胶北地块变质基底超镁铁岩的矿物岩石地球化学特征

孔凡梅, 刘云, 李旭平, 郭敬辉, 赵国春. 胶北地块变质基底超镁铁岩的矿物岩石地球化学特征[J]. 岩石学报, 2015, 31(6): 1549-1563.
引用本文: 孔凡梅, 刘云, 李旭平, 郭敬辉, 赵国春. 胶北地块变质基底超镁铁岩的矿物岩石地球化学特征[J]. 岩石学报, 2015, 31(6): 1549-1563.
KONG FanMei, LIU Yun, LI XuPing, GUO JingHui, ZHAO GuoChun. Mineralogical and Petrogeochemical characteristics of ultramafic rocks from the metamorphic basement of the Jiaobei terrane[J]. Acta Petrologica Sinica, 2015, 31(6): 1549-1563.
Citation: KONG FanMei, LIU Yun, LI XuPing, GUO JingHui, ZHAO GuoChun. Mineralogical and Petrogeochemical characteristics of ultramafic rocks from the metamorphic basement of the Jiaobei terrane[J]. Acta Petrologica Sinica, 2015, 31(6): 1549-1563.

胶北地块变质基底超镁铁岩的矿物岩石地球化学特征

  • 基金项目:

    本文受国家基础研究发展计划(973项目)(2012CB416606)和国家自然科学基金项目(41272072)联合资助.

详细信息

Mineralogical and Petrogeochemical characteristics of ultramafic rocks from the metamorphic basement of the Jiaobei terrane

More Information
  • 胶北地块变质基底的蛇纹岩、蛇纹岩化尖晶石方辉橄榄岩、尖晶石橄榄斜方辉石岩、角闪石岩自形成以后,经历了早期的高角闪岩相和晚期绿片岩相的变质作用, 因而记录了三个阶段的矿物组合:早期的Opx1+Ol1+Spl1;中期的Opx2+Ol2+Spl2+Amp2和晚期的Amp3+Srp3+Mag3+Cal组合。超镁铁岩中普遍存在的角闪石,具有粒状变晶结构特征,形成于角闪岩相和绿片岩相的变质作用过程。蛇纹石没有受到应力作用的迹象,显示其形成于晚期非挤压环境的交代变质作用过程。尖晶石橄榄岩中斜方辉石的矿物化学以及尖晶石橄榄岩的高MgO含量都表现出克拉通橄榄岩的性质。角闪石岩的稀土元素配分图解的(La/Sm)N的比值1.11~1.41,(La/Yb)N的比值0.91~1.61,超镁铁岩多元素图解显示无高场强元素异常,都表明胶北地块变质基底的超镁铁岩形成的构造背景或是裂谷环境。尖晶石矿物的Mg# 0.72~0.79、Cr# 0.06~0.12表明交代变质成因。方辉橄榄岩橄榄石的Fo值88.42~90.50、超镁铁质岩石全岩主元素的分散性、较大的∑REE含量变化以及Si/Al-(Mg+Fe)/Al和Mg/Ti-Fe/Ti主元素的比值图解所表现出的超镁铁岩与角闪石岩具有成因联系等,都表明胶北变质基底的超镁铁岩可能是具有堆晶成因的一套幔源岩浆系列。高MgO含量(16%~42%)表现出前寒武纪变质基底的橄榄岩地幔性质;高水含量反映出漫长地质历史时期变质作用过程。
  • 加载中
  • [1]

    Bai J, Huang XG, Wang HC, Guo JJ, Xiu QY, Dai FY, Xu WY and Wang FG. 1996. The Precambrian Crustal Evolution of China. 2nd Edition. Beijing: Geological Publishing House (in Chinese)

    [2]

    Bonatti E and Michael PJ. 1989. Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth and Planetary Science Letters, 91(3-4): 297-311

    [3]

    Coleman RG. 1977. Ophiolites-Ancient Oceanic Lithosphere. New York: Springer Verlag, 31-34

    [4]

