江西九瑞矿集区成矿与未成矿中酸性侵入岩年代学、岩石化学、矿物化学特征的异同及地质意义

徐耀明, 蒋少涌, 朱志勇, 周巍, 孔凡斌, 孙明志, 熊永根. 江西九瑞矿集区成矿与未成矿中酸性侵入岩年代学、岩石化学、矿物化学特征的异同及地质意义[J]. 岩石学报, 2013, 29(12): 4291-4310.
引用本文: 徐耀明, 蒋少涌, 朱志勇, 周巍, 孔凡斌, 孙明志, 熊永根. 江西九瑞矿集区成矿与未成矿中酸性侵入岩年代学、岩石化学、矿物化学特征的异同及地质意义[J]. 岩石学报, 2013, 29(12): 4291-4310.
XU YaoMing, JIANG ShaoYong, ZHU ZhiYong, ZHOU Wei, KONG FanBin, SUN MingZhi, XIONG YongGen. Geochronology, geochemistry and mineralogy of ore-bearing and ore-barren intermediate-acid intrusive rocks from the Jiurui ore district, Jiangxi Province and their geological implications[J]. Acta Petrologica Sinica, 2013, 29(12): 4291-4310.
Citation: XU YaoMing, JIANG ShaoYong, ZHU ZhiYong, ZHOU Wei, KONG FanBin, SUN MingZhi, XIONG YongGen. Geochronology, geochemistry and mineralogy of ore-bearing and ore-barren intermediate-acid intrusive rocks from the Jiurui ore district, Jiangxi Province and their geological implications[J]. Acta Petrologica Sinica, 2013, 29(12): 4291-4310.

江西九瑞矿集区成矿与未成矿中酸性侵入岩年代学、岩石化学、矿物化学特征的异同及地质意义

  • 基金项目:

    本文受科技部973项目(2012CB416706)、“十二五”国家科技支撑计划(2011BAB04B03)和国家自然科学基金项目(41072055)联合资助

详细信息

Geochronology, geochemistry and mineralogy of ore-bearing and ore-barren intermediate-acid intrusive rocks from the Jiurui ore district, Jiangxi Province and their geological implications

More Information
  • 江西九瑞矿集区主要发育有斑岩型、矽卡岩型及块状硫化物型三种类型的铜多金属矿床,其中斑岩型与矽卡岩型为典型的岩浆热液矿床,块状硫化物型矿床产在五通组砂岩与黄龙组白云岩界面之中,但多数也均位于侵入体附近,通常认为岩浆热液对层状黄铁矿体的叠加作用对其成矿起了重要作用。区内同时发育有大量与成矿岩体岩性相似的未成矿侵入岩,长期以来,一直未能找出成矿侵入岩的判别标志和侵入岩成矿与否的原因。本文对区内岩性为花岗闪长斑岩、石英闪长玢岩的成矿与未成矿侵入岩进行了锆石U-Pb定年、岩石主量元素分析以及造岩矿物电子探针测试工作,结果显示,九瑞地区岩浆活动的时代相对集中,成矿侵入岩的年龄分布于138.2±1.8Ma至148.0±1.0Ma之间,未成矿侵入岩的年龄分布于139.0±1.3Ma至149.6±3.0Ma之间,成矿与未成矿侵入岩的侵位时代基本相同,年龄在误差范围内一致。二者的SiO2以及其它9种主量元素含量的变化范围都非常接近,或有很大重叠,表明成矿与未成矿侵入岩的主要岩石化学成分基本相同。通过造岩矿物成份计算了岩浆开始固结的温度和侵位压力,成矿侵入岩的平均温度769℃与未成矿侵入岩的平均温度723℃在误差范围内大体一致,但成矿侵入岩的温度变化范围(580~915℃)明显大于未成矿侵入岩(656~796℃)。侵位压力方面,未成矿侵入岩的压力值(平均5.7kbar)显著大于成矿侵入岩(平均1.4kbar)。因此我们认为,成矿与未成矿侵入岩相比,前者经历了更为显著的减压过程,该过程也许对形成岩浆热液矿床非常重要,可能是产生独立热液相的一个主要途径,并且能够在岩体内及围岩中造成大量裂隙,为热液循环提供通道。但是,数据同时显示,并非经历了显著减压过程的侵入岩都能够成矿,最终成矿与否是受到不同阶段多种因素联合控制的,因此显著减压并不是成矿的充要条件,而更可能是前提条件。由已获得的未成矿侵入岩数据来推测,在九瑞地区,侵位压力大于4kbar的中酸性侵入岩,成矿潜力可能较小。由黑云母成份估算的氧逸度显示,成矿侵入岩的氧逸度变化较大并且覆盖了未成矿侵入岩的氧逸度范围,但是未成矿侵入岩的氧逸度均没有超过HM(Fe3O4-Fe2O3)缓冲线,而成矿侵入岩中有一半左右的数据点高于该缓冲线,表明较高的氧逸度对成矿更为有利,在九瑞地区,氧逸度高于HM(Fe3O4-Fe2O3)缓冲线的侵入岩,其成矿潜力可能更大。
  • 加载中
  • [1]

