大兴安岭诺敏河石榴石橄榄岩捕虏体的发现及其地质意义

隋建立, 樊祺诚, 徐义刚. 2012. 大兴安岭诺敏河石榴石橄榄岩捕虏体的发现及其地质意义. 岩石学报, 28(4): 1130-1138.
引用本文: 隋建立, 樊祺诚, 徐义刚. 2012. 大兴安岭诺敏河石榴石橄榄岩捕虏体的发现及其地质意义. 岩石学报, 28(4): 1130-1138.
SUI JianLi, FAN QiCheng, XU YiGang. 2012. Discovery of peridotite xenoliths from the Nuomin river Quaternary volcanic field, the Great Xing’an Range, and its geological significance. Acta Petrologica Sinica, 28(4): 1130-1138.
Citation: SUI JianLi, FAN QiCheng, XU YiGang. 2012. Discovery of peridotite xenoliths from the Nuomin river Quaternary volcanic field, the Great Xing’an Range, and its geological significance. Acta Petrologica Sinica, 28(4): 1130-1138.

大兴安岭诺敏河石榴石橄榄岩捕虏体的发现及其地质意义

  • 基金项目:

    本文受国家自然科学基金项目(40972048)和同位素地球化学国家重点实验室开放基金联合资助.

详细信息
    作者简介:

    隋建立,男,1974年生,博士后,主要从事火山与地球内部化学研究,E-mail:suijianli@ies.ac.cn

  • 中图分类号: P588.125

Discovery of peridotite xenoliths from the Nuomin river Quaternary volcanic field, the Great Xing’an Range, and its geological significance

  • 在重力梯度带北端的大兴安岭诺敏河第四纪火山岩中发现石榴石相和尖晶石相地幔橄榄岩捕虏体,其矿物组成分别为Ol40~55Opx20~35Cpx0~10Grt5~25和Ol45~65Opx30~40 Cpx0~15Sp0~10。两种地幔相橄榄岩均以方辉橄榄岩为主,说明研究区上地幔具有难熔的特点。其高Mg#橄榄石Fo91~92和高Cr31~47#尖晶石特征与南区哈河的地幔橄榄岩特征一致。在橄榄石含量与Fo图解上,敏河橄榄岩包体落在太古代和元古代地幔区域,揭示大兴安岭地区岩石圈地幔可能保留了较多古老的残余地幔。根据石榴石橄榄岩的平衡温压条件(1114~1168℃和2.14~2.33GPa),推测来源深度为70~75km。这些数据暗示研究区具有较高的地温梯度,与中国东部新生代火山岩区的地温梯度相似。

  • 加载中
  • 图 1 

    诺敏河第四纪火山岩分布和采样位置图(据樊祺诚等,2012修改)

    Figure 1. 

    Map showing distribution of Quaternary volcanic rocks in the Nuomin river area and sampling locations of mantle xenoliths (modified after Fan et al., 2012)

    图 2 

    诺敏河地幔橄榄岩的岩相学特征

    Figure 2. 

    Petrographic features of the mantle xenoliths from Nuomin river

    图 3 

    地幔石榴石矿物组成三元图解 (据Huang et al., 2007)

    Figure 3. 

    Chemical variation of garnet in mantle xenoliths (after Huang et al., 2007)

    图 4 

    地幔石榴石CaO-Cr2O3相关关系分类图和平衡压力(据Grütter et al., 2006)

    Figure 4. 

    CaO-Cr2O3 classification diagram of mantle garnet and equilibrium pressures (after Grütter et al., 2006)

    图 5 

    Fo-olivine mode 图解

    Figure 5. 

    Fo-olivine mode diagram

  •  

    Ai Y, Zheng T, Xu W, He Y and Dong D. 2003. A complex 660km discontinuity beneath Northeast China. Earth and Planetary Science Letters, 212(1-2): 63-71

     

    An M and Shi Y. 2006. Lithospheric thickness of the Chinese continent. Physics of the Earth and Planetary Interiors, 159(3-4): 257-266

     

    Boyd FR. 1989. Compositional distinction between oceanic and cratonic lithosphere. Earth and Planetary Science Letters, 96(1-2): 15-26

     

    Brey GP and KöhLer T. 1990. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol., 31(6): 1353-1378

     

    Brey GP, Bulatov VK, Girnis AV and Lahaye Y. 2008. Experimental melting of carbonated peridotite at 6~10GPa. J. Petrol., 49(4): 797-821

     