    Choi SH, Shervais JW and Mukasa SB. 2008. Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contributions to Mineralogy and Petrology, 156(5): 551-576

    [5]

    Della-Pasqua FN, Kamenetsky VS, Gasparon M, Crawford AJ and Varne R. 1995. Al-spinels in primitive arc volcanics. Mineralogy and Petrology, 53(1-3): 1-26

    [6]

    Deschamps F, Godard M, Guillot S and Hattori K. 2013. Geochemistry of subduction zone serpentinites: A review. Lithos, 178: 96-127

    [7]

    Dick HJB and Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Contribution to Mineralogy and Petrology, 86(1): 54-76

    [8]

    Dong CY, Wang SJ, Liu DY, Wang JG, Xie HQ, Wang W, Song ZY and Wan YS. 2010. Late Palaeoproterozoic crustal evolution of the North China Craton and formation time of the Jingshan Group: Constraints from SHRIMP U-Pb zircon dating of meta-intermediate-basic intrusive rocks in eastern Shandong Province. Acta Petrologica Sinica, 27(6): 1699-1706 (in Chinese with English abstract)

    [9]

    Duchesne JC and Charlier B. 2005. Geochemistry of cumulates from the Bjerkreim-Sokndal layered intrusion (S. Norway). Part I: Constraints from major elements on the mechanism of cumulate formation and on the jotunite liquid line of descent. Lithos, 83(3-4): 229-254

    [10]

    Ernst WG. 1989. Petrochemical comparison of 3.5Ga old mafic amphibolite inclusions from eastern Hebei Province with Archean mafic-ultramafic supracrustals of uncertain antiquity, southern Jilin and eastern Liaoning provinces, China. Chinese Journal of Geochemistry, 8(2): 97-111

    [11]

    Evans BW and Frost BR. 1975. Chrome-spinel in progressive metamorphism: A preliminary analysis. Geochimica et Cosmochimica Acta, 39(6-7): 959-972

    [12]

    Fan QC, Liu RX and Ma BL. 1992. Upper-mantle amphiboles from china and their genetic implications. Acta Mineralogica Sinica, 12(4): 352-358 (in Chinese with English abstract)

    [13]

    Francis D. 2003. Cratonic mantle roots, remnants of a more chondritic Archean mantle? Lithos, 71(2-4): 135-152

    [14]

    Franz L and Wirth R. 2000. Spinel inclusions in olivine of peridotite xenoliths from TUBAF seamount (Bismarck Archipelago/Papua New Guinea): Evidence for the thermal and tectonic evolution of the oceanic lithosphere. Contribution to Mineralogy and Petrology, 140(3): 283-295

    [15]

    Griffin WL, O'Reilly SY and Ryan CG. 1999. The composition and origin of sub-continental lithospheric mantle. In: Fei YW, Bertka CM and Mysen BO (eds.). Mantle Petrology: Field Observations and High-Pressure Experimentation. A Tribute to France R. (Joe) Boyd. The Geochemical Society, Special Publication, Houston, TX, 13-46

    [16]

    Haggerty SE. 1989. Upper mantle opaque mineral stratigraphy and the genesis of metasomites and alkali-rich melts. In: Ross J (ed.). Kimberlites and Related Rocks, Vol. 2. Geological Society of Australia Special Publication, 14: 687-699

    [17]

    Herzberg CT. 1993. Lithosphere peridotites of the Kaapvaal craton. Earth and Planetary Science Letters, 120(1-2): 13-29

    [18]

    Jahn BM, Liu DY, Wan YS, Song B and Wu JS. 2008. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. American Journal of Science, 308(2): 232-269

    [19]

    Jin SQ. 1991. Composition characteristics of calc-amphiboles in different regional metamorphic facies. Chinese Science Bulletin, 36(11): 851-854 (in Chinese)

    [20]

    le Roex AP, Frey FA and Richardson SH. 1996. Petrogenesis of lavas from the AMAR Valley and Narrowgate region of the FAMOUS Valley, 36°~37°N on the Mid-Atlantic Ridge. Contributions to Mineralogy and Petrology, 124(2): 167-184

