Advanced Search
Article Contents

Trends in Temperature Extremes in Association with Weather-Intraseasonal Fluctuations in Eastern China


doi: 10.1007/s00376-010-9242-9

  • Trends in the frequencies of four temperature extremes (the occurrence of warm days, cold days, warm nights and cold nights) with respect to a modulated annual cycle (MAC), and those associated exclusively with weather-intraseasonal fluctuations (WIF) in eastern China were investigated based on an updated homogenized daily maximum and minimum temperature dataset for 1960--2008. The Ensemble Empirical Mode Decomposition (EEMD) method was used to isolate the WIF, MAC, and longer-term components from the temperature series. The annual, winter and summer occurrences of warm (cold) nights were found to have increased (decreased) significantly almost everywhere, while those of warm (cold) days have increased (decreased) in northern China (north of 40o). However, the four temperature extremes associated exclusively with WIF for winter have decreased almost everywhere, while those for summer have decreased in the north but increased in the south. These characteristics agree with changes in the amplitude of WIF. In particular, winter WIF of maximum temperature tended to weaken almost everywhere, especially in eastern coastal areas (by 10%--20%); summer WIF tended to intensify in southern China by 10%--20%. It is notable that in northern China, the occurrence of warm days has increased, even where that associated with WIF has decreased significantly. This suggests that the recent increasing frequency of warm extremes is due to a considerable rise in the mean temperature level, which surpasses the effect of the weakening weather fluctuations in northern China.
  • [1] QIAN Cheng, FU Congbin, Zhaohua WU, YAN Zhongwei, 2011: The Role of Changes in the Annual Cycle in Earlier Onset of Climatic Spring in Northern China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 284-296.  doi: 10.1007/s00376-010-9221-1
    [2] LIU Chengyan* and WANG Zhaomin, , 2014: On the Response of the Global Subduction Rate to Global Warming in Coupled Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 211-218.  doi: 10.1007/s00376-013-2323-9
    [3] FANG Changfang*, WU Lixin, and ZHANG Xiang, 2014: The Impact of Global Warming on the Pacific Decadal Oscillation and the Possible Mechanism, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 118-130.  doi: 10.1007/s00376-013-2260-7
    [4] Wen WU, Fei JI, Shujuan HU, Yongli HE, 2024: Asymmetric Drying and Wetting Trends in Eastern and Western China, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 221-232.  doi: 10.1007/s00376-022-2216-x
    [5] QIAN Cheng, Zhaohua WU, FU Congbin, ZHOU Tianjun, 2010: On Multi-Timescale Variability of Temperature in China in Modulated Annual Cycle Reference Frame, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1169-1182.  doi: 10.1007/s00376-009-9121-4
    [6] YANG Jing, BAO Qing, WANG Xiaocong, 2013: Intensified Eastward and Northward Propagation of Tropical Intraseasonal Oscillation over the Equatorial Indian Ocean in a Global Warming Scenario, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 167-174.  doi: 10.1007/s00376-012-1260-3
    [7] Yawen DUAN, Peili WU, Xiaolong CHEN, Zhuguo MA, 2018: Assessing Global Warming Induced Changes in Summer Rainfall Variability over Eastern China Using the Latest Hadley Centre Climate Model HadGEM3-GC2, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1077-1093.  doi: 10.1007/s00376-018-7264-x
    [8] Tianjun ZHOU, Wenxia ZHANG, Lixia ZHANG, Robin CLARK, Cheng QIAN, Qinghong ZHANG, Hui QIU, Jie JIANG, Xing ZHANG, 2022: 2021: A Year of Unprecedented Climate Extremes in Eastern Asia, North America, and Europe, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1598-1607.  doi: 10.1007/s00376-022-2063-9
    [9] Hengyi WENG, 2012: Impacts of Multi-Scale Solar Activity on Climate. Part I: Atmospheric Circulation Patterns and Climate Extremes, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 867-886.  doi: 10.1007/s00376-012-1238-1
    [10] Fu Congbin, Xie Li, 1998: Global Oceanic Climate Anomalies in 1980’s, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 167-178.  doi: 10.1007/s00376-998-0037-1
    [11] Huanhuan ZHU, Zhihong JIANG, Juan LI, Wei LI, Cenxiao SUN, Laurent LI, 2020: Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1119-1132.  doi: 10.1007/s00376-020-9289-1
    [12] Zhenchen LIU, Wen Zhou, Xin Wang, 2024: Extreme Meteorological Drought Events over China (1951—2022): migration pattern, diversity of temperature extremes, and decadal variations, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-4004-2
    [13] YAN Zhongwei, Phil D. JONES, 2008: Detecting Inhomogeneity in Daily Climate Series Using Wavelet Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 157-163.  doi: 10.1007/s00376-008-0157-7
    [14] Ran LIU, Changlin CHEN, Guihua WANG, 2016: Change of Tropical Cyclone Heat Potential in Response to Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 504-510.  doi: 10.1007/s00376-015-5112-9
    [15] Lijing CHENG, John ABRAHAM, Kevin E. TRENBERTH, Tim BOYER, Michael E. MANN, Jiang ZHU, Fan WANG, Fujiang YU, Ricardo LOCARNINI, John FASULLO, Fei ZHENG, Yuanlong LI, Bin ZHANG, Liying WAN, Xingrong CHEN, Dakui WANG, Licheng FENG, Xiangzhou SONG, Yulong LIU, Franco RESEGHETTI, Simona SIMONCELLI, Viktor GOURETSKI, Gengxin CHEN, Alexey MISHONOV, Jim REAGAN, Karina VON SCHUCKMANN, Yuying PAN, Zhetao TAN, Yujing ZHU, Wangxu WEI, Guancheng LI, Qiuping REN, Lijuan CAO, Yayang LU, 2024: New Record Ocean Temperatures and Related Climate Indicators in 2023, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 1068-1082.  doi: 10.1007/s00376-024-3378-5
    [16] XIAO Cunde, QIN Dahe, YAO Tandong, DING Yongjian, LIU Shiyin, ZHAO Lin, LIU Yujie, 2008: Progress on Observation of Cryospheric Components and Climate-Related Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 164-180.  doi: 10.1007/s00376-008-0164-8
    [17] Xiaofei GAO, Jiawen ZHU, Xiaodong ZENG, Minghua ZHANG, Yongjiu DAI, Duoying JI, He ZHANG, 2022: Changes in Global Vegetation Distribution and Carbon Fluxes in Response to Global Warming: Simulated Results from IAP-DGVM in CAS-ESM2, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1285-1298.  doi: 10.1007/s00376-021-1138-3
    [18] WEI Xiaolin, LIU Qian, Ka Se LAM, WANG Tijian, 2012: Impact of Precursor Levels and Global Warming on Peak Ozone Concentration in the Pearl River Delta Region of China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 635-645.  doi: 10.1007/s00376-011-1167-4
    [19] Yiyong LUO, Jian LU, Fukai LIU, Xiuquan WAN, 2016: The Positive Indian Ocean Dipole-like Response in the Tropical Indian Ocean to Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 476-488.  doi: 10.1007/s00376-015-5027-5
    [20] Ruosi ZHANG, Shang-Ping XIE, Lixiao XU, Qinyu LIU, 2016: Changes in Mixed Layer Depth and Spring Bloom in the Kuroshio Extension under Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 452-461.  doi: 10.1007/s00376-015-5113-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2011
Manuscript revised: 10 March 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Trends in Temperature Extremes in Association with Weather-Intraseasonal Fluctuations in Eastern China