    Cao RL and Zhu SH. 1990. Ryacolite-olivine-diopside mineral assemblages of mantle metasomatism in garnet lherzolite xenoliths from Xilong, Zhejiang Province. In: Professional Committee for Mantle Mineralogy, Petrology and Geochemistry under China Society of Mineralogy, Petrology and Geochemistry (ed.). Collected Papers on Upper Mantle Characteristics and Dynamics of China. Beijing: Seismological Publishing House, 34-44(in Chinese)

     

    Fan QC and Hooper PR. 1989. The mineral chemistry of ultramafic xenoliths of eastern China: Implications for upper mantle composition and the paleogeotherms. J. Petrol., 30(5): 1117-1158

     

    Fan QC, Liu RX, Xie HS, Zhang YM, Xu P and Lin ZR. 1997. Experimental study of spinel-garnet phase transition in upper mantle and its significance. Science in China (Series D), 40(4): 383-389

     

    Fan QC, Sui JL, Zhao YW, Sun Q, Li N and Du XX. 2008. Preliminary study on garnet peridotite xenolith of Quaternary volcanic rocks in middle Daxing’an Moutain Range. Acta Petrologica Sinica, 24(11): 2563-2568 (in Chinese with English abstract)

     

    Fan QC and Sui JL. 2009. Phase transition of upper mantle rock in eastern China and its significance. Earth Science, 34(3): 387-391(in Chinese with English abstract)

     

    Fan QC, Zhao YW, Sui JL, Li DM and Wu Y. 2012. Studies on Quaternary volcanism stages of Nuomin river area in the Great Xing’an Range: Evidence from petrology, K-Ar dating and volcanic geology features. Acta Petrologica Sinica, 28(4):1092-1098(in Chinese with English abstract)

     

    Fan WM, Zhang HF, Baker J, Jarvis KE, Mason PRD and Menzies MA. 2000. On and off the North China Craton: Where is the Archaean keel? J. Petrol., 41(7): 933-950

     

    Fang SM, Yu QF and Zhang XK. 2001. Characteristics of the lithospheric bottom interface and seismicity in eastern China and its vicinity. Chinese Journal of Geophysics, 44(4): 48-53(in Chinese with English abstract)

     

    Griffin WL, O' Reilly SY and Ryan CG. 1999. The composition and origin of sub-continental lithospheric mantle. In: Fei Y, Berta CM and Mysen BO (eds.). Mantle Petrology: Field Observations and High-Pressure Experimentation. Houston: Geochemical Society, 13-46

     

    Grütter H, Latti D and Menzies A. 2006. Cr-saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry. J. Petrol., 47(4): 801-820

     

    Harley SL. 1984. An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contributions to Mineralogy and Petrology, 86(4): 359-373

     

    Huang XL, Xu YG, Lo CH, Wang RC and Lin CY. 2007. Exsolution lamellae in a clinopyroxene megacryst aggregate from Cenozoic basalt, Leizhou Peninsula, South China: Petrography and chemical evolution. Contributions to Mineralogy and Petrology, 154(6): 691-705

     

    Huang XL and Xu YG. 2010. Thermal state and structure of the lithosphere beneath eastern China: A synthesis on basalt-borne xenoliths. Journal of Earth Science, 21(5): 711-730

     

    Jin SY and Pan SA. 1998. Mantle-derived xenoliths of spinel-garnet lherzolite from Nushan and their implications for petro-physics. Earth Science, 23(5): 475-479(in Chinese with English abstract)

     

    Klemme S and O’Neill HS. 2000. The near-solidus transition from garnet lherzolite to spinel lherzolite. Contributions to Mineralogy and Petrology, 138(3): 237-248

     

    Klemme S. 2004. The influence of Cr on the garnet-spinel transition in the Earth’s mantle: Experiments in the system MgO-Cr2O3-SiO2 and thermodynamic modelling. Lithos, 77(1-4): 639-646

     

    Lin CY, Shi LB, Han XL and Zhang X. 1998. Thermal structure and rheology of the upper mantle beneath Zhejiang Province. Science in China (Series D), 28(2): 97-104

     

    Ma XY. 1989. Lithospheric Dynamics Atlas of China. Beijing: China Cartographic Publishing House (in Chinese)

     

    Menzies MA, Fan W and Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120km of Archaean lithosphere, Sino-Korean craton, China. Geological Society, London, Special Publications, 76(1): 71-81

     

    Menzies M, Xu Y, Zhang H and Fan W. 2007. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 96(1-2): 1-21

     

    Nickel KG and Green DH. 1985. Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth and Planetary Science Letters, 73: 758-170

     

    O’Neill HSC. 1981. The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contributions to Mineralogy and Petrology, 77(2): 185-194

     

    Sobolev NV. 1977. Deep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle. Ann Arbor, Michigan: Edwards Brothers, Inc.