    [21]

    Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW and Guo YZ. 1997. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35: 219-246

    [22]

    Li XP, Yang JS, Robinson P, Xu ZQ and Li TF. 2011. Petrology and geochemistry of UHP-metamorphosed ultramafic-mafic rocks from the main hole of the Chinese Continental Scientific Drilling Project (CCSD-MH), China: Fluid/melt-rock interaction mafic-ultramafic complex from CCSD-MH. Journal of Asian Earth Sciences, 42(4): 661-683

    [23]

    Li XP, Guo JH, Zhao GC, Li HK and Song ZJ. 2011. Formation of the Paleoproterozoic calc-silicate and high-pressure mafic granulite in the Jiaobei terrane, eastern Shandong, China. Acta Petrologica Sinica, 27(4): 961-968 (in Chinese with English abstract)

    [24]

    Li XP, Liu Y, Guo JH, Li HK and Zhao GC. 2013. Petrogeochemical characteristics of the Paleoproterozoic high-pressure mafic granulite and calc-silicate from the Nanshankou of the Jiaobei terrane. Acta Petrologica Sinica, 29(7): 2340-2352 (in Chinese with English abstract)

    [25]

    Liu JH, Liu FL, Liu PH and Wang F. 2011. Early Precambrian multi-stage magmatic and metamorphic events in Jiaobei terrane, and their geological implications: Evidences from the LA-ICP-MS zircon U-Pb chronology analyses. Acta Petrologica Sinica, 27(1): 135-143 (in Chinese with English abstract)

    [26]

    Liu JH, Liu FL, Ding ZJ, Liu PH, Wang F and You JJ. 2012. The zircon Hf isotope characteristics of ~2.5Ga magmatic event, and implication for the crustal evolution in the Jiaobei terrane, China. Acta Petrologica Sinica, 28(9): 2697-2704 (in Chinese with English abstract)

    [27]

    Liu JH, Liu FL, Ding ZJ, Liu CH, Yang H, Liu PH, Wang F and Meng E. 2013a. The growth, reworking and metamorphism of early Precambrian crust in the Jiaobei terrane, the North China Craton: Constraints from U-Th-Pb and Lu-Hf isotopic systematics, and REE concentrations of zircon from Archean granitoid gneisses. Precambrian Research, 224: 287-303

    [28]

    Liu PH, Liu FL, Wang F and Liu JH. 2010. Genetic mineralogy and metamorphic evolution of mafic high-pressure (HP) granulites from the Shandong Peninsula, China. Acta Petrologica Sinica, 26(7): 2039-2056 (in Chinese with English abstract)

    [29]

    Liu PH. 2011. Petrology and metamorphic evolution of the Early Precambrian metamorphic basement of Shandong Peninsula. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences (in Chinese with English summary)

    [30]

    Liu PH, Liu FL, Wang F and Liu JH. 2011. U-Pb dating of zircons from Al-rich paragneisses of Jingshan Group in Shandong Peninsula and its geological significance. Acta Petrologica et Mineralogica, 30(5): 829-843 (in Chinese with English abstract)

    [31]

    Liu PH, Liu FL, Yang H, Wang F and Liu JH. 2012. Protolith ages and timing of peak and retrograde metamorphism of the high-pressure granulites in the e Shandong Peninsula, eastern China. Geoscience Frontiers, 3(6): 923-943

    [32]

    Liu PH, Liu FL, Wang F, Liu JH, Yang H and Shi JR. 2012. Geochemical characteristics and genesis of the high-pressure mafic granulite in the Jiaobei high-grade metamorphic basement, eastern Shandong, China. Acta Petrologica Sinica, 28(9): 2705-2720 (in Chinese with English abstract)

    [33]

    Liu PH, Liu FL, Wang F, Liu JH, Yang H, Cai J and Shi JR. 2013b. Petrogenesis, P-T-t path, and tectonic significance of high-pressure mafic granulites from the Jiaobei terrane, North China Craton. Precambrian Research, 233: 237-258

    [34]