  • 1. Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Department of Earth, Ocean and Atmospheric Science & Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida, USA,Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210093,Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: Trends in the frequencies of four temperature extremes (the occurrence of warm days, cold days, warm nights and cold nights) with respect to a modulated annual cycle (MAC), and those associated exclusively with weather-intraseasonal fluctuations (WIF) in eastern China were investigated based on an updated homogenized daily maximum and minimum temperature dataset for 1960--2008. The Ensemble Empirical Mode Decomposition (EEMD) method was used to isolate the WIF, MAC, and longer-term components from the temperature series. The annual, winter and summer occurrences of warm (cold) nights were found to have increased (decreased) significantly almost everywhere, while those of warm (cold) days have increased (decreased) in northern China (north of 40o). However, the four temperature extremes associated exclusively with WIF for winter have decreased almost everywhere, while those for summer have decreased in the north but increased in the south. These characteristics agree with changes in the amplitude of WIF. In particular, winter WIF of maximum temperature tended to weaken almost everywhere, especially in eastern coastal areas (by 10%--20%); summer WIF tended to intensify in southern China by 10%--20%. It is notable that in northern China, the occurrence of warm days has increased, even where that associated with WIF has decreased significantly. This suggests that the recent increasing frequency of warm extremes is due to a considerable rise in the mean temperature level, which surpasses the effect of the weakening weather fluctuations in northern China.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return