    Anderson JL and Smith DR. 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80(5-6): 549-559

    [2]

    Anderson JL, Barth AP, Wooden JL and Mazdab F. 2008. Thermometers and thermobarometers in granitic systems. Reviews in Mineralogy and Geochemistry, 69(1): 121-142

    [3]

    Belousova EA, Griffin WL, O'Reilly SY and Fisher NI. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622

    [4]

    Blundy JD and Holland TJB. 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104(2): 208-224

    [5]

    Chang LH, Cao L and Gao FH. 2009. Igneous Rock Identification Handbook. Beijing: Geological Publishing House, 1-148 (in Chinese)

    [6]

    Chen ZH, Xing GF, Guo KY, Zeng Y, Kuang FX, He ZY, Ke X, Yu MG, Zhao XL and Zhang Y. 2011. Zircon U-Pb ages of ore-bearing granitic bodies in northern Jiujiang-Ruichang metallogenic district of the mineralization belt of the Middle-Lower Reaches of the Yangtze River, and its geological signifacance. Acta Geologica Sinica, 85(7): 1146-1158 (in Chinese with English abstract)

    [7]

    Cosca MA, Essene EJ and Bowman JR. 1991. Complete chemical analyses of metamorphic hornblendes: Implications for normalizations, calculated H2O activities, and thermobarometry. Contributions to Mineralogy and Petrology, 108(4): 472-484

    [8]

    Deer WA, Howie RA and Zussman J. 1992. An Introduction to the Rock-Forming Minerals. 2nd Edition. Harlow: Longman Group, 1-232

    [9]

    Ding X, Jiang SY, Zhao KD, Nakamura E, Kobayashi K, Ni P, Gu LX and Jiang YH. 2006. In-situ U-Pb SIMS dating and trace element (EMPA) composition of zircon from a granodiorite porphyry in the Wushan copper deposit, China. Mineralogy and Petrology, 86(1-2): 29-44

    [10]

    Dymek RF. 1983. Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. American Mineralogist, 68: 880-899

    [11]

    Foster MD. 1960. Interpretation of the composition of trioctahedral micas. U. S. Geological Survey Professional Paper 354-B, 11-48

    [12]

    Hammarstrom JM and Zen EA. 1986. Aluminum in hornblende: An empirical igneous geobarometer. American Mineralogist, 71(11-12): 1297-1313

    [13]

    Holland T and Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4): 433-447

    [14]

    Hollister LS, Grissom GC, Peters EK, Stowell HH and Sisson VB. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72(3-4): 231-239

    [15]

    Huang EB, Zhang NT and Luo ZS. 1990. The genesis of the Chengmenshan and Wushan copper deposits. Mineral Deposits, 9(4): 291-300, 308 (in Chinese with English abstract)

    [16]

    Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8: 523-548

    [17]

    Jiang SY, Li L, Zhu B, Ding X, Jiang YH, Gu LX and Ni P. 2008. Geochemical and Sr-Nd-Hf isotopic compositions of granodiorite from the Wushan copper deposit, Jiangxi Province and their implications for petrogenesis. Acta Petrologica Sinica, 24(8): 1679-1690 (in Chinese with English abstract)

    [18]

    Jiang SY, Sun Y, Sun MZ, Bian LZ, Xiong YG, Yang SY, Cao ZQ and Wu YM. 2010. Reiterative fault systems and superimposed mineralization in the Jiurui metallogenic cluster district, Middle and Lower Yangtze River mineralization belt, China. Acta Petrologica Sinica, 26(9): 2751-2767 (in Chinese with English abstract)

    [19]

    Jiang SY, Xu YM, Zhou W, Zhu ZY, Kong FB and Sun Y. 2012. Discovery of fault-grinding siliceous breccia rock in the Jiurui ore district, Jiangxi Province, and its formation mechanism and mineralization significance. Acta Petrologica Sinica, 28(10): 3076-3086 (in Chinese with English abstract)

    [20]

    Johnson MC and Rutherford MJ. 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley Caldera (California) volcanic-rocks. Geology, 17(9): 837-841

    [21]

    Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW and Guo YZ. 1997. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist, 82(9-10): 1019-1037

    [22]

    Lei M, Wu CL, Gao QM, Guo HP, Liu LG, Guo XY, Gao YH, Chen QL and Qin HP. 2010. Petrogenesis of intermediate-acid intrusive rocks and enclaves in Tongling area and the application of mineral thermobarometry. Acta Petrologica et Mineralogica, 29(3): 271-288 (in Chinese with English abstract)

    [23]

    Li L and Jiang SY. 2009. Petrogenesis and geochemistry of the Dengjiashan porphyritic granodiorite, Jiujiang-Ruichang metallogenie district of the Middle-Lower Reaches of the Yangtze River. Acta Petrologica Sinica, 25(11): 2877-2888 (in Chinese with English abstract)

    [24]

    Li XH, Li WX, Wang XC, Li QL, Liu Y, Tang GQ, Gao YY and Wu FY. 2010. SIMS U-Pb zircon geochronology of porphyry Cu-Au-(Mo) deposits in the Yangtze River Metallogenic Belt, eastern China: Magmatic response to Early Cretaceous lithospheric extension. Lithos, 119(3-4): 427-438

    [25]

    Liu X. 1990. The mechanism of structural control of ore formation and geochemical characteristics in the massive sulfide deposits of the Wushan copper ore field, Jiangxi. Acta Geologica Sinica, (1): 22-32 (in Chinese with English abstract)

    [26]

    Lou YE and Du YS. 2006. Characteristics and genesis of biotites from the mesozoic intrusive rocks in the Fanchang-Tongling area, Anhui Province. Acta Mineralogica Sinica, 26(2): 175-180 (in Chinese with English abstract)

    [27]

    Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643

    [28]

    Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224

    [29]

    Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81

    [30]

    Pirajno F. 2009. Hydrothermal Processes and Mineral Systems. Berlin: Springer, 1-1250

    [31]

    Robb LJ. 2005. Introduction to Ore-Forming Processes. Oxford: Blackwell Publishing, 1-373

    [32]

    Schmidt MW. 1992. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110(2-3): 304-310

    [33]

    Wones DR and Eugster HP. 1965. Stability of biotite: Experiment, theory, and application. American Mineralogist, 50: 1228-1272

    [34]

    Xu XS, Fan QC, OReilly SY, Jiang SY, Griffin WL, Wang RC and Qiu JS. 2004. U-Pb dating of zircons from quartz diorite and its enclaves at Tongguanshan in Anhui and its petrogenetic implication. Chinese Science Bulletin, 49(18): 1883-1891 (in Chinese)

    [35]

    Xu YM, Jiang SY, Zhu ZY, Zhou W, Kong FB and Sun MZ. 2012. Geochronology, geochemistry and mineralization of the quartz diorite-porphyrite and granodiorite porphyry in the Shanshangwan area of the Jiurui ore district, Jiangxi Privince. Acta Petrologica Sinica, 28(10): 3306-3324 (in Chinese with English abstract)

    [36]

    Yang SY, Jiang SY, Li L, Sun Y, Sun MZ, Bian LZ, Xiong YG and Cao ZQ. 2011. Late Mesozoic magmatism of the Jiurui mineralization district in the Middle-Lower Yangtze River Metallogenic Belt, eastern China: Precise U-Pb ages and geodynamic implications. Gondwana Research, 20(4): 831-843

    [37]

    Zhai YS, Yao SZ and Lin XD. 1992. The metallogenic features of Fe and Cu (Au) in the Middle and Lower Reaches of the Changjiang River. Beijing: Geological Publishing House, 1-235 (in Chinese)

    [38]

    Zhai YS, Yao SZ and Zhou ZG. 1999. Research on Orefield Tectonics of Copper and Gold Deposits in the Middle-lower Reaches of the Yangtze River. Wuhan: China University of Geosciences Press, 1-195 (in Chinese)

    [39]

    Zhang DH, Xu JH, Yu XQ, Li JK, Mao SD, Wang KQ and Li YQ. 2011. The diagenetic and metallogenic depth: Main constriants and the estimation methods. Geological Bulletin of China, 30(1): 112-125 (in Chinese with English abstract)

    [40]

    Zhao HJ, Mao JW, Xiang JF, Zhou ZH, Wei KT and Ke YF. 2010. Mineralogy and Sr-Nd-Pb isotopic compositions of quartz diorite in Tonglushan deposit, Hubei Province. Acta Petrologica Sinica, 26(3): 768-784 (in Chinese with English abstract)

    [41]