    Liu PH, Liu FL, Wang F, Liu JH and Cai J. 2013. Petrological and geochronological study of the ~2.1Ga meta-gabbro from the Jiaobei terrane, the southern segment of the Jiao-Liao-Ji Belt in the North China Craton. Acta Petrologica Sinica, 29(7): 2371-2390 (in Chinese with English abstract)

    [35]

    Liu PH, Liu FL, Wang F, Liu JH and Cai J. 2014. Preliminary study of petrology and U-Pb zircon dating of the Nanshankou garnet-bearing pyroxenolites from the Jiaobei terrane, the southeastern segment of the Jiao-Liao-Ji Belt in the North China Cration. Acta Petrologica Sinica, 30(10): 2951-2972 (in Chinese with English abstract)

    [36]

    Liu WJ, Zhai MG and Li YG. 1998. Metamorphism of the high-pressure basic granulite in Laixi, eastern Shandong, China. Acta Petrologica Sinica, 14(4): 449-459 (in Chinese with English abstract)

    [37]

    McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253

    [38]

    Paulick H, Bach W, Godard M, De Hoog JCM, Suhr G and Harvey J. 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20'N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 234(3-4): 179-210

    [39]

    Pearce JA, Barker PF, Edwards SJ, Parkinson IJ and Leat PT. 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139(1): 36-53

    [40]

    Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48

    [41]

    Pearce TH. 1968. A contribution to the theory of variation diagrams. Contributions to Mineralogy and Petrology, 19(2): 142-157

    [42]

    Qi L and Grégoire DC. 2000. Determination of trace elements in twenty six Chinese geochemistry reference materials by inductivity coupled plasma-mass spectrometry. Geostandards Newsletter, 24(1): 51-63

    [43]

    Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: Routledge, 104-119

    [44]

    Rudnick RL, Gao S, Ling WL, Liu YS and McDonough WF. 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos, 77(1-4): 609-637

    [45]

    Russell JK and Nicholls J. 1987. Early crystallization history of alkali olivine basalts, Diamond Craters, Oregon. Geochimica et Cosmochimica Acta, 51(1): 143-154

    [46]

    Russell JK and Nicholls J. 1988. Analysis of petrologic hypotheses with Pearce element ratios. Contributions to Mineralogy and Petrology, 99(1): 25-35

    [47]

    Sarıfakıoğlua E, Özen H, Çolakoğlub A and Sayak H. 2010. Petrology, mineral chemistry, and tectonomagmatic evolution of Late Cretaceous suprasubduction-zone ophiolites in the ìzmir-Ankara-Erzincan suture zone, Turkey. International Geology Review, 52: 187-222

    [48]

    Shan HX, Zhai MG, Wang F and Zhang HF. 2013. Geochemical characteristics and petrogenesis of the two types of Neoarchean gneisses from the Jiaobei terrane. Acta Petrologica Sinica, 29(7): 2295-2312 (in Chinese with English abstract)

    [49]

    Song MC and Li HK. 2001. Study on regional geological structural evolution in Shandong Province. Shandong Geology, 17(6): 12-17 (in Chinese with English abstract)

    [50]

    Song MC. 2008. Tectonic framework and tectonic evolution of the Shandong Province. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences (in Chinese with English summary)

    [51]

    Tam PY, Zhao GC, Liu FL, Zhou XW, Sun M and Li SZ. 2011. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: New SHRIMP U-Pb zircon dating of granulites, gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Research, 19(1): 150-162

    [52]

    Tam PY, Zhao GC, Sun M, Li SZ, Wu ML and Yin CQ. 2012a. Petrology and metamorphic PT path of high-pressure mafic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Lithos, 155: 94-109

    [53]

    Tam PY, Zhao GC, Sun M, Li SZ, Yoshiyuki I, Ma GSK, Yin CQ, He YH and Wu ML. 2012b. Metamorphic P-T path and tectonic implications of medium-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 220-221: 177-191

    [54]

    Tam PY, Zhao GC, Zhou XW, Sun M, Guo JH, Li SZ, Yin CQ, Wu ML and He YH. 2012c. Metamorphic P-T path and implications of high-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Gondwana Research, 22(1): 104-117

