及矿化过程[J]. 岩石学报, 2015, 31(12): 3725-3731.
GAO ZhaoFu, ZHU XiangKun, ZHANG Kan, LUO ZhaoHua, BAO Chuang, TANG Chao. Sulfur source and mineralization process of the Dongshengmiao polymetallic sulfide deposit in the Langshan ore belt, Inner Mongolia[J]. Acta Petrologica Sinica, 2015, 31(12): 3725-3731.
Citation: GAO ZhaoFu, ZHU XiangKun, ZHANG Kan, LUO ZhaoHua, BAO Chuang, TANG Chao. Sulfur source and mineralization process of the Dongshengmiao polymetallic sulfide deposit in the Langshan ore belt, Inner Mongolia[J]. Acta Petrologica Sinica, 2015, 31(12): 3725-3731.

内蒙狼山成矿带东升庙多金属硫化物矿床硫的来源及矿化过程

  • 基金项目:

    本文受国土资源部地质调查项目(12120113015700)资助.

详细信息

Sulfur source and mineralization process of the Dongshengmiao polymetallic sulfide deposit in the Langshan ore belt, Inner Mongolia

More Information
  • 东升庙多金属硫化物矿床是狼山成矿带最大和最典型的铅锌多金属硫化物矿床,目前该矿床硫的来源及成矿过程仍存在争议。本文对矿区常见硫化物矿石和最重要的赋矿围岩——绢云石墨片岩中的硫化物分别进行硫同位素分析。结果显示东升庙矿床的硫化物普遍富集硫的重同位素,且矿石与围岩中的硫化物的硫同位素分布范围均较为集中。绢云石墨片岩中的黄铁矿的δ34S值在+19.4‰~+23.4‰之间,具有和当时海水硫酸盐相似的硫同位素组成,指示围岩中的不规则黄铁矿是孔隙水(海水)中的硫酸盐被完全还原后形成的。矿石硫化物的δ34S值在+28.3‰~+31.3‰之间,相比围岩中的黄铁矿明显富集硫的重同位素,指示两者具有不同的硫源。矿石中的硫可能源自基底地层中蒸发岩的溶解,由此形成的硫酸盐占主导的热液流体可萃取大量铅、锌等金属,当遇到狼山群地层中富含有机质的沉积岩时发生热化学还原反应,从而造成硫化物的大量卸载,形成金属硫化物矿床。
  • 加载中
  • [1]

    Canfield DE. 2004. The evolution of the Earth surface sulfur reservoir. American Journal of Science, 304(10): 839-861

    [2]

    Carpenter AB, Trout ML and Pickett EE. 1974. Preliminary report on the origin and chemical evolution of lead-and zinc-rich oil field brines in Central Mississippi. Economic Geology, 69(8): 1191-1206

    [3]

    Cooke DR, Bull SW, Donovan S and Rogers JR. 1998. K metasomatism and base metal depletion in volcanic rocks from the McArthur basin, Northern Territory: Implications for base metal mineralization. Economic Geology, 93(8): 1237-1263

    [4]

    Cooke DR, Bull SW, Large RR and McGoldrick PJ. 2000. The importance of oxidized brines for the formation of Australian Proterozoic stratiform sediment-hosted Pb-Zn (sedex) deposits. Economic Geology, 95(1): 1-18

    [5]

    Ding TP and Jiang SY. 2000. Stable isotope study of the Langshan polymetallic mineral district, Inner Mongolia, China. Resource Geology, 50(1): 25-38

    [6]

    Emery D and Robinson A. 1993. Inorganic Geochemistry: Applications to Petroleum Geology. London: Wiley-Blackwell, 73-101

    [7]

    Farquhar J, Wu NP, Canfield DE and Oduro H. 2010. Connections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide deposits. Economic Geology, 105(3): 509-533

    [8]

    Gao ZF, Zhu XK, Luo ZH, Sun J, Zhang FF, Gao WG, Wang BL and Zhong CH. 2014. Geological and geochemical characteristics of the main ore-bearing rock series in the Dongshengmiao superlarge polymetallic sulfide deposit and their implications for ore genesis. Acta Petrologica et Mineralogica, 33(5): 825-840 (in Chinese with English abstract)

    [9]

    Gorjan P, Veevers JJ and Walter MR. 2000. Neoproterozoic sulfur-isotope variation in Australia and global implications. Precambrian Research, 100(1-3): 151-179

    [10]

    Hanor JS. 1996. Controls on the solubilization of lead and zinc in basin brines. Society of Economic Geologists Special Publication, 4: 483-500

    [11]

    Jiang XQ. 1994. Some evidence for contemporaeous faults in the Dongshengmiao sulfide polymetallic ore distrct in Inner Mongolia and the genesis of the ore deposit. Mineral Deposits, 13(1): 49-60 (in Chinese with English abstract)

    [12]

    Jones HD, Kesler SE, Furman FC and Kyle JR. 1996. Sulfur isotope geochemistry of southern Appalachian Mississippi Valley-type deposits. Economic Geology, 91(2): 355-367