    Zhu B, Jiang SY, Ding X, Jiang YH, Ni P and Gu LX. 2008. Hydrothermal alteration and petrogenesis of granites in the Yongping copper deposit, Jiangxi Province: Constraints from mineral chemistry, element geochemistry, and Sr-Nd-Hf isotopes. Acta Petrologica Sinica, 24(8): 1900-1916 (in Chinese with English abstract)

    [42]

    附中文参考文献

    [43]

    常丽华, 曹林, 高福红. 2009. 火成岩鉴定手册. 北京: 地质出版社, 1-148

    [44]

    陈志洪, 邢光福, 郭坤一, 曾勇, 匡福祥, 贺振宇, 柯学, 余明刚, 赵希林, 张勇. 2011. 长江中下游成矿带九瑞矿集区(北部)含矿岩体的锆石U-Pb定年及其地质意义. 地质学报, 85(7): 1146-1158

    [45]

    黄恩邦, 张迺堂, 罗钊生. 1990. 城门山、武山铜矿床成因. 矿床地质, 291-300, 308蒋少涌, 李亮, 朱碧, 丁昕, 姜耀辉, 顾连兴, 倪培. 2008. 江西武山铜矿区花岗闪长斑岩的地球化学和Sr-Nd-Hf同位素组成及成因探讨. 岩石学报, 28(8): 1679-1690

    [46]

    蒋少涌, 孙岩, 孙明志, 边立曾, 熊永根, 杨水源, 曹钟清, 吴亚民. 2010. 长江中下游成矿带九瑞矿集区叠合断裂系统和叠加成矿作用. 岩石学报, 26(9): 2751-2767

    [47]

    蒋少涌, 徐耀明, 周巍, 朱志勇, 孔凡斌, 孙岩. 2012. 江西九瑞矿集区硅质断裂磨砾岩带的厘定及其成岩成矿意义. 岩石学报, 28(10): 3076-3086

    [48]

    雷敏, 吴才来, 高前明, 国和平, 刘良根, 郭祥炎, 郜源红, 陈其龙, 秦海鹏. 2010. 铜陵地区中酸性侵入岩及其包体的成因和矿物温压计的应用. 岩石矿物学杂志, 29(3): 271-288

    [49]

    李亮, 蒋少涌. 2009. 长江中下游地区九瑞矿集区邓家山花岗闪长斑岩的地球化学与成因研究. 岩石学报, 25(11): 2877-2888

    [50]

    刘迅. 1990. 江西武山铜矿田块状硫化物矿床的构造控矿机制及地球化学特征. 地质学报, (1): 22-32

    [51]

    楼亚儿, 杜杨松. 2006. 安徽繁昌-铜陵中生代侵入岩的黑云母特征和成因探讨. 矿物学报, 26(2): 175-180

    [52]

    徐夕生, 范钦成, O'Reilly SY, 蒋少涌, Griffin WL, 王汝成, 邱检生. 2004. 安徽铜官山石英闪长岩及其包体锆石U-Pb定年与成因探讨. 科学通报, 49(18): 1883-1891

    [53]

    徐耀明, 蒋少涌, 朱志勇, 周巍, 孔凡斌, 孙明志. 2012. 九瑞矿集区山上湾矿区石英闪长玢岩和花岗闪长斑岩的年代学、地球化学及成矿意义. 岩石学报, 28(10): 3306-3324

    [54]

    翟裕生, 姚书振, 林新多. 1992. 长江中下游地区铁铜(金)成矿规律. 北京: 地质出版社, 1-235

    [55]

    翟裕生, 姚书振, 周宗桂. 1999. 长江中下游铜金矿床矿田构造. 武汉: 中国地质大学出版社, 1-195

    [56]

    张德会, 徐九华, 余心起, 李健康, 毛世德, 王科强, 李泳泉. 2011. 成岩成矿深度: 主要影响因素与压力估算方法. 地质通报, 30(1): 112-125

    [57]

    赵海杰, 毛景文, 向君峰, 周振华, 魏克涛, 柯于富. 2010. 湖北铜绿山矿床石英闪长岩的矿物学及Sr-Nd-Pb同位素特征. 岩石学报, 26(3): 768-784

    [58]

    朱碧, 蒋少涌, 丁昕, 姜耀辉, 倪培, 顾连兴. 2008. 江西永平铜矿区花岗岩热液蚀变与岩石成因: 矿物化学、元素地球化学和Sr-Nd-Hf同位素制约. 岩石学报, 24(8): 1900-1916

  • 加载中
计量
  • 文章访问数:  7409
  • PDF下载数:  8971
  • 施引文献:  0
出版历程
收稿日期:  2013-08-15
修回日期:  2013-10-30
刊出日期:  2013-12-31

目录