    [55]

    Tang J, Zheng YF, Wu YB, Gong B and Liu XM. 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei Terrane: Constraints on its tectonic affinity in the Sulu orogen. Precambrian Research, 152(1-2): 48-82

    [56]

    Wang F, Liu FL, Liu PH and Liu JH. 2010. Metamorphic evolution of Early Precambrian khondalite series in North Shandong Province. Acta Petrologica Sincia, 26(7): 2057-2072 (in Chinese with English abstract)

    [57]

    Wang SJ, Wang LM, Wan YS, Zhang CJ, Song ZY and Wang JG. 2009. Study on intrusive rocks forming period and stages division in Ludong area. Shandong Land and Resources, 25(12): 88-20 (in Chinese with English abstract)

    [58]

    Whitney DL and Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185-187

    [59]

    Xie HQ, Wan YS, Wang SJ, Liu DY, Xie SW, Liu SJ, Dong CY and Ma MZ. 2013. Geology and zircon dating of trondhjemitic gneiss and amphibolite in the Tangezhuang area, eastern Shandong. Acta Petrologica Sinica, 29(2): 619-629 (in Chinese with English abstract)

    [60]

    Xu Y, Feng Y and Li RH. 2011. Main progresses in the study of Precambrian basement of Jiaobei terrane, eastern China. Geoscience, 25(5): 965-974 (in Chinese with English abstract)

    [61]

    Zhai MG, Bian AG and Zhao TP. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during late Palaeoproterozoic and Meso-Proterozoic. Sciences in China (Series D), 43(Suppl.1): 219-232

    [62]

    Zhai MG and Liu WJ. 2003. Palaeoproterozoic tectonic history of the North China craton: A review. Precambrian Research, 122(1-4): 183-199

    [63]

    Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6-25

    [64]

    Zhao GC, Wilde SA, Cawood PA and Lu LZ. 1999. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 310(1-4): 37-53

    [65]

    Zhao GC, Wilde SA, Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73

    [66]

    Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202

    [67]

    Zhao GC and Guo JH. 2012. Precambrian geology of China: Preface. Precambrian Research, 222-223: 1-12

    [68]

    Zhao GC and Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Research, 23(4): 1207-1240

    [69]

    Zhou XW, Wei CJ, Geng YS and Zhang LF. 2004. Discovery and implications of high pressure pelitic granulite from the north Jiaodong, China. Chinese Science Bulletin, 49(18): 1942-1948

    [70]

    Zhou XW, Zhao GC, Wei CJ, Geng YS and Sun M. 2008. EPMA U-Th-Pb monazite and SHRIMP U-Pb zircon geochronology of high pressure politic granulites in the Jiaobei massif of the North China Craton. American Journal of Science, 308(3): 328-350

    [71]

    白瑾, 黄学光, 王惠初, 郭进京, 修群业, 戴凤岩, 徐文燕, 王官福. 1996. 中国前寒武纪地壳演化.第二版. 北京: 地质出版社

    [72]

    董春艳, 王世进, 刘敦一, 王金光, 颉颃强, 王伟, 宋志勇, 万渝生. 2010. 华北克拉通古元古代晚期地壳演化和荆山群形成时代制约——胶东地区变质中-基性侵入岩锆石SHRIMP U-Pb定年. 岩石学报, 27(6): 1699-1706

    [73]

    樊祺诚, 刘若新, 马宝林. 1992. 中国上地幔角闪石及其成因意义. 矿物学报, 12(4): 352-358

    [74]

    靳是琴. 1991. 不同区域变质相中钙质角闪石的成分特征. 科学通报, 36(11): 851-854

    [75]

    李旭平, 郭敬辉, 赵国春, 李洪奎, 宋召军. 2011. 胶北地块早元古代钙硅酸盐岩与高压基性麻粒岩成因及地质意义. 岩石学报, 27(4): 961-968

    [76]