    [13]

    Kharaka YK and Hanor JS. 2007. Deep fluids in the continents: I. Sedimentary basins. Treatise on Geochemistry, 5: 1-48

    [14]

    Large RR, Bull SW, McGoldrick PJ, Walters S, Derrick GM and Carr GR. 2005. Stratiform and strata-bound Zn-Pb-Ag deposits in Proterozoic sedimentary basins, northern Australia. Economic Geology, 100th Anniversary Volume: 931-963

    [15]

    Leach DL, Sangster DF, Kelley KD, Large RR, Garven G, Allen CR, Gutzmer J and Walters S. 2005. Sediment-hosted lead-zinc deposits: A global perspective. Economic Geology, 100th Anniversary Volume: 561-607

    [16]

    Leach DL, Bradley DC, Huston D, Pisarevsky SA, Taylor RD and Gardoll SJ. 2010. Sediment-hosted lead-zinc deposits in Earth history. Economic Geology, 105(3): 593-625

    [17]

    Li ZL, Xu WD and Pang WZ. 1986. S, Pb, C and O isotopic compositions and ore genesis of the stratabound polymetallic sulfide deposits in middle Inner Mongolia, China. Geochimica, (1): 13-22 (in Chinese with English abstract)

    [18]

    Miu YX and Ran CY. 1992. Geological and geochemical characteristics of Dongshengmiao Pb-Zn-S deposit of submarine exhalative origin, Inner Mongolia. Geochimica, (4): 375-382 (in Chinese with English abstract)

    [19]

    Ohmoto H and Rye RO. 1979. Isotopes of Sulfur and Carbon. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. 2nd Edition. New York: John Wiley, 509-567

    [20]

    Peng RM, Zhai YS and Wang ZG. 2000. Ore-controlling synchronous faults of Mesoproterozoic Dongshengmiao and Jiashengpan SEDEX-type ore deposits, Inner Mongolia. Earth Science, 25(4): 404-409 (in Chinese with English abstract)

    [21]

    Peng RM and Zhai YS. 2004. The characteristics of hydrothermal exhalative mineralization of the Langshan-Zhaertai belt, Inner Mongolia, China. Earth Science Frontiers, 11(1): 257-268 (in Chinese with English abstract)

    [22]

    Peng RM, Zhai YS, Han XF, Wang ZG, Wang JP and Liu JJ. 2007a. Sinsedimentry volcanic activities in the cracking process of the Mesoproterozoic aulacogen of passive continental margin in Langshan-Zhaertai area, Inner Mongolia, and its indicating significance. Acta Petrologica Sinica, 23(5): 1007-1017 (in English with English abstract)

    [23]

    Peng RM, Zhai YS, Han XF, Wang ZG, Wang JP, Shen CL and Chen XF. 2007b. Mineralization respond to the structural evolution in the Langshan orogenic belt, Inner Mongolia. Acta Petrologica Sinica, 23(3): 679-688 (in Chinese with English abstract)

    [24]

    Peng RM, Zhai YS, Chen XF, Liu Q, Lü JY, Shi YX, Wang G, Li SB, Wang LG, Ma YT and Zhang P. 2010. Discovery of Neoproterozoic acid volcanic rock in the south-western section of Langshan, Inner Mongolia. Chinese Science Bulletin, 55(26): 2611-2620 (in Chinese)

    [25]

    Pirajno F, Mernagh TP, Huston D, Creaser RA and Seltmann R. 2015. The Mesoproterozoic Abra polymetallic sedimentary rock-hosted mineral deposit, Edmund Basin, Western Australia. Ore Geology Reviews, doi: doi:10.1016/j.oregeorev.2015.04.019

    [26]

    Tu GC. 2000. Superlarge Ore Deposits in China (Ⅰ). Beijing: Science Press, 88-134 (in Chinese)

    [27]

    Wang KN. 1984. Sulfur isotopic composition and geological significance of Dongshengmiao and Tanyaokou deposits in Inner Mongolia. Geology and Exploration, (7): 20-22 (in Chinese)

    [28]

    Xia XH and Zhao X. 1990. The origin of clastic type ores of the Dongshengmiao polymetallic sulfide deposit, Inner Mongolia. Geology and Exploration, 26(7): 30-33, 41 (in Chinese with English abstract)

    [29]

    Xia XH. 1992a. Ore-forming characteristics and genetic discussion of the Dongshengmiao polymetallic pyrite deposits in the Langshan metallogenic belt, Inner Mongolia. Mineral Deposits, 11(4): 374-383 (in Chinese with English abstract)

    [30]

    Xia XH. 1992b. Characteristics and formation conditions of sphalerite in the Dongshengmiao polymetallic pyrite deposit. Acta Petrologica et Mineralogica, 11(4): 375-383 (in Chinese with English abstract)

    [31]

    Xiu SY. 1987. Discussion on the genesis of Tanyaokou and Dongshengmiao polymetallic sulfide-pyrite deposit. Geology of Chemical Minerals, (2): 1-12 (in Chinese)