     

    Su BX, Zhang HF, Tang YJ, Chisonga B, Qin KZ, Ying JF and Sakyi P. 2011. Geochemical syntheses among the cratonic, off-cratonic and orogenic garnet peridotites and their tectonic implications. International Journal of Earth Sciences, 100(4): 695-715

     

    Tang YJ, Zhang HF, Ying JF, Zhang J and Liu XM. 2008. Refertilization of ancient lithospheric mantle beneath the central North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 101: 435-452

     

    Tang YJ, Zhang HF, Ying JF, Su BX, Chu ZY, Xiao Y and Zhao XM. 2012. Highly heterogeneous lithospheric mantle beneath the Central Zone of the North China Craton evolved from Archean mantle through diverse melt refertilization. Gondwana Research, doi:10.1016/j.gr.2012.1001.1006

     

    Taylor WR. 1998. An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolites and garnet websterite. Neues Jahrbuch für Mineralogie Abhandlungen, 172: 381-408

     

    Wells PRA. 1977. Pyroxene thermometry in simple and complex systems. Contributions to Mineralogy and Petrology, 62(2): 129-139

     

    Wu CM and Zhao GC. 2011. The applicability of garnet-orthopyroxene geobarometry in mantle xenoliths. Lithos, 125(1-2): 1-9

     

    Wu FY, Xu YG, Gao S and Zheng JP. 2008. Lithospheric thinning and destruction of the North China Craton. Acta Petrologica Sinica, 24(6): 1145-1174(in Chinese with English abstract)

     

    Xu X, O’Reilly SY, Zhou X and Griffin WL. 1996. A xenolith-derived geotherm and the crust-mantle boundary at Qilin, southeastern China. Lithos, 38(1-2): 41-62

     

    Xu YG, Ross JV and Mercier JCC. 1993. The upper mantle beneath the continental rift of Tanlu, eastern China: Evidence for the intra-lithospheric shear zones. Tectonophysics, 225(4): 337-360

     

    Xu YG, Lin CY, Shi LB et al. 1995. A petrological paleogeotherm of the upper mantle of eastern China and its geological implications. Science in China (Series B), 25(8): 874-881(in Chinese)

     

    Xu YG. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean craton in China: Evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9-10): 747-757

     

    Xu YG. 2007. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin’anling-Taihangshan gravity lineament. Lithos, 96(1-2): 281-298

     

    Yu XH. 1991. Mantle xenoliths and megacryst in ultramafic lamprophyres in Haoti, Gansu Province. Geological Science and Technology Information, 10(Suppl.): 97-107(in Chinese)

     

    Zhang HF, Sun M, Zhou XH, Fan WM, Zhai MG and Yin JF. 2002. Mesozoic lithosphere destruction beneath the North China Craton: Evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology, 144(2): 241-254

     

    Zhang HF. 2005. Transformation of lithospheric mantle through peridotite-melt reaction: A case of Sino-Korean craton. Earth and Planetary Science Letters, 237(3-4): 768-780

     

    Zhang HF, Nakamura E, Sun M, Kobayashi K, Zhang J, Ying JF, Tang YJ and Niu LF. 2007. Transformation of subcontinental lithospheric mantle through peridotite-melt reaction: Evidence from a highly fertile mantle xenolith from the North China Craton. International Geology Review, 49(7): 658-679

     

    Zhao D. 2004. Global tomographic images of mantle plumes and subducting slabs: Insight into deep Earth dynamics. Physics of the Earth and Planetary Interiors, 146(1-2): 3-34

     

    Zhao YW and Fan QC. 2011. Characteristics of lithospheric mantle beneath the Great Xing’an Range: Evidence from spinel peridotite xenoliths in the Halaha River and Chaoer River area. Acta Petrologica Sinica, 27(10): 2833-2841(in Chinese with English abstract)

     

    Zhu R and Zheng T. 2009. Destruction geodynamics of the North China craton and its Paleoproterozoic plate tectonics. Chinese Science Bulletin, 54(19): 3354-3366

  • 加载中

(5)

计量
  • 文章访问数:  8947
  • PDF下载数:  5249
  • 施引文献:  0
出版历程
收稿日期:  2011-12-10
修回日期:  2012-03-05
刊出日期:  2012-04-01

目录