    李旭平, 刘云, 郭敬辉, 李洪奎, 赵国春. 2013. 胶北南山口古元古代高压基性麻粒岩和钙硅酸盐岩的岩石地球化学特征探讨. 岩石学报, 29 (7): 2340-2352

    [77]

    刘建辉, 刘福来, 刘平华, 王舫. 2011. 胶北地体早前寒武多期岩浆、变质事件的LA-ICP-MS锆石U-Pb年代学证据及其地质意义. 岩石学报, 27(1): 135-143

    [78]

    刘建辉,刘福来,丁正江,刘平华,王舫,游君君. 2012.胶北~2.5Ga岩浆事件的锆石Hf同位素特征及其对地壳演化的指示意义.岩石学报, 28(9): 2697-2704

    [79]

    刘平华, 刘福来, 王舫, 刘建辉. 2010. 山东半岛基性高压麻粒岩的成因矿物学及变质演化. 岩石学报, 26(7): 2039-2056

    [80]

    刘平华. 2011. 山东半岛早前寒武纪变质基底的岩石学及其变质演化. 博士学位论文.北京: 中国地质科学院

    [81]

    刘平华, 刘福来, 王舫, 刘建辉. 2011. 山东半岛荆山群富铝片麻岩锆石U-Pb定年及其地质意义. 岩石矿物学杂志, 30(5): 829-843

    [82]

    刘平华, 刘福来, 王舫, 刘建辉, 杨红, 施建荣. 2012. 胶北高级变质基底中高压基性麻粒岩的地球化学特征及其成因. 岩石学报, 28(9): 2705-2720

    [83]

    刘平华, 刘福来, 王舫, 蔡佳. 2013. 胶北西留古元古代~2.1Ga变辉长岩岩石学与年代学初步研究. 岩石学报, 29(7): 2371-2390

    [84]

    刘平华, 刘福来, 王舫, 刘建辉, 蔡佳. 2014. 胶北南山口含榴辉石岩岩石学与锆石U-Pb定年的初步研究. 岩石学报, 30(10): 2951-2972

    [85]

    刘文军, 翟明国, 李永刚. 1998. 胶东莱西地区基性高压麻粒岩的变质作用. 岩石学报, 14(4): 449-459

    [86]

    单厚香, 翟明国, 王芳, 张华锋. 2013. 胶北新太古代两类片麻岩的岩石地球化学特征和成因指示. 岩石学报, 29(7): 2295-2312

    [87]

    宋明春, 李洪奎. 2001. 山东省区域地质构造演化探讨. 山东地质, 17(6): 12-17

    [88]

    宋明春. 2008. 山东省大地构造格局和地质构造演化. 博士学位论文. 北京: 中国地质科研院

    [89]

    王舫, 刘福来, 刘平华, 刘建辉. 2010. 胶北地区早前寒武纪孔兹岩系的变质演化. 岩石学报, 26(7): 2057-2072

    [90]

    王世进, 王来明, 万渝生, 张成基, 宋至勇, 王金光. 2009. 鲁东地区侵入岩形成时代和期次划分——锆石SHRIMP U-Pb年龄的证据. 山东国土资源, 25(12): 88-20

    [91]

    颉颃强, 万渝生, 王世进, 刘敦一, 谢士稳, 刘守偈, 董春艳, 马铭株. 2013. 胶东谭格庄地区奥长花岗质片麻岩和斜长角闪岩的野外地质和锆石SHRIMP定年. 岩石学报, 29(2): 619-629

    [92]

    徐扬, 冯岩, 李日辉. 2011. 胶北地块前寒武纪基底研究新进展. 现代地质, 25(5): 965-974

    [93]

    周喜文, 魏春景, 耿元生, 张立飞. 2004. 胶北栖霞地区泥质高压麻粒岩的发现及其地质意义. 科学通报, 49(14): 1424-1430

  • 加载中
计量
  • 文章访问数:  6490
  • PDF下载数:  5281
  • 施引文献:  0
出版历程
收稿日期:  2014-10-11
修回日期:  2015-04-03
刊出日期:  2015-06-30

目录