    [32]

    Zhai MG and Bian AG. 2000. The end of the Neoarchean supercontinent mosaic and Paleoproterozoic-Mesoproterozoic cleavage of the North China Craton. Science in China (Series D), 30(Suppl.): 129-137 (in Chinese)

    [33]

    Zhang ZB, Li JH, Huang CY, Liu H and Zhao YH. 2010. Study on genesis and ore prospecting of Dongshengmiao deposit in Inner Mongolia. Journal of Jilin University (Earth Science Edition), 40(4): 791-800 (in Chinese with English abstract)

    [34]

    Zheng YF and Hoefs J. 1993. Stable isotope geochemistry of hydrothermal mineralizations in the Harz Mountains: Sulfur and oxygen isotopes of sulfides and sulfate and constraints on metallogenetic models. Monograph Series on Mineral Deposits, 30: 211-229

    [35]

    Zhong RC, Li WB, Chen YJ, Yang JQ and Hu CS. 2015. Significant Zn-Pb-Cu remobilization of a syngenetic stratabound deposit during regional metamorphism: A case study in the giant Dongshengmiao deposit, northern China. Ore Geology Reviews, 64: 89-102

    [36]

    高兆富, 朱祥坤, 罗照华, 孙剑, 张飞飞, 高文革, 王炳林, 钟畅怀. 2014. 东升庙多金属硫化物矿床主要含矿岩系地质地球化学特征及对矿床成因的指示意义. 岩石矿物学杂志, 33(5): 825-840

    [37]

    江晓庆. 1994. 内蒙东升庙硫化物多金属矿矿区同生断层的一些证据及矿床成因. 矿床地质, 13(1): 49-60

    [38]

    李兆龙, 许文斗, 庞文忠. 1986. 内蒙古中部层控多金属矿床硫、铅、碳和氧同位素组成及矿床成因. 地球化学, (1): 13-22

    [39]

    缪远兴, 冉崇英. 1992. 内蒙古东升庙铅锌硫矿床海底喷流沉积成矿作用地质地球化学特征. 地球化学, (4): 375-382

    [40]

    彭润民, 翟裕生, 王志刚. 2000. 内蒙古东升庙、甲生盘中元古代SEDEX型矿床同生断裂活动及其控矿特征. 地球科学, 25(4): 404-409

    [41]

    彭润民, 翟裕生. 2004. 内蒙古狼山-渣尔泰山中元古代被动陆缘热水喷流成矿特征. 地学前缘, 11(1): 257-268

    [42]

    彭润民, 翟裕生, 韩雪峰, 王志刚, 王建平, 刘家军. 2007a. 内蒙古狼山-渣尔泰山中元古代被动陆缘裂陷槽裂解过程中的火山活动及其示踪意义. 岩石学报, 23(5): 1007-1017

    [43]

    彭润民, 翟裕生, 韩雪峰, 王志刚, 王建平, 沈存利, 陈喜峰. 2007b. 内蒙古狼山造山带构造演化与成矿响应. 岩石学报, 23(3): 679-688

    [44]

    彭润民, 翟裕生, 王建平, 陈喜峰, 刘强, 吕军阳, 石永兴, 王刚, 李慎斌, 王立功, 马玉涛, 张鹏. 2010. 内蒙狼山新元古代酸性火山岩的发现及其地质意义. 科学通报, 55(26): 2611-2620

    [45]

    涂光炽. 2000. 中国超大型矿床(Ⅰ). 北京: 科学出版社, 88-134

    [46]

    王可南. 1984. 内蒙古炭窑口、东升庙铜、铅、锌多金属矿床硫同位素组成及其地质意义. 地质与勘探, (7): 20-22

    [47]

    夏学惠, 赵晓. 1990. 内蒙东升庙多金属硫铁矿床碎屑型矿石的成因及其研究意义. 地质与勘探, 26(7): 30-33, 41

    [48]

    夏学惠. 1992a. 内蒙狼山成矿带东升庙多金属硫铁矿床成矿特征及成因探讨. 矿床地质, 11(4): 374-383

    [49]

    夏学惠. 1992b. 东升庙多金属硫铁矿床闪锌矿特征及形成条件. 岩石矿物学杂志, 11(4): 375-383

    [50]

    修世荫. 1987. 炭窑口-东升庙多金属硫铁矿床成因探讨. 化工地质, (2): 1-12

    [51]

    翟明国, 卞爱国. 2000. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解. 中国科学(D辑), 30(增刊): 129-137

    [52]

    张志斌, 李建华, 黄超义, 刘虹, 赵岩辉. 2010. 东升庙矿床成因和找矿研究. 吉林大学学报(地球科学版), 40(4): 791-800

  • 加载中
计量
  • 文章访问数:  8979
  • PDF下载数:  5075
  • 施引文献:  0
出版历程
收稿日期:  2015-06-01
修回日期:  2015-09-08
刊出日期:  2015-12-